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Abstract. The main goal of Class Field Theory, of characterizing abelian field
extensions in terms of the arithmetic of the rationals, is achieved via the correspon-
dence between Arithmetic Galois Theory and classical (algebraic) Galois Theory,
as formulated in its traditional form by Artin.

The analysis of field extensions, primarily of the way rational primes decompose
in field extensions, is done in terms of an invariant of the Galois group encoding its
structure.

Prospects of the non-abelian case are given in terms of Grothendieck’s Anabelian
Theory.
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1. Introduction

One of the main goals of Class Field Theory is describing field extensions of k = Q
in terms of the arithmetic of the integers [2], and in particular characterizing how
rational primes decompose in field extensions.

In the non-abelian case, regarding field extensions arithmetically similar if almost
of the rational primes decompose in the same way, was already studied in terms of
group theory in [1].

In this article we develop this direction of research for the case of abelian extensions,
towards a functorial correspondence between what we call Arithmetic Galois Theory
and the traditional Galois Theory we will refer to as “algebraic”.
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The umbrella framework of Anabelian Geometry, as envisioned by Grothendieck in
the 1970s, include these two “good examples”, together with the Topological Galois
Theory of covering spaces and Theory of Ramified Covers of Riemann Surfaces.

Weber-Kronecker Theorem places abelian field theory in the context of cyclotomic
extensions. As explained in the background section §2, the corresponding well known
facts of CFT can be mapped (traced back) to group theoretical facts about finite
abelian group Z/n and its symmetry group of automorphisms (Z/n×, ·). The cor-
respondence between its subgroups and correspondence quotients is set into corre-
spondence with the Galois Theory of the cyclotomic extension. The decomposition
of primes there corresponds to the orbit structure of multiplication by primes etc..

The long-term goal is to systematically study:
1) The functoriality between Arithmetic and Algebraic Galois Theory and corre-

spondences;
2) The decoposition of primes in field extensions, as corresponding to the orbit

decomposition in the arithmetic side;
3) Applications of the above correspondence to Reciprocity Laws;
4) The Ramification Theory in interpretation in terms of Anabelian Geometry.

2. Arithmetic Galois Theory

The main point is to make precise what “arithmetic of Q” means, by considering
the “reflection” of Galois Theory in the Klein Geometry of (Z/n,+), as an abelian
group.

We will consider first Abelian field extensions BQ→ L→ Q(ζn) over the rationals
as a base field, with conductor n, i.e. the minimal root of unity allowing for an
embedding in a cyclotomic extension. Its Galois group is (Z/n×, ·).

2.1. A few examples. Let us build the theory starting from examples.

2.1.1. Gaussian integers. Consider the familiar case of Gaussian integers Z[i] =
Q(ζ4). In this case the degree is [Q(ζn) : Q] = 2 and the genus-degree-ramification
equation yields 2 = e · f · g, with the well known case: ramified, inert and split.

Let us look at the “arithmetic side”. Given a prime p, multiplication by p, denoted
Mp : Z/ptimes→ Z×

p determines the decomposition of primes as follows:
Ramified case. If p modn is a zero divisor, then the prime ramifies. In our

case, with n = 4, gcd(p, 4) 6= 1 implies p = 2. Then the index of kerM2 gives the
ramification index e = 2, and the short exact sequence ker(M2) → Z/4 → Z/2 can
be viewed as a ramified cover ...

Unramified case. If p modn is in Z/n×, then it is unramified (e = 1) and the
arithmetic degree is as follows:

a) p ∼= 1 and f = ord(p) = 1, hence g = 2 the prime splits completely; e.g.
5 = (2 + i)(2− i);

2



Ionescu CFT and Group Theory

b) p ∼= 3 and f = ord(p) = 2, hence g = 1 and the prime is inert; e.g. p = 3.

2.1.2. Prime cyclotomic extensions. Consider n = 7. Then the only ramified prime
is p = 7 itself, with e = ker(M7) = p as well known.

If gcd(q, p) = 1 then the orders of [p] = p mod 7, divisors of |G| = p− 1 = 6, are as
follows:

Table : [p] = 1, 2, 3, 4, 5, 6; f = ord(p) = 1, 3, 6, 3, 6, 2

and, since g = |G|/f is the index of the arithmetic Frobenius subgroup Cf , generated
by p. The arithmetic decomposition short exact sequence is:

1→ I = {1} → D → Cf ,

where we insist to view the quotient D = G/Cf as a “bundle” over the “Frobenius
cycle” Cf , in anticipation of the non-split / non-abelian case.

For other example see [4] (see Galois Theory Examples)

3. Conclusions

Arithmetic Galois Theory aims to make precise what “arithmetic of Q means by
considering the category Z of finite abelian groups (see also [5].

Further developments are in view:
- Study the cyclotomic case and its subextensions (via KW-Theorem).
- Hint to ACFT Hurwitz Theorem about absolute Galois group, in the context of

Anabelian geometry.
Furthermore:
I) Study Z → Q[Z] group ring correspondence and its quotients;
II) Study Artin functor and interpret in the context of Anabelian geometry; look

for the Algebraic de Rham Cohomology and Periods (π1 = H1 here): derived functors
of Group Ring? [adic completion, abeliantization]

III) What corresponds to Q[Z]/f(x) in the arithmetic-Geometric side? [If not
abelian then homotopy is more than homology]

IV) Study the Abelian Polynomial Th.: Split(f(x)) corresponds to congruences [i.e.
corresponds to Spec(Z) covering maps] iff Gal(f(x)) is Abelian [by KW-Th. subgroup
of Z/n].

Our overall goal is to bridge with Anabelian Geometry and Periods, or at least aim-
and-shoot (even if missing big!); just to make the “typical Alg. NT reader” aware of
the “Everests base camp” (Anabelian Geometry, Langlands programme, Motives and
Periods).

V) Study Primes and Decompositions in quotients: Arithmetic (primes in field
extensions), Algebraic (polynomials over finite fields), and the Correspondence (Reci-
procity Laws; explaining what are these)

III) Determine the Group Invariant (see [6]) for the analysis of Galois Group De-
compositions.
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The author hopes that the various ideas only sketched will lead the reader to
detailed works on the subjects mentioned.
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