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ABSTRACT

A decomposition formula for an antisymmetric matrix Aω ∈ A3(R) is provided, where its axial

vector is expressed as ω = Mν, with M symmetric and ν ∈ R3. The proof is based mainly on

vector projection through Frobenius inner product. In the end, a vectorial identity involving cross

product is proved as a corollary of the decomposition formula.
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1 Introduction

Let A3(R) = {A ∈ M3(R) : A = −AT} be the set of third-order real antisymmetric matrices, where M3(R) is the

vector space of square real matrices of order 3. Then A3 is a vector subspace of M3. In fact, given two antisymmetric

matrices A1,A2 ∈ A3, it is easy to show the closure with respect to sum:

A1 +A2 = −AT
1 −AT

2 = −(A1 +A2)
T

Similarly, for any given λ ∈ R, we can show the closure with respect to multiplication by a scalar:

λA1 = −λAT
1 = −(λA1)

T

Proposition 1.1 A3 has canonical base B = {E1,E2,E3}, where:

E1 =


0 1 0

−1 0 0

0 0 0

 E2 =


0 0 1

0 0 0

−1 0 0

 E3 =


0 0 0

0 0 1

0 −1 0





Proof: Any A ∈ A3 can be expressed as a linear combination of E1,E2,E3. In fact:

A =


0 a12 a13

−a12 0 a23

−a13 −a23 0

 = a12E1 + a13E2 + a23E2

therefore A3 = Span(E1,E2,E3). Now consider the two following linear combinations:

A = γ′
1E1 + γ′

2E2 + γ′
3E3

A = γ′′
1E1 + γ′′

2E2 + γ′′
3E3

By definition, we know that any antisymmetric matrix A ∈ A3 is such that A = −AT, therefore A +AT = 0. In

light of this, we can write:

A+AT = (γ′
1E1 + γ′

2E2 + γ′
3E3) + (γ′′

1E1 + γ′′
2E2 + γ′′

3E3)
T =

= (γ′
1 − γ′′

1 )E1 + (γ′
2 − γ′′

2 )E
′
2 + (γ′

3 − γ′′
3 )E3 = 0

The latter is satisfied if and only if γ′
i = γ′′

i for i = 1, 2, 3, which means that there is a unique linear combination to

express A, hence {E1,E2,E3} is a set of linearly independent vectors. Therefore, B = {E1,E2,E3} is a base of A3.

□

An immediate consequence of this is that dim(A3) = 3. Antisymmetric matrices are useful to express cross products in

terms of matrix-vector products. In fact, given two vectors a,b ∈ R3, their cross product a× b can be expressed as:

a× b = Aab (1)

where Aa is antisymmetric. Given (a1, a2, a3) the coordinates of a, the matrix Aa reads as follows:

Aa =


0 a3 −a2

−a3 0 a1

a2 −a1 0

 (2)

Given any antisymmetric matrix, it is always possible to associate it with a vector a ∈ R3, which is called axial vector.

Let us now consider the following set of antisymmetric matrices:

X1 =


0 0 0

0 0 1

0 −1 0

 X2 =


0 0 −1

0 0 0

1 0 0

 X3 =


0 1 0

−1 0 0

0 0 0



2



Similarly to the last result, it can be easily shown that B′ = {X1,X2,X3} is a basis of A3, and that given an axial

vector ω = (ω1, ω2, ω3), it is always possible to write its associated antisymmetric matrix Aω simply as:

Aω = ω1X1 + ω2X2 + ω3X3 (3)

Definition 1.1 Given two real square matrices of order n A, B, the Frobenius inner product is a bilinear form

⟨·, ·⟩F : Mn(R)×Mn(R) → R defined as:

⟨A,B⟩F = Tr(ATB)

The norm induced by this product is given by:

∥A∥F =
√
⟨A,A⟩F

Proposition 1.2 B′ = {X1,X2,X3} is an orthogonal basis with respect to the Frobenius inner product.

Proof: We have to prove that ⟨Xi,Xj⟩F = 0, for i, j = 1, 2, 3, i ̸= j. It is straightforward to see that multiplying

each row of XT
i with the correspondent column of Xj (i.e. first row with first column, second row with second column,

and so on), one gets a null-diagonal matrix, hence the product is identically zero for any i ̸= j, proving the statement. □

To conclude with, we can report the following theorem on vector projection [1] applied to antisymmetric matrices

expressed with respect B′ = {X1,X2,X3}.

Theorem 1.1 Given C ∈ A3(R) and the orthogonal basis B′ = {X1,X2,X3} with respect to the Frobenius inner

product, it holds that:

C = c1X1 + c2X2 + c3X3

where

ci =
⟨C,Xi⟩F
⟨Xi,Xi⟩F

(4)

are called Fourier’s coefficients.

2 Decomposition Formula

Theorem 2.1 Given two axial vector ν,ω ∈ R3, where ω is expressible as ω = Mν with M symmetric, the following

equality holds:

Aω = Tr(M)Aν − 2Asym(MAν) (5)

where Aν ,Aω are the antisymmetric matrices associated to the axial vectors ν,ω respectively, and Asym(MAν) is

the antisymmetric part of MAν .
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Proof: Consider the following antisymmetric matrix Aω, where ω = Mν and M is symmetric. We know that we

can express Aω through (3). Being νi and mij for i, j = 1, 2, 3 the components of respectively ν and M, we have:

Aω =ω1X1 + ω2X2 + ω3X3 =

(m11ν1 +m12ν2 +m13ν3)X1+

(m12ν1 +m22ν2 +m23ν3)X2+

(m13ν1 +m23ν2 +m33ν3)X3

Introducing σij = 1− δij , i.e. a tensor whose components are 0 on the diagonal (i = j) and 1 elsewhere, and recalling

that mji = mij for the symmetry of M, we can express the last equality in Einstein’s notation as:

Aω = mjjνjXj + σijmijνiXj (6)

Now consider the following quantity:

B = σijmiiνjXj

Adding and subtracting it to (6), one has:

Aω = (mjjνj + σijmiiνj)Xj︸ ︷︷ ︸
I⃝

+(σijmijνi − σijmiiνj)Xj︸ ︷︷ ︸
II⃝

(7)

Let us show that I⃝ corresponds to Tr(M)Aν . In fact:

(mjjνj + σijmiiνj)Xj =

3∑
j=1

(
mjjνj +

3∑
i=1

σijmiiνj

)
Xj =

=

(
m11ν1 + ν1

3∑
i=1

σi1mii

)
X1 +

(
m22ν2 + ν2

3∑
i=1

σi2mii

)
X2 +

(
m33ν1 + ν3

3∑
i=1

σi3mii

)
X3 =

= (m11 +m22 +m33)ν1X1 + (m11 +m22 +m33)ν2X2 + (m11 +m22 +m33)ν3X3 =

= Tr(M) (ν1X1 + ν2X2 + ν3X3) = Tr(M)Aν

where the last step is obtained using (3). We now need to characterize II⃝, call it C = (σijmijνi − σijmiiνj)Xj . First

of all, let us observe that we can remove σij . In fact, for i = j, the term mijνi −miiνj = 0, hence we can simply put:

C = (mijνi −miiνj)Xj . (8)

We want to find out who C is. Since Tr(M)Aν is antisymmetric, C must be forcedly antisymmetric in order to enforce

(6) and have Aω ∈ A3(R). Let us observe from (8) that the components of C are obtained from some linear operation

between M and ν. We cannot choose C = AMν because it already appears at the left-hand member of (7), so a hint
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for C would be:

C = λAsym(MAν)

with λ opportunely chosen. Observe that this intuition makes sense since the components of C would consist of a

sum of addenda where each of them is a product of some mij multiplying some νi (eventually with a shifted sign), as

predicated by (8). In addition, taking the the antisymmetric part will ensure the requirement of antisymmetry of C.

Also this choice is well-defined because:

(MAν)
T = AT

νM
T = −AνM

which means MAν is neither symmetric nor antisimmetryc. Moreover:

Asym(MAν) =
1

2

[
MAν − (MAν)

T
]
=

1

2

[
MAν +AνM

]
=

=
1

2

[
AνM+MAν

]
=

1

2

[
AνM−MTAT

ν

]
=

=
1

2

[
AνM− (AνM)T

]
= Asym(AνM)

In order to show this intuition is actually true, we will take C = λAsym(MAν), project it on B′ = {X1,X2,X3},

and check if the projection coefficients are actually corresponding to the components of C as expressed in (8). Before

continuing, we need to introduce the following lemma.

Lemma 2.1 Given a symmetric matrix M and an axial vector ν with associated antisymmetric matrix Aν , it holds

that:

⟨AνM+MAν ,Xi⟩F = 2⟨AνM,Xi⟩F i = 1, 2, 3 (9)

where Xi ∈ B′.

Proof: Calculate ⟨AνM,Xi⟩F first:

⟨AνM,Xi⟩F = Tr
(
(MAν)

TXi

)
= Tr

(
Aν)

TMTXi

)
= −Tr(AνMXi)

By the commutation property of the trace operator applied to a matrix product, for real square matrices we have

Tr(AB) = Tr(BA), which allows us to express the Frobenius inner product of two matrices alternatively as:

⟨A,B⟩F = ⟨B,A⟩F = Tr(BTA) = Tr(ABT)

Therefore, considering ⟨MAν ,Xi⟩F :

⟨MAν ,Xi⟩F = Tr(AνMXT
i ) = −Tr(AνMXi) = ⟨AνM,Xi⟩F
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Therefore:

⟨AνM+MAν ,Xi⟩F = ⟨AνM,Xi⟩F + ⟨MAν ,Xi⟩F = ⟨AνM,Xi⟩F + ⟨AνM,Xi⟩F = 2⟨AνM,Xi⟩F

which proves the lemma. □

Now we can use this lemma to compute the Fourier’s coefficients of C = λAsym(MAν) along X1,X2,X3. We have

that:

C = λAsym(MAν) =
λ

2

[
AνM+MAν

]
and

ci =
⟨C,Xi⟩F
⟨Xi,Xi⟩F

=
λ

2

⟨AνM+MAν ,Xi⟩F
⟨Xi,Xi⟩F

= λ
⟨AνM,Xi⟩F
⟨Xi,Xi⟩F

(10)

It is easy to calculate that ⟨Xi,Xi⟩F = ∥Xi∥2F = 2 for i = 1, 2, 3. In fact, take i = 1:

⟨X1,X1⟩F = Tr




0 0 0

0 0 −1

0 1 0




0 0 0

0 0 1

0 −1 0


 = Tr


0 0 0

0 1 0

0 0 1

 = 2

It is easy to show that also for X2 and X3, allowing us to rewrite (10) as:

ci =
λ

2
⟨AνM,Xi⟩F

which we need to explicit for i = 1, 2, 3. Consider i = 1:

c1 =
λ

2
⟨AνM,X1⟩F =

=
λ

2
Tr




0 ν3 −ν2

−ν3 0 ν1

ν2 −ν1 0




m11 m12 m13

m12 m22 m23

m13 m23 m33




0 0 0

0 0 1

0 −1 0


T
 =

=
λ

2
Tr




0 ν3 −ν2

−ν3 0 ν1

ν2 −ν1 0




0 m13 −m12

0 m23 −m22

0 m33 −m23


 =

=
λ

2
(−m13ν3 +m33ν1 −m12ν2 +m22ν1) =

=
λ

2

[
(m22 +m33)ν1 −m12ν2 −m12ν3

]
(11)
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In a similar way, we can find out that:

c2 =
λ

2

[
(m11 +m33)ν2 −m12ν1 −m23ν3

]
(12)

c3 =
λ

2

[
(m11 +m22)ν3 −m13ν1 −m23ν2

]
(13)

Now, let us write explicitly the coordinates C as expressed in (8). Still using Einstein’s notation, it reads:

C = (mi1νi −miiν1)︸ ︷︷ ︸
=c1

X1 + (mi2ν2 −miiν2)︸ ︷︷ ︸
=c2

X2 + (mi3ν2 −miiν3)︸ ︷︷ ︸
=c3

X3

Marking summation explicitly and using mij = mji, we have:

c1 =

3∑
i=1

mi1νi −miiν1 = −(m22 +m33)ν1 + (m12ν2 +m13ν3) (14)

c2 =

3∑
i=1

mi2νi −miiν2 = −(m11 +m33)ν2 + (m12ν1 +m23ν3) (15)

c3 =

3∑
i=1

mi3νi −miiν3 = −(m11 +m22)ν3 + (m13ν1 +m23ν2) (16)

Thus, (14), (15) and (16) coincide with (11), (12) and (13) respectively for λ = −2. This allows us finally to express C

as:

C = −2Asym(MAν)

Therefore, putting all together in (7), it yields:

Aω = Tr(M)Aν − 2Asym(MAν)

□

Since it is always possible to associate an antisymmetric matrix to the axial vector ω and viceversa, this formula holds

as long as the axial vector is expressible as a matrix-vector product through M and ν (M symmetric). From this

decomposition formula, we can immediately deduce the following result.

Corollary 2.1 Given a,b ∈ R3 and a symmetric matrix M, the following relationship is true:

M(a× b) = Tr(M)a× b− a×Mb+ b×Ma (17)

Proof: Consider ν ≡ a and ω = Ma. Then, using (5), we have:

AMa = Tr(M)Aa − 2Asym(MAa) = Tr(M)Aa −
[
MAa − (MAa)

T
]
=

= Tr(M)Aa −MAa +AT
aM

T = Tr(M)Aa −MAa −AaM (18)
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Applying b to both members of (18), one gets:

AMab = Tr(M)Aab−MAab−AaMb

Using (2), we can write further:

(Ma)× b = Tr(M)a× b−M(a× b)− a× (Mb)

If we reorganize the members and rewrite (Ma)× b = −b× (Ma), we obtain exactly:

M(a× b) = Tr(M)a× b− a×Mb+ b×Ma

□

3 Conclusion

In the previous section, we have shown how a generic antisymmetric matrix of axial vector ω can be decomposed.

While it is always trivial to associate any A ∈ A3(R) with a vector of ω ∈ R3, it is not obvious how to find M and

ν such that ω = Mν, under the symmetry constraint of M. Future work may consist of showing the existence of

the couple (M,ν) for any given ω ∈ R3. Moreover, on the basis of that, one could seek for an optimal procedure of

determining a three-dimensional vector ω from 9 degrees of freedom (6 accounting for M, and 3 for ν). Finally, given

the vectorial form of equation (17), one could investigate its prospective applications in fields like Vector Calculus,

Differential Geometry and Mechanics.
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