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Abstracts  
 
In this paper along with three previous studies on analyzing the binomial coefficients, we will 

complete the proof of a theorem. The theorem states that for two positive integers 𝑛 ≥ 1 and  

𝑘 ≥ 1, if 𝑛 ≥ 𝑘-1, then there always exists at least a prime number 𝑝 such that 𝑘𝑛 < 𝑝 ≤ (𝑘+1)𝑛. 

The Bertrand-Chebyshev’s theorem is a special case of this theorem when 𝑘 =1.   
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1. Introduction 

 

The Bertrand-Chebyshev’s theorem States that for any positive integer 𝑛, there is always a 
prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛. It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, 
M. El Bachraoui [2] expanded the theorem by proving that for any positive integer 𝑛, there is a 
prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛. In 2011, Andy Loo [3] expanded the theorem to prove 
that there is a prime number in the interval (3𝑛, 4𝑛) when 𝑛 ≥ 2. It comes up with a question: 
Does any positive integer 𝑘 make 𝑘𝑛 < 𝑝 ≤ (𝑘+1)𝑛 stand? If it does, in what conditions? 
Previously, the author partially answered these questions by analyzing the binomial coefficients 

(3𝑛
𝑛

), (4𝑛
𝑛

), and (𝜆𝑛
𝑛

) where 𝜆 ≥ 3 is an integer [4] [5] [6]. In this paper, we will complete the work 

with the above methodology. In this section, we will cite some important concepts from the 
previous papers. Then in section 2 and section 3, we will fill up the gaps of 𝜆 from 5 to 25. And 
in section 4, we will convert 𝜆 to 𝑘 to complete this paper. 

From [4]:  
For every positive integer 𝑛, there exists at least a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛.     
From [5]:  
For every integer 𝑛 ˃ 1, there exists at least a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛.                                     
From [6 pp2-5]: 

Definition: Γ𝑎≥𝑝˃𝑏 {(𝜆𝑛
𝑛

)} denotes the prime factorization operator of (𝜆𝑛
𝑛

).  It is the 

product of the prime numbers in the decomposition of (𝜆𝑛
𝑛

) in the range of 𝑎 ≥ 𝑝 ˃ 𝑏. In 

this operator, 𝑝 is a prime number, 𝑎 and 𝑏 are real numbers, and 𝜆𝑛 ≥ 𝑎 ≥ 𝑝 ˃ 𝑏 ≥ 1.  

It has some properties: It is always true that Γ𝑎≥𝑝˃𝑏 {(𝜆𝑛
𝑛

)}  ≥ 1.               — (1.1) 

If no prime number in Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)}, then Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} = 1, or vice versa,  

if Γ𝑎≥𝑝˃𝑏 {(𝜆𝑛
𝑛

)} = 1, then no prime number in Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)}.                 — (1.2) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ16≥𝑝˃10{(20
4

)} = 130 · 110 = 1. No prime number is 

in (20
4

) in the range of 16 ≥ 𝑝 ˃ 10.   

If there is at least one prime number in Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)}, then Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} ˃ 1, or vice  

versa, if Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} ˃ 1, then at least one prime number is in Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)}       — (1.3) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ20≥𝑝˃16{(20
4

)} = 19 · 17 ˃ 1. Prime numbers 19 

and 17 are in (20
4

) in the range of 20 ≥ 𝑝 ˃ 16.        

For 𝑛 ≥ 2 and 𝜆 ≥ 3,  (𝜆𝑛
𝑛

) ˃ 
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
                   — (1.4) 

Let 𝑣𝑝(𝑛) be the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of 𝑛, the exponent of the highest power of 𝑝 that  

divides 𝑛. We define 𝑅(𝑝) by the inequalities 𝑝𝑅(𝑝) ≤ 𝜆𝑛 < 𝑝𝑅(𝑝)+1, and determine the 

 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of (𝜆𝑛
𝑛

). We define 𝑅(𝑝) by the inequalities 𝑝𝑅(𝑝) ≤ 𝜆𝑛 < 𝑝𝑅(𝑝)+1.  If  

𝑝 divides (𝜆𝑛
𝑛

), then 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(𝜆𝑛), or 𝑝
𝑣𝑝((𝜆𝑛

𝑛 ))
 ≤ 𝑝𝑅(𝑝)  ≤ 𝜆𝑛           — (1.5) 
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If 𝜆𝑛 ≥ 𝑝 ˃ ⌊√𝜆𝑛⌋, then 0 ≤ 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1                — (1.6) 

For 𝑛 ≥ (𝜆 −2) ≥ 24, there exists at least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  
                     — (1.7) 

Let π(𝑛) be the number of distinct prime numbers less than or equal to 𝑛. Among the first six 

consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional  
six consecutive natural numbers, at most one can add two prime numbers, 𝑝 ≡ 1 (MOD 6) and  

𝑝 ≡ 5 (MOD 6). Thus, π(𝑛) ≤ ⌊
𝑛

3
⌋+2 ≤  

𝑛

3
 +2.                — (1.8) 

When 𝑛 ˃ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) = Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}. 

When 𝑛 ≤ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}. 

Thus, (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}.       — (1.9) 

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} = Γ𝜆𝑛≥𝑝˃𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)!
}  since all prime numbers in 𝑛! do not appear in the 

range of 𝜆𝑛 ≥ 𝑝 ˃ 𝑛. 

Referring to (1.6), Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} < Π𝑛≥𝑝 𝑝. It has been proved [7] that for 𝑛 ≥ 3, 

Π𝑛≥𝑝 𝑝 < 22𝑛−3. Thus, for 𝑛 ≥ 3 and 𝜆 ≥ 3,  Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} < Π𝑛≥𝑝 𝑝 < 22𝑛−3. 

Referring to (1.5) and (1.8), Γ⌊√𝜆𝑛⌋≥𝑝{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}  ≤ (𝜆𝑛)

√𝜆𝑛

3
 +2   

Thus for 𝑛 ≥ 3 and 𝜆 ≥ 3,  (𝜆𝑛
𝑛

) < Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)!
} ·22𝑛−3·(𝜆𝑛)

√𝜆𝑛

3
 +2          — (1.10) 

Applying (1.4) to (1.10), when 𝑛 ≥ 3 and 𝜆 ≥ 3, we have 

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
 < (𝜆𝑛

𝑛
) < Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · 22𝑛−3 · (𝜆𝑛)

√𝜆𝑛

3
 +2

. 

Since when 𝑛 ≥ 3 and 𝜆 ≥ 3,  22𝑛−3 ˃ 0 and (𝜆𝑛)
√𝜆𝑛

3
 +2 ˃ 0,  

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

𝜆𝜆𝑛−𝜆+1

(𝜆𝑛)
√𝜆𝑛

3
 +2

· 22𝑛−3 · 𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1

 = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

      — (1.11) 

  

  

2. A Prime Number Between (𝝀-1)𝒏 and 𝝀𝒏 when 5 ≤ 𝝀 ≤ 7 and 𝒏 ≥ 𝝀-2 

 

Proposition 1: For 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, there exists at least a prime number 𝑝 such that  

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                    — (2.1) 
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Referring to (1.11), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, we have  

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

                    — (2.2) 

Let 𝑓1(𝑥) = 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑥−1)

(𝜆𝑥)
√𝜆𝑥

3
+3

  where 𝑥 is a real number, the variable, and 𝜆 is a constant 

at one of the 3 integers from 5 to 7. 

𝑓1
′(𝑥) = 𝑓1(𝑥) · (𝑙𝑛 (

𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
) = 𝑓1(𝑥) · 𝑓2(𝑥) where 

𝑓2(𝑥) = 𝑙𝑛 (
𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
   

𝑓2
′(𝑥) = √𝜆 𝑙𝑛(𝜆)+√𝜆 𝑙𝑛(𝑥)

12𝑥√𝑥
+

3 

𝑥2 > 0 for 𝑥 > 1 and 𝜆 > 1. Thus, 𝑓2(𝑥) is a strictly increasing function. 

When 𝑥 = 36 and 𝜆 = 5,  𝑓2(𝑥) = 𝑙𝑛 (
5

4
) + 𝑙𝑛 (

5

5−1
)

5−1

−
√5 (𝑙𝑛(36)+𝑙𝑛(5)+2)

6√36
−

3 

36
 ≈ 0.5859 > 0. 

When 𝑥 = 36 and 𝜆 = 6,  𝑓2(𝑥) = 𝑙𝑛 (
6

4
) + 𝑙𝑛 (

6

6−1
)

6−1

−
√6 (𝑙𝑛(36)+𝑙𝑛(6)+2)

6√36
−

3 

36
 ≈ 0.7155 > 0. 

When 𝑥 = 36 and 𝜆 = 7,  𝑓2(𝑥) = 𝑙𝑛 (
7

4
) + 𝑙𝑛 (

7

7−1
)

7−1

−
√7 (𝑙𝑛(36)+𝑙𝑛(7)+2)

6√36
−

3 

36
 ≈ 08522 > 0. 

Since 𝑓2(𝑥) > 0 when 𝑥 = 36 and 5 ≤ 𝜆 ≤ 7, and since 𝑓2(𝑥) is a strictly increasing function, then 

when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7, we have 𝑓2 (𝑥) > 0.                  — (2.3) 

Since when 𝑥 = 36 and 5 ≤ 𝜆 ≤ 7, 𝑓1(𝑥) > 0 and 𝑓2(𝑥) > 0, and  𝑓2(𝑥) is a strictly increasing 

function, then 𝑓1
′(𝑥) = 𝑓1(𝑥) · 𝑓2(𝑥) > 0.  Thus, when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7, 𝑓1(𝑥) is a strictly 

increasing function. 𝑓1(𝑥 + 1) > 𝑓1(𝑥).                — (2.4) 

When 𝜆 = 5 and 𝑥 = 36,  𝑓1(𝑥) = 
50 · ((

5

4
) · (

5

5−1
)

5−1
)

(36−1)

(180)
√180

3
+3

 = 
4.5522E+18

7.1073E+16
 > 1. 

When 𝜆 = 6 and 𝑥 = 36,  𝑓1(𝑥) = 
72 · ((

6

4
) · (

6

6−1
)

6−1
)

(36−1)

(216)
√216

3
+3

 = 
7.5378E+21

2.7530E+18
 > 1. 

When 𝜆 = 7 and 𝑥 = 36,  𝑓1(𝑥) = 
98 · ((

7

4
) · (

7

7−1
)

7−1
)

(36−1)

(252)
√252

3
+3

 = 
3.6007E+24

8.1511E+19
 > 1. 

Referring to (2.4), when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7,  𝑓1(𝑥) > 1.     
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Let  𝑥 = 𝑛, then when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7,  𝑓1(𝑛) = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 > 1. 

Thus, referring to (2.2), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7,  Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1.              — (2.5)  

Referring to (1.3), there exists at least a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 𝜆𝑛. 

Since 𝑛 ˃ 𝜆 − 2, in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
},  𝑝 ≥ 𝑛 +1 = √𝑛2 + 2𝑛 + 1 ˃ √(𝑛 + 2)𝑛  ˃ ⌊√λ𝑛⌋. 

Referring to (1.6), we have 0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1. 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} = 

=  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1   

In ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1 , for every distinct prime number 𝑝 in these ranges, the 

numerator (𝜆𝑛)! has the product of 𝑝 · 2𝑝 · 3𝑝 … 𝑖𝑝 = (𝑖)! · 𝑝𝑖. The denominator ((𝜆 − 1)𝑛)!  

also has the same product of (𝑖)! · 𝑝𝑖. They cancel to each other in 
(𝜆𝑛)!

((𝜆−1)𝑛)! 
.  

Referring to (1.2),  ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1  = 1. Therefore, when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, 

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1.  — (2.6) 

From (1.1), Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ≥ 1 and ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1, and in (2.6) 

at least one of these two parts is greater than 1. 

When 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, if Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, then referring to (1.3), there exists at 

least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (2.7) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  = 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.               — (2.8) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then at least one factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. 

When the factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, let 𝑦𝑖+1= 

𝑛

𝑖+1
 , then 𝑦𝑖+1 ≥  

36

𝑖+1
 . We have 

Γ𝜆𝑦𝑖+1≥𝑝˃(𝜆−1)𝑦𝑖+1
{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, when 𝑦𝑖+1 ≥  

36

𝑖+1
 , there exists at least a prime number 𝑝  

such that (𝜆 − 1) · 𝑦𝑖+1 < 𝑝 ≤ 𝜆 · 𝑦𝑖+1 . 

Since 𝑛 ˃ 𝑦𝑖+1 ≥  
36

𝑖+1
 , there exists at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.  
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Thus, If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (2.9) 

From (2.8) and (2.9), no mater ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  equal to 1 or greater than 1,  

it is always true that Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, referring to 

(1.3), there exists at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.            — (2.10) 

In conclusion from (2.5), (2.7), (2.10), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, then Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1. 

When Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, and there exists at least a prime 

number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛. Thus, Proposition 1 is proven. 

 

Proposition 2: For 35 ≥ 𝑛 ≥ 𝜆 −2 and 5 ≤ 𝜆 ≤ 7, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (2.11) 

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when 𝜆 = 5, 6, and 7, 

Proposition 2 is correct. Thus, (2.11) is valid. 

Table 1. When 𝜆 = 5 and 3 ≤ 𝑛 ≤ 35, a prime number exists in the range of 4𝑛 < 𝑝 ≤ 5𝑛 

𝒏 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

𝒑 13 17 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 

 
𝒏 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

𝒑 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167  

 
Table 2. When 𝜆 = 6 and 4 ≤ 𝑛 ≤ 35, a prime number exists in the range of 5𝑛 < 𝑝 ≤ 6𝑛 

𝒏 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

𝒑 23 29 31 37 41 47 53 59 61 67 71 79 83 89 97 101 

 
𝒏 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

𝒑 103 107 113 127 131 137 139 149 151 157 163 167 173 179 181 191 

 
Table 3. When 𝜆 = 7 and 5 ≤ 𝑛 ≤ 35, a prime number exists in the range of 6𝑛 < 𝑝 ≤ 7𝑛 

𝒏 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝒑 31 37 43 53 59 61 67 73 79 89 97 101 103 109 127 131 

 
𝒏 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

𝒑 137 149 151 157 163 167 173 179 181 191 193 197 211 223 227  

 
Combining (2.1) and (2.11), we have proven that when 5 ≤ 𝜆 ≤ 7 and 𝑛 ≥ 𝜆 −2, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                — (2.12)
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3. A Prime Number Between (𝝀-1)𝒏 and 𝝀𝒏 when 8 ≤ 𝝀 ≤ 25 and 𝒏 ≥ 𝝀-2 

 

Proposition 3: For 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, there exists at least a prime number 𝑝 such that 
(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                    — (3.1) 

Referring to (1.11), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, we have 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

                    — (3.2) 

Let 𝑓3(𝑥) = 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑥−1)

(𝜆𝑥)
√𝜆𝑥

3
+3

 where 𝑥 is a real number, the variable, and 𝜆 is a constant at 

one of the 18 integers from 8 to 25. 

𝑓3
′(𝑥) = 𝑓3(𝑥) · (𝑙𝑛 (

𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
) = 𝑓3(𝑥) · 𝑓4(𝑥) where 

𝑓4(𝑥) = 𝑙𝑛 (
𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
  

𝑓4
′(𝑥) = √𝜆 𝑙𝑛(𝜆)+√𝜆 𝑙𝑛(𝑥)

12𝑥√𝑥
+

3 

𝑥2 > 0 for 𝑥 > 1 and 𝜆 > 1. Thus, 𝑓4(𝑥) is a strictly increasing function. 

We now calculate the 𝑓4(𝑥) values and list them in Table 4 for 𝑥 = 24 and 𝜆 = 8, 9, 10, … 25.  

Table 4. When 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓4(𝑥) > 0  

𝜆 8 9 10 11 12 13 14 15 16 

𝑓4(𝑥) 0.805 0.876 0.935 0.985 1.028 1.064 1.096 1.124 1.148 

 
𝜆 17 18 19 20 21 22 23 24 25 

𝑓4(𝑥) 1.168 1.186 1.202 1.215 1.227 1.237 1.246 1.253 1.259 

 
Table 4 shows that when 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓4(𝑥) > 0. Since 𝑓3(𝑥) > 0 and 𝑓4(𝑥) > 0, 

and 𝑓4(𝑥) is a strictly increasing function, when 𝑥 ≥ 24 and 8 ≤ 𝜆 ≤ 25, 𝑓3
′(𝑥) = 𝑓3(𝑥) · 𝑓4(𝑥) > 0.  

Thus, under these conditions, 𝑓3(𝑥) is a strictly increasing function, and 𝑓3(𝑥 + 1) > 𝑓3(𝑥). 
             — (3.3)  

We now calculate the 𝑓3(𝑥) values and list them in Table 5 for 𝑥 = 24 and 𝜆 = 8, 9, 10, … 25.  

Table 5. When 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓3(𝑥) > 1  

𝜆 8 9 10 11 12 13 14 15 16 

𝑓5(𝑥) 9.366 19.132 31.150  42.517  50.475  53.571  51.866  46.527  39.386  

 
𝜆 17 18 19 20 21 22 23 24 25 

𝑓5(𝑥) 31.212  23.760  17.383   12.287  8.421 5.633   3.679  2.536 1.481  

 
Table 5 shows when 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓3(𝑥) > 1. Since 𝑓3(𝑥 + 1) > 𝑓3(𝑥), when  

𝑥 ≥ 24 and 8 ≤ 𝜆 ≤ 25, 𝑓3(𝑥) > 1.                    — (3.4)  
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Let  𝑥 = 𝑛, then when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25,  𝑓3(𝑛) = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 > 1. 

Thus, referring to (3.2), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25,  Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1.              — (3.5) 

Referring to (1.3), there exists at least a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 𝜆𝑛. 

Since 𝑛 ˃ 𝜆 − 2, in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
},  𝑝 ≥ 𝑛 +1 = √𝑛2 + 2𝑛 + 1 ˃ √(𝑛 + 2)𝑛  ˃ ⌊√λ𝑛⌋. 

Referring to (1.6), we have 0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1. 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} = 

=  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1   

In ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1 , for every distinct prime number 𝑝 in these ranges, the 

numerator (𝜆𝑛)! has the product of 𝑝 · 2𝑝 · 3𝑝 … 𝑖𝑝 = (𝑖)! · 𝑝𝑖. The denominator ((𝜆 − 1)𝑛)!  

also has the same product of (𝑖)! · 𝑝𝑖. They cancel to each other in 
(𝜆𝑛)!

((𝜆−1)𝑛)! 
.  

Referring to (1.2),  ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1  = 1. Therefore, when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, 

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1.  — (3.6) 

From (1.1), Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ≥ 1 and ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1, and in (3.6) 

at last one of these two parts is greater than 1. 

When 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, if Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, then referring to (1.3), there exists 

at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                  — (3.7) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  = 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.                — (3.8) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then at least one factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. 

When the factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, let 𝑦𝑖+1= 

𝑛

𝑖+1
 , then 𝑦𝑖+1 ≥  

24

𝑖+1
 . We have 

Γ𝜆· 𝑦𝑖+1≥𝑝˃(𝜆−1)· 𝑦𝑖+1
{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, when 𝑦𝑖+1 ≥  

24

𝑖+1
 , there exists at least a prime number 

𝑝 such that (𝜆 − 1) · 𝑦𝑖+1 < 𝑝 ≤ 𝜆 · 𝑦𝑖+1   

Since 𝑛 ˃ 𝑦𝑖+1 ≥  
24

𝑖+1
 , there exists at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.  
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Thus, If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (3.9) 

Referring to (3.8) and (3.9), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, if ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1,  

then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, referring to (1.3), there exists at least a prime number 𝑝 

such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                  — (3.10) 

In conclusion from (3.5), (3.7), (3.10), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, then Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1. 

When Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, and there exists at least a prime 

number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛. Thus, Proposition 3 is proven. 

Proposition 4: For 23 ≥ 𝑛 ≥ 𝜆 −2 and 8 ≤ 𝜆 ≤ 25, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (3.11) 

We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when 8 ≤ 𝜆 ≤ 25, 

Proposition 4 is correct. Thus, (3.11) is valid. 

 

Table 6. When 8 ≤ 𝜆 ≤ 11 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 6 7 8 9 10 11 12 13 14  

𝟕𝒏 42 49 56 63 70 77 84 91 98  

𝝀 = 8 𝒑 47 53 59 67 73 83 89 97 101 

 

𝝀 = 9 

𝟖𝒏 48 56 64 72 80 88 96 104 112 

𝒑  61 71 79 83 97 101 107 113  

𝟗𝒏  63 72 81 90 99 108 117 126  

𝝀 = 10  𝒑   73 83 97 101 109 127 131 

 

𝝀 = 11 

𝟏𝟎𝒏   80 90 100 110 120 130 140 

𝒑    97 103 113 127 139 151  

𝟏𝟏𝒏    99 110 121 132 143 154 

 
 𝒏 15 16 17 18 19 20 21 22 23  

𝟕𝒏 105 112 119 126 133 140 147 154 161  

𝝀 = 8 𝒑 107 113 127 131 137 149 151 157 163 

 

𝝀 = 9 

𝟖𝒏 120 128 136 144 152 160 168 176 184 

𝒑 127 131 139 149 157 167 173 179 191  

𝟗𝒏 135 144 153 162 171 180 189 198 207  

𝝀 = 10  𝒑 137 151 163 167 181 191 193 199 211 

 

𝝀 = 11 

𝟏𝟎𝒏 150 160 170 180 190 200 210 220 230 

𝒑 157 167 179 191 197 211 223 227 233  

𝟏𝟏𝒏 165 176 187 198 209 220 231 242 253 
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Table 7. When 12 ≤ 𝜆 ≤ 15 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

 

𝝀 = 12 

𝟏𝟏𝒏 110 121 132 143 154 165 176 187 198 209 220 231 242 253 

𝒑 113 127 137 149 157 167 181 193 199 223 229 239 257 269 

 

𝝀 = 13 

𝟏𝟐𝒏 120 132 144 156 168 180 192 204 216 228 240 252 264 276 

𝒑  139 151 163 173 183 197 211 227 233 241 263 271 281 

 

𝝀 = 14 

𝟏𝟑𝒏    143 156 169 182 195 208 221 234 247 260 273 286 299 

𝒑   167 179 191 199 223 223 239 257 269 277 293 307 

 

𝝀 = 15 

𝟏𝟒𝒏   168 182 196 210 224 238 252 266 280 294 308 322 

𝒑    191 199 211 229 239 263 271 283 307 311 331 

𝟏𝟓𝒏    195 210 225 240 255 270 285 300 315 330 345 

 

 

Table 8. When 16 ≤ 𝜆 ≤ 25 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 14 15 16 17 18 19 20 21 22 23  

 

𝝀 = 16 

𝟏𝟓𝒏 210 225 240 255 270 285 300 315 330 345 

𝒑 223 227 241 257 277 293 313 317 331 347 

𝟏𝟔𝒏 224 240 256 272 288 304 320 336 352 368  

𝝀 = 17  𝒑  251 263 281 293 307 337 349 353 373 

 

𝝀 = 18 

𝟏𝟕𝒏  255 272 289 306 323 340 357 374 391 

𝒑   277 293 311 331 347 359 379 397  

𝟏𝟖𝒏   288 306 324 342 360 378 396 414  

𝝀 = 19  𝒑    307 337 349 373 383 397 419 

 

𝝀 = 20 

𝟏𝟗𝒏    323 342 361 380 399 418 437 

𝒑     347 367 389 401 421 439  

𝟐𝟎𝒏     360 380 400 420 440 460  

𝝀 = 21  𝒑      283 409 431 443 461 

 

𝝀 = 22 

𝟐𝟏𝒏      399 420 441 462 483 

𝒑       433 449 463 487  

𝟐𝟐𝒏       440 462 484 506  

𝝀 = 23  𝒑        467 491 509 

 

𝝀 = 24 

𝟐𝟑𝒏        483 506 529 

𝒑         521 541  

𝟐𝟒𝒏         528 552  

𝝀 = 25  𝒑          563 

𝟐𝟓𝒏          575 

 

Combining (3.1) and (3.11), we have proven that when 8 ≤ 𝜆 ≤ 25 and 𝑛 ≥ 𝜆 −2, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.               — (3.12)  
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4. A Prime Number Between 𝒌𝒏 and (𝒌+1)𝒏 

 

From [2] [4], for every positive integer 𝑛, there exists at least a prime number 𝑝 such that  
2𝑛 < 𝑝 ≤ 3𝑛.                       — (4.1) 

From [3] [5], for every integer 𝑛 ˃ 1, there exists at least a prime number 𝑝 such that  

3𝑛 < 𝑝 ≤ 4𝑛.                       — (4.2) 

From (2.12), when 5 ≤ 𝜆 ≤ 7 and 𝑛 ≥ 𝜆 −2, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  

From (3.12), when 8 ≤ 𝜆 ≤ 25 and 𝑛 ≥ 𝜆 −2, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  

From (1.7), for 𝑛 ≥ (𝜆 −2) ≥ 24, there exists at least a prime number 𝑝 such that  

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛. 

Combining (4.1), (4.2), (2.12), (3.12), and (1.7), we show that for 𝑛 ≥ 𝜆 −2 ≥ 1, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (4.3) 

Let 𝑘 = 𝜆 −1, (4.3) becomes that for 𝑛 ≥ 𝑘 −1 ≥ 1, there exists at least a prime number 𝑝 such 

that 𝑘𝑛 < 𝑝 ≤ (𝑘 + 1)𝑛.                      — (4.4) 

Since the Bertrand-Chebyshev’s theorem states that for any positive integer 𝑛, there is always  

a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛, we can derive the Theorem (4.5): For two positive 

integers 𝑛 ≥ 1 and 𝑘 ≥ 1, if 𝑛 ≥ 𝑘 −1, then there always exists at least a prime number 𝑝 such  

that 𝑘𝑛 < 𝑝 ≤ (𝑘 + 1)𝑛. The Bertrand-Chebyshev’s theorem is a special case of Theorem (4.5) 

when 𝑘 = 1.  
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