A DECOMPOSITION FORMULA FOR THIRD-ORDER REAL
ANTISYMMETRIC MATRICES

Luca Pettinari
Alumnus of Polytechnic University of Marches
Bratislava, April 2022
lalb.pettinari@gmail.com

ABSTRACT

A decomposition formula for an antisymmetric matrix A,, € As(R) is provided, where its axial
vector is expressed as w = Muv, with M symmetric and v € R3. The proof is based mainly on
vector projection through Frobenius inner product. In the end, a vectorial identity involving cross

product is proved as a corollary of the decomposition formula.
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1 Introduction

Let A3(R) = {A € M3(R) : A = —AT} be the set of third-order real antisymmetric matrices, where M3(R) is the
vector space of square real matrices of order 3. Then .43 is a vector subspace of M. In fact, given two antisymmetric

matrices A1, Ag € Ag, it is easy to show the closure with respect to sum:
Al +Ay=-AT AT = (A + AT
Similarly, for any given A € R, we can show the closure with respect to multiplication by a scalar:
M) = 2AT = —(\A)T

Proposition 1.1 A3 has canonical base B = {E;, Eo, E3}, where:



Proof: Any A € Aj can be expressed as a linear combination of Eq, Es, E5. In fact:

0 a2 a3
A= |—qg 0 asz | = a12E1 + a13E2 + asEo
—ai3  —az3 0

therefore A3 = Span(Eq, E5, E3). Now consider the two following linear combinations:

A =1 E; + vE; + 15E3

A =vE; ++Ey + 5 E;3

By definition, we know that any antisymmetric matrix A € Aj is such that A = —A™, therefore A + AT = 0. In

light of this, we can write:

A+ AT = (VE1 +1%E2 + 1Es) + (1E1 + 1By + 15 Es) " =
= (1 —7)E1+ (72 —7)E; + (75 —75)E3 =0
The latter is satisfied if and only if v, =~ for ¢ = 1,2, 3, which means that there is a unique linear combination to
express A, hence {E;, Eo, E5} is a set of linearly independent vectors. Therefore, B = {E;, Eo, E5} is a base of Asj.
O

An immediate consequence of this is that dim(.A3) = 3. Antisymmetric matrices are useful to express cross products in

terms of matrix-vector products. In fact, given two vectors a, b € R?, their cross product a x b can be expressed as:
axb=A,b (L

where A, is antisymmetric. Given (a1, as, ag) the coordinates of a, the matrix A, reads as follows:

0 as —ag
Aa = | —as 0 aq (2)
a9 —aq 0

Given any antisymmetric matrix, it is always possible to associate it with a vector a € R3, which is called axial vector.

Let us now consider the following set of antisymmetric matrices:

0 0 0 0 0 -1 0 1 0
Xi=10 0 1 Xoa=10 0 0 X3=|-1 0 0
0 -1 0 1 0 0 0 0 0



Similarly to the last result, it can be easily shown that B’ = {X;, X5, X3} is a basis of A3, and that given an axial

vector w = (w1, ws,ws), it is always possible to write its associated antisymmetric matrix A, simply as:

A, =wi1 Xy +weXo + w3Xs 3)

Definition 1.1 Given two real square matrices of order n A, B, the Frobenius inner product is a bilinear form

(,F : Mu(R) x M, (R) — R defined as:

(A,B)r = Tr(ATB)
The norm induced by this product is given by:

[Allr = V(A A)p

Proposition 1.2 B’ = {X;, X5, X3} is an orthogonal basis with respect to the Frobenius inner product.

Proof: We have to prove that (X;,X;)r =0, fori,j = 1,2, 3, ¢ # j. It is straightforward to see that multiplying
each row of X;r with the correspondent column of X (i.e. first row with first column, second row with second column,
and so on), one gets a null-diagonal matrix, hence the product is identically zero for any ¢ # j, proving the statement. [J
To conclude with, we can report the following theorem on vector projection [1]] applied to antisymmetric matrices

expressed with respect B’ = {X;, X2, X3}.

Theorem 1.1 Given C € A3(R) and the orthogonal basis B' = {X1, X, X3} with respect to the Frobenius inner
product, it holds that:

C = 61X1 + CQXQ + C3X3
where

“= XK Xor @

are called Fourier’s coefficients.

2 Decomposition Formula

Theorem 2.1 Given two axial vector v, w € R3, where w is expressible as w = Muv with M symmetric, the following
equality holds:
A, =Tr(M)A, — 2Asym(MA,) 3)

where A, , A, are the antisymmetric matrices associated to the axial vectors v, w respectively, and Asym(MA,) is

the antisymmetric part of MA .



Proof: Consider the following antisymmetric matrix A,,,, where w = Mv and M is symmetric. We know that we

can express A, through (). Being v; and m;; for i, j = 1,2, 3 the components of respectively v and M, we have:

A, =X +weXs +w3X3 =
(miiv1 + magve + magvs) X+
(magv1 + Mmagve + mogvs) Xo+

(masv1 + magve + masvs) Xs

Introducing 0;; = 1 — d;5, i.e. a tensor whose components are 0 on the diagonal (¢ = j) and 1 elsewhere, and recalling

that mj; = my; for the symmetry of M, we can express the last equality in Einstein’s notation as:
AA“J = ijVJXj + O'ijmijVin (6)

Now consider the following quantity:
B = O'ijmiiVij
Adding and subtracting it to (6), one has:
Aw = (mjjl/j + cr,'jm”uj)Xj + (O'ijmijl/i — O’ijmiil/j)Xj (7)
@ oy

Let us show that () corresponds to Tr(M)A,,. In fact:

3
(mjjvs + oigmav)X; =Y (mjjl/j + Zaijmiiyj> Xj=

j=1 i=1

3 3 3
= <m111/1 + 1 ZUnmn‘) X1+ <m22V2 +v2 Zammm‘) Xa + <m331/1 +v3 Zai3mii> X3 =

i=1 i=1 i=1
= (m11 + maa + ma3)1 X1 + (M1 + Moz + ma3)vaXsa + (M1 + Mmoo + ms3)vsXs =
= TI‘(M) (U1X1 + VQXQ + V3X3) = TI‘(M)AV

where the last step is obtained using (3). We now need to characterize @), call it C = (o;;m;jv; — 0;5m4;v5)X ;. First

of all, let us observe that we can remove o;;. In fact, for ¢ = j, the term m;;v; — m;;v; = 0, hence we can simply put:
C= (mijui — miiyj)X]-. (8)

We want to find out who C is. Since Tr(IM)A,, is antisymmetric, C must be forcedly antisymmetric in order to enforce
() and have A, € A3(R). Let us observe from () that the components of C are obtained from some linear operation

between M and v. We cannot choose C = Apg,, because it already appears at the left-hand member of (7)), so a hint



for C would be:
C = )XAsym(MA,)

with \ opportunely chosen. Observe that this intuition makes sense since the components of C would consist of a
sum of addenda where each of them is a product of some m;; multiplying some v; (eventually with a shifted sign), as
predicated by (§). In addition, taking the the antisymmetric part will ensure the requirement of antisymmetry of C.

Also this choice is well-defined because:
(MA)T =ATMT = —A, M
which means MLA , is neither symmetric nor antisimmetryc. Moreover:

Asym(MA,) = {MA,, - (MA,,)T] - %{MA,, n A,,M} _

N =N =N =

AM+MA, | =-|A,M-MTAT| =
[ =3l }

1
2
[A,,M - (A,,M)T] = Asym(A, M)

In order to show this intuition is actually true, we will take C = XA Asym(MA,), project it on B’ = {X;, X5, X3},
and check if the projection coefficients are actually corresponding to the components of C as expressed in (§). Before

continuing, we need to introduce the following lemma.

Lemma 2.1 Given a symmetric matrix M and an axial vector v with associated antisymmetric matrix A,, it holds
that:
(ALM+MA, X)) r =2(A,M, X)) 1=1,2,3 ©)]

where X; € B'.

Proof: Calculate (A, M, X;) p first:
(ALM, X)) p =Tr (MAL)TX;) = Tr (A,)"™™M'X;) = —Tr(A,MX;)

By the commutation property of the trace operator applied to a matrix product, for real square matrices we have

Tr(AB) = Tr(BA), which allows us to express the Frobenius inner product of two matrices alternatively as:
(A,B)r = (B,A)r = Tr(BTA) = Tr(AB™)
Therefore, considering (M A, X;) p:

(MA,, X)) r = Tr(A,MX]) = —-Tr(A,MX;) = (A,M, X;)



Therefore:
(ALM+MA, X)) r={(A,M,X))p+ (MA,, X)) r = (ALM, X)) p + (ALM, X)) = 2(ALM, X))

which proves the lemma. ]

Now we can use this lemma to compute the Fourier’s coefficients of C = AAsym(MA,,) along X1, X2, X3. We have

that:
A
C=XAsym(MA,) = 2 A, M + MA,,}
and
o — (C.Xi)r _ AALM+MA, Xi)p /\<AVM7X1'>F (10)
X Xy 2 (X, Xi)F (Xi, Xi)F
It is easy to calculate that (X;, X;)r = || X;||% = 2 fori = 1,2, 3. In fact, take i = 1:
0 0 0 0 0 0 0 0 0
(X1, X1)p =Tr 0 0o -1 0 0 1 =Tr| 0 1 0 | =2
0 1 0 0 -1 0 0 0 1
It is easy to show that also for X5 and X3, allowing us to rewrite (10)) as:
A
¢ = §<AVM7Xi>F
which we need to explicit for ¢ = 1,2, 3. Consider ¢ = 1:
A
Cc1 = §<A,,M,X1>F =
T
0 1% —U2 mi1 mio mis 0 0 0
= §Tr —U3 0 141 mio moo ma3 0 0 1 =
Vo —U1 0 mis mos mss 0 -1 0
0 V3 —Uy 0 mi3 —mi2
A
= §Tr —U3 0 141 0 mo3 —1mo9 =
vy - 0 0 m3s3 —ma3
A
=3 (—magvs + magvy — Mmials + Maaly) =
A
=3 (maz + mas)vy — miale — Mgl (11)



In a similar way, we can find out that:

C2 = [(mn + ma3)vy — Mgty — m231/3} (12)

C3 —

| > N >

[(mn +mag)vs — mazvy — m231/2} (13)
Now, let us write explicitly the coordinates C as expressed in (8). Still using Einstein’s notation, it reads:

C = (miv; — myun) Xy + (myarve — myve) Xo + (mizve — myvs) Xs

=c1 =c2 =c3

Marking summation explicitly and using m;; = m;;, we have:

3
€= ZmilVi — myiv1 = —(mag + maz)vy + (Miave + migrs) (14)
=1
3
cy = ZmizVi — myivp = —(m11 + maz)ve + (Miav1 + Mmasvs) (15)
i=1
3
c3 = Zmi?)yi — myivs = —(mM11 + Me2)vs + (Masv1 + masis) (16)
i=1

Thus, (T4), (T5) and (I6) coincide with (TT), (T2) and (T3) respectively for A = —2. This allows us finally to express C

as:

C = —2Asym(MA,)

Therefore, putting all together in (7), it yields:
A, =Tr(M)A, — 2Asym(MA,)

O
Since it is always possible to associate an antisymmetric matrix to the axial vector w and viceversa, this formula holds
as long as the axial vector is expressible as a matrix-vector product through M and v (M symmetric). From this

decomposition formula, we can immediately deduce the following result.

Corollary 2.1 Given a,b € R? and a symmetric matrix M, the following relationship is true:

M(a x b) = Tr(M)a x b —a x Mb + b x Ma (17)

Proof: Consider v = a and w = Ma. Then, using (3], we have:

Apa = Tr(M)A, — 2Asym(MA,) = Tr(M)A, — |MA, — (MAa)T} =

= Tr(M)A, — MA, + AIMT = Tr (M)A, - MA, — A, M (18)



Applying b to both members of (I8)), one gets:
Anab = Tr(M)A,b — MA,b — A, Mb
Using (@), we can write further:
(Ma) x b=Tr(M)a x b—M(a x b) —a x (Mb)
If we reorganize the members and rewrite (Ma) x b = —b x (Ma), we obtain exactly:

M(axb)=Tr(M)ax b —ax Mb+b x Ma

3 Conclusion

In the previous section, we have shown how a generic antisymmetric matrix of axial vector w can be decomposed.
While it is always trivial to associate any A € Az(IR) with a vector of w € R3, it is not obvious how to find M and
v such that w = Muw, under the symmetry constraint of M. Future work may consist of showing the existence of
the couple (M, v/) for any given w € R3. Moreover, on the basis of that, one could seek for an optimal procedure of
determining a three-dimensional vector w from 9 degrees of freedom (6 accounting for M, and 3 for v). Finally, given
the vectorial form of equation (I7)), one could investigate its prospective applications in fields like Vector Calculus,

Differential Geometry and Mechanics.
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