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SUMMARY  
Seismic imaging is challenged by vertical complexity (denseness) of too many 
reflections and lateral complexity (roughness) of surfaces. The end members are 
usually sparse (easy for imaging) or fractal (too complex for imaging). Is there a more 
unifying concept that stands between very simple to very complex? We will present a 
unified view of geometric complexity by introducing the concept of LG (locally dense but 
globally sparse).  LG is not as simple as sparsity (far apart) but not as complex as 
fractal (denseness). We will use 2 examples to illustrate the concept. 
 
INTRODUCTION  
Seismic imaging technologies such as Reverse Time Migration (RTM), Tomography 
and Full Waveform Inversion (FWI) have demonstrated their strength in imaging 
geologically complex settings. However, there are still situations where real data 
challenge the limits of what can be imaged with these technologies. Factors such as 
illumination, anisotropy, attenuation, among others, are often mentioned to explain poor 
results, but these might not necessarily be the main factors at play. In this paper we 
explore geometric complexity and demonstrate with simple synthetic examples the 
central role it plays in seismic wave propagation, and the consequences for velocity 
model building and imaging. 
  
The first example is 1D which has vertical LG variations of reflectivity (locally dense but 
globally sparse). The second example is 2D which illustrates lateral LG variations 
(locally rough but globally smooth).  
 
Geological justification of the 1D example (vertical LG) is that sparsity is due to long 
period of slow uneventful thick deposition but it is interspersed with rapid variation of 
deposition in short time.  
 
Geological justification of the 2D example (lateral LG) is the geometric variation of 
impedance boundaries. One geologic example is roughness of salt boundary. Another 
geologic example is gas pockets. It is still a challenge to image below salt and gas 
pockets. Local roughness could also be created by local erosional surfaces. 
 
We will illustrate with these two examples a unified view that both cases exhibit LG 
(locally dense but globally sparse).Both examples at first glance do not look complex. 
But the synthetic seismic data turn out to be quite complex. These two examples are 
archetypes of difficult imaging with complex geometry. 



 
Complex geometry frequently comes with large variation of rock properties like velocity 
and density. This variation further complicates the geometric effect. We will use only 
constant velocity layers without introducing rock property complexity. 
 
1D EXAMPLE 
Example 1 is a 1D model (perfectly flat) geological layers. The model has uneven 
distribution of reflectivity. But this simple example illustrates that LG distribution with 
sparse reflections interspersed with some locally dense reflections will cause significant 
problems for seismic imaging and seismic inversion like short period multiples. It is not 
close to the complexity of fractal. But it has enough uneven geometric distribution to 
significantly challenge seismic inversion. 
 
The challenge here is that LG vertical distribution of primaries will cause significant 
problem to remove (de-multiple) internal multiples. LG 1D example looks simple at first. 
But it needs only just a few local packages that are locally dense (close to each other). 
We have modeled both P (primaries only) and P+M (primaries and multiples). 
 
FIRST FIGURE: 
Synthetic of P+M has weaker amplitude than P for complex LG model. 
VSP shows first arrival packages stretched with many trail cycles. 
Downgoing waveforms at different depths have significant stretch but there is no 
attenuation in the model. 
 
2D EXAMPLE 
Example 2 is a 2D synthetic example with complex geometry of impedance boundaries. 
We will start with the simplest 2D example with only one layer of geometric complexity 
which appears at the top of formation. We will show the complex snap shots and VSP 
with downgoing wave. The downgoing wave (source at the surface in the middle of the 
model) is corrupted by LG lateral variation. 
 
SECOND FIGURE: 
Snap shots show asymmetry. 
VSP show first arrival packages stretched with many trail cycles. 
Downgoing waves at different depths are complex. 
 
CONCLUSION  
We illustrated with two synthetic examples. The 1D (vertical variations) and 2D 
(horizontal variations) achieve their complexity with only simple rock properties. The 
effect is totally due to geometric complexity of LG distribution in vertical and horizontal 
models. 
 
MITIGATIONS  
There are processing methods which could mitigate vertical and horizontal complex 
problems to improve imaging. These are ad hoc methods which could be helpful. But 
they do not estimate the complexity of the downgoing wave. One such mitigation 



approach is to alternate between wave equation datuming and residual static (see [Lau 
and Yin]). Static shift is an approximation of the thin lens term of wave propagation (see 
[Judson, et al]). Another earlier method is “virtual datuming” without explicit datuming 
using wave eqation (See patent). 
 
MATHEMATICAL INTERPRETATION 
For general discussion of solvability, there is limitation to mathematical method as a 
whole in imaging and inverse problems (see [Lau 2018] and [Lau 2019]).  
 
Riemann–Lebesgue lemma (An interpretation) 
Given f(x),  F(z) = integration of [f(x)*g(x,z)] from negative infinity to infinity. 
E.g., g(x,z) = exp (-i*z*x) which is the Fourier transform. 
An interpretation of the lemma is that given a specific “geometry” like sinusoids, the 
integral is essentially 0 (negligible) as abs(z) goes to infinity. The geometry is defined by 
g(x,z). 
Question: What about geometries that are not sinusoid? In fact, geometry of the earth 
layers is almost never sinusoidal. Hence, the inverse solution will always create artifacts 
which look non-geologic. The numerical solution could not be the final solution. We will 
still need to modify the inverse solution by interpreting the geometry to make geologic 
sense. 
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