On Prime Numbers Between kn And (k+1)n

Wing K. Yu

Abstracts

In this paper along with three previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers $n \ge 1$ and $k \ge 1$, if $n \ge k-1$, then there always exists at least a prime number p such that kn . The Bertrand-Chebyshev's theorem is a special case of this theorem when <math>k = 1.

Table of Contents

1.	Introduction	2
2.	A Prime Number between $(\lambda - 1)n$ and λn when 5 ≤ λ ≤ 7 and $n \ge \lambda - 2$	3
3.	A Prime Number between $(\lambda - 1)n$ and λn when 8 $\leq \lambda \leq$ 25 and $n \geq \lambda - 2$	7
4.	A Prime Number between kn and $(k+1)n$	11
5.	References	11

1. Introduction

The Bertrand-Chebyshev's theorem States that for any positive integer n, there is always a prime number p such that n . It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer <math>n, there is a prime number p such that 2n . In 2011, Andy Loo [3] expanded the theorem to prove that there is a prime number in the interval <math>(3n, 4n) when $n \ge 2$. It comes up with a question: Does any positive integer k make $kn stand? If it does, in what conditions? Previously, the author partially answered these questions by analyzing the binomial coefficients <math>\binom{3n}{n}$, $\binom{4n}{n}$, and $\binom{\lambda n}{n}$ where $\lambda \ge 3$ is an integer [4] [5] [6]. In this paper, we will complete the work with the above methodology. In this section, we will cite some important concepts from the previous papers. Then in section 2 and section 3, we will fill up the gaps of λ from 5 to 25. And in section 4, we will convert λ to k to complete this paper.

From [4]:

For every positive integer n, there exists at least a prime number p such that 2n .From [5]:

For every integer n > 1, there exists at least a prime number p such that 3n .From [6 pp2-5]:

Definition: $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \}$ denotes the prime factorization operator of $\binom{\lambda n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{\lambda n}{n}$ in the range of $a \ge p > b$. In this operator, p is a prime number, a and b are real numbers, and $\lambda n \ge a \ge p > b \ge 1$. It has some properties: It is always true that $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} \ge 1$. **— (1.1)**

If no prime number in $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \}$, then $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} = 1$, or vice versa, if $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} = 1$, then no prime number in $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \}$. — (1.2) For example, when $\lambda = 5$ and n = 4, $\Gamma_{16 \ge p > 10} \{ \binom{20}{4} \} = 13^{\circ} \cdot 11^{\circ} = 1$. No prime number is in $\binom{20}{4}$ in the range of $16 \ge p > 10$.

If there is at least one prime number in $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \}$, then $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} > 1$, or vice versa, if $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} > 1$, then at least one prime number is in $\Gamma_{a \ge p > b} \{ \binom{\lambda n}{n} \} = -(1.3)$ For example, when $\lambda = 5$ and n = 4. There is $\Lambda = 19 \cdot 17 > 1$. Prime numbers 19

For example, when $\lambda = 5$ and n = 4, $\Gamma_{20 \ge p > 16} \{ \binom{20}{4} \} = 19 \cdot 17 > 1$. Prime numbers 19 and 17 are in $\binom{20}{4}$ in the range of $20 \ge p > 16$.

For
$$n \ge 2$$
 and $\lambda \ge 3$, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ — (1.4)
Let $v_p(n)$ be the *p*-adic valuation of *n*, the exponent of the highest power of *p* that divides *n*. We define $R(p)$ by the inequalities $p^{R(p)} \le \lambda n < p^{R(p)+1}$, and determine the *p*-adic valuation of $\binom{\lambda n}{n}$. We define $R(p)$ by the inequalities $p^{R(p)} \le \lambda n < p^{R(p)+1}$. If *p* divides $\binom{\lambda n}{n}$, then $v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le \log_p(\lambda n)$, or $p^{v_p\left(\binom{\lambda n}{n}\right)} \le p^{R(p)} \le \lambda n$ — (1.5)

If
$$\lambda n \ge p > \lfloor \sqrt{\lambda n} \rfloor$$
, then $0 \le v_p \left({\binom{\lambda n}{n}} \right) \le R(p) \le 1$ – (1.6)
For $n \ge (\lambda - 2) \ge 24$, there exists at least a prime number p such that $(\lambda - 1)n .
– (1.7)$

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1 \pmod{6}$ and $p \equiv 5 \pmod{6}$. Thus, $\pi(n) \le \left|\frac{n}{3}\right| + 2 \le \frac{n}{3} + 2$. — (1.8) When $n > \lfloor \sqrt{\lambda n} \rfloor$, $\binom{\lambda n}{n} = \Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{n \ge p > \lfloor \sqrt{\lambda n} \rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \ge p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \}$ When $n \leq \lfloor \sqrt{\lambda n} \rfloor$, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \geq p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \}$ Thus, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{n \geq p > \lfloor \sqrt{\lambda n} \rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \geq p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \}.$ — (1.9) $\Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} = \Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \}$ since all prime numbers in n! do not appear in the range of $\lambda n \ge p > n$. Referring to (1.6), $\Gamma_{n \ge p > |\sqrt{\lambda n}|} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} < \prod_{n \ge p} p$. It has been proved [7] that for $n \ge 3$, $\prod_{n \ge p} p < 2^{2n-3}. \text{ Thus, for } n \ge 3 \text{ and } \lambda \ge 3, \ \Gamma_{n \ge p > \left|\sqrt{\lambda n}\right|} \left\{ \frac{(\lambda n)!}{n! \cdot (\lambda - 1)n!} \right\} < \prod_{n \ge p} p < 2^{2n-3}.$ Referring to (1.5) and (1.8), $\Gamma_{\left|\sqrt{\lambda n}\right| \geq p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \leq (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}$ Thus for $n \ge 3$ and $\lambda \ge 3$, $\binom{\lambda n}{n} < \Gamma_{\lambda n \ge p > n} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} \cdot 2^{2n-3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2}$ — (1.10) Applying (1.4) to (1.10), when $n \ge 3$ and $\lambda \ge 3$, we have $\frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)^{(\lambda-1)n-\lambda+1}} < {\lambda n \choose n} < \Gamma_{\lambda n \ge p>n} \{\frac{(\lambda n)!}{((\lambda-1)n)!}\} \cdot 2^{2n-3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2}.$ Since when $n \ge 3$ and $\lambda \ge 3$, $2^{2n-3} > 0$ and $(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2} > 0$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} \cdot 2^{2n - 3} \cdot n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{2} + 3}}$ (1.11)

2. A Prime Number Between $(\lambda - 1)n$ and λn when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$

Proposition 1: For $n \ge 36$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n . (2.1)$

Referring to (1.11), when $n \ge 36$ and $5 \le \lambda \le 7$, we have

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} \qquad - (2.2)$$
Let $f_1(x) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(x - 1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3} + 3}}$ where x is a real number, the variable, and λ is a constant

at one of the 3 integers from 5 to 7.

$$f_1'(x) = f_1(x) \cdot \left(ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}\right) = f_1(x) \cdot f_2(x) \text{ where}$$

$$f_2(x) = ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}$$

 $f_2'(x) = \frac{\sqrt{\lambda} \ln(\lambda) + \sqrt{\lambda} \ln(x)}{12x\sqrt{x}} + \frac{3}{x^2} > 0 \text{ for } x > 1 \text{ and } \lambda > 1. \text{ Thus, } f_2(x) \text{ is a strictly increasing function.}$

When
$$x = 36$$
 and $\lambda = 5$, $f_2(x) = ln\left(\frac{5}{4}\right) + ln\left(\frac{5}{5-1}\right)^{5-1} - \frac{\sqrt{5}\left(ln(36)+ln(5)+2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.5859 > 0.$
When $x = 36$ and $\lambda = 6$, $f_2(x) = ln\left(\frac{6}{4}\right) + ln\left(\frac{6}{6-1}\right)^{6-1} - \frac{\sqrt{6}\left(ln(36)+ln(6)+2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.7155 > 0.$
When $x = 36$ and $\lambda = 7$, $f_2(x) = ln\left(\frac{7}{4}\right) + ln\left(\frac{7}{7-1}\right)^{7-1} - \frac{\sqrt{7}\left(ln(36)+ln(7)+2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.8522 > 0.$

Since $f_2(x) > 0$ when x = 36 and $5 \le \lambda \le 7$, and since $f_2(x)$ is a strictly increasing function, then when $x \ge 36$ and $5 \le \lambda \le 7$, we have $f_2(x) > 0$. **(2.3)**

Since when x = 36 and $5 \le \lambda \le 7$, $f_1(x) > 0$ and $f_2(x) > 0$, and $f_2(x)$ is a strictly increasing function, then $f_1'(x) = f_1(x) \cdot f_2(x) > 0$. Thus, when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x)$ is a strictly increasing function. $f_1(x + 1) > f_1(x)$. – (2.4)

When
$$\lambda = 5$$
 and $x = 36$, $f_1(x) = \frac{50 \cdot \left(\left(\frac{5}{4}\right) \cdot \left(\frac{5}{5-1}\right)^{5-1}\right)^{(36-1)}}{(180)^{\frac{\sqrt{180}}{3}+3}} = \frac{4.5522E+18}{7.1073E+16} > 1.$
When $\lambda = 6$ and $x = 36$, $f_1(x) = \frac{72 \cdot \left(\left(\frac{6}{4}\right) \cdot \left(\frac{6}{6-1}\right)^{6-1}\right)^{(36-1)}}{(216)^{\frac{\sqrt{216}}{3}+3}} = \frac{7.5378E+21}{2.7530E+18} > 1.$
When $\lambda = 7$ and $x = 36$, $f_1(x) = \frac{98 \cdot \left(\left(\frac{7}{4}\right) \cdot \left(\frac{7}{7-1}\right)^{7-1}\right)^{(36-1)}}{(252)^{\frac{\sqrt{252}}{3}+3}} = \frac{3.6007E+24}{8.1511E+19} > 1.$

Referring to (2.4), when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x) > 1$.

Let x = n, then when $n \ge 36$ and $5 \le \lambda \le 7$, $f_1(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}} > 1.$

Thus, referring to (2.2), when $n \ge 36$ and $5 \le \lambda \le 7$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1.$ (2.5)

Referring to (1.3), there exists at least a prime number p such that n .

Since
$$n > \lambda - 2$$
, in $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > [\sqrt{\lambda n}]$.
Referring to (1.6), we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$.
 $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \frac{1}{\Gamma_{\lambda n \ge p > n}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{l=1}^{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$. In $\prod_{l=1}^{\lambda - 2} \left(\frac{(\lambda - 1)n}{((\lambda - 1)n)!} \right\}$. If $i = \lambda^{-2} \left(\Gamma_{\frac{(\lambda - 1)n}{l} \ge p > \frac{\lambda n}{l+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{l=1}^{\lambda n \ge p > \frac{\lambda n}{l+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$. In $\prod_{l=1}^{\lambda - 2} \left(\frac{(\lambda - 1)n}{((\lambda - 1)n)!} \right\}$, for every distinct prime number p in these ranges, the numerator (λn) ! has the product of $p \cdot 2p \cdot 3p \dots ip = (i)! \cdot p^l$. The denominator $((\lambda - 1)n)!$ also has the same product of $(i)! \cdot p^l$. They cancel to each other in $\frac{(\lambda n)!}{((\lambda - 1)n)!}$.
Referring to (1.2) , $\prod_{l=1}^{\lambda - 2} \left(\frac{\Gamma_{(\lambda - 1)n}}{((\lambda - 1)n)!} \right\} \cdot \prod_{l=1}^{l=\lambda - 2} \left(\frac{\lambda n}{(\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) = 1$. Therefore, when $n \ge 36$ and $5 \le \lambda \le 7$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right\} = 1$ and $\prod_{l=1}^{l=\lambda - 2} \left(\frac{\Gamma_{\lambda n}}{(\lambda - 1)n!} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) > 1$. $-(2.6)$
From (1.1) , $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \ge 1$ and $\prod_{l=1}^{l=\lambda - 2} \left(\frac{\Gamma_{\lambda n}}{(\lambda - 1)n!} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \ge 1$, and in (2.6) at least one of these two parts is greater than 1.
When $n \ge 36$ and $5 \le \lambda \le 7$, if $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. $-(2.7)$
If $\prod_{l=1}^{l=\lambda - 2} \left(\frac{\Gamma_{\lambda n}}{(\lambda + 1)} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) = 1$, then $\Lambda_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$.
When the factor $\Gamma_{\lambda n} \frac{(\lambda - 1)n}{(\lambda + 1)} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then at least one factor $\Gamma_{\lambda n} \frac{(\lambda - 1)n}{(\lambda + 1)!} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$.
When the factor $\Gamma_{\lambda n} \frac{(\lambda -$

$$\begin{split} &\Gamma_{\lambda y_{i+1} \geq p > (\lambda-1)y_{i+1}}\{\frac{(\lambda n)!}{((\lambda-1)n)!}\} > 1. \text{ Thus, when } y_{i+1} \geq \frac{36}{i+1} \text{, there exists at least a prime number } p \text{ such that } (\lambda-1) \cdot y_{i+1}$$

Since $n > y_{i+1} \ge \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda n}\atop i+1} \ge p > \frac{(\lambda-1)n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\underline{\lambda n} \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. (2.9)

From (2.8) and (2.9), no mater $\prod_{i=1}^{i=\lambda-2} \left(\prod_{\substack{\lambda n \\ i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right)$ equal to 1 or greater than 1,

it is always true that $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus when $n \ge 36$ and $5 \le \lambda \le 7$, referring to (1.3), there exists at least a prime number p such that $(\lambda - 1)n . – (2.10)$

In conclusion from **(2.5)**, **(2.7)**, **(2.10)**, when $n \ge 36$ and $5 \le \lambda \le 7$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. When $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime

number *p* such that $(\lambda - 1)n . Thus,$ **Proposition 1**is proven.

Proposition 2: For $35 \ge n \ge \lambda - 2$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n . (2.11)$

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when λ = 5, 6, and 7, **Proposition 2** is correct. Thus, (2.11) is valid.

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	13	17	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
p	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163	167	

Table 1. When $\lambda = 5$ and $3 \le n \le 35$, a prime number exists in the range of 4n

												0				
n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	23	29	31	37	41	47	53	59	61	67	71	79	83	89	97	101
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
p	103	107	113	127	131	137	139	149	151	157	163	167	173	179	181	191

n	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
p	31	37	43	53	59	61	67	73	79	89	97	101	103	109	127	131
																-
n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
р	137	149	151	157	163	167	173	179	181	191	193	197	211	223	227	

Combining (2.1) and (2.11), we have proven that when $5 \le \lambda \le 7$ and $n \ge \lambda -2$, there exists at least a prime number p such that $(\lambda -1)n . (2.12)$

3. A Prime Number Between $(\lambda - 1)n$ and λn when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$

Proposition 3: For $n \ge 24$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n . (3.1)$

Referring to (1.11), when $n \ge 24$ and $8 \le \lambda \le 25$, we have

one of the 18 integers from 8 to 25.

$$f_{3}'(x) = f_{3}(x) \cdot \left(ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x} \right) = f_{3}(x) \cdot f_{4}(x) \text{ where}$$

$$f_{4}(x) = ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}$$

$$f_{4}'(x) = \frac{\sqrt{\lambda}\ln(\lambda) + \sqrt{\lambda}\ln(x)}{12x\sqrt{x}} + \frac{3}{x^{2}} > 0 \text{ for } x > 1 \text{ and } \lambda > 1. \text{ Thus, } f_{4}(x) \text{ is a strictly increasing function.}$$

We now calculate the $f_4(x)$ values and list them in **Table 4** for x = 24 and $\lambda = 8, 9, 10, \dots 25$. **Table 4.** When x = 24 and λ from 8 to 25, $f_4(x) > 0$

λ	8	9	10	11	12	13	14	15	16
$f_4(x)$	0.805	0.876	0.935	0.985	1.028	1.064	1.096	1.124	1.148
2	17	10	19	20	21	22	23	24	25
λ	17	18	19	20	21	22	25	24	25
$f_4(x)$	1.168	1.186	1.202	1.215	1.227	1.237	1.246	1.253	1.259

Table 4 shows that when x = 24 and λ from 8 to 25, $f_4(x) > 0$. Since $f_3(x) > 0$ and $f_4(x) > 0$, and $f_4(x)$ is a strictly increasing function, when $x \ge 24$ and $8 \le \lambda \le 25$, $f_3'(x) = f_3(x) \cdot f_4(x) > 0$. Thus, under these conditions, $f_3(x)$ is a strictly increasing function, and $f_3(x + 1) > f_3(x)$. - (3.3)

We now calculate the $f_3(x)$ values and list them in **Table 5** for x = 24 and $\lambda = 8, 9, 10, \dots 25$. **Table 5.** When x = 24 and λ from 8 to 25, $f_3(x) > 1$

λ	8	9	10	11	12	13	14	15	16
$f_5(x)$	9.366	19.132	31.150	42.517	50.475	53.571	51.866	46.527	39.386
λ	17	18	19	20	21	22	23	24	25
$f_5(x)$	31.212	23.760	17.383	12.287	8.421	5.633	3.679	2.536	1.481

Table 5 shows when x = 24 and λ from 8 to 25, $f_3(x) > 1$. Since $f_3(x + 1) > f_3(x)$, when

 $x \ge 24$ and $8 \le \lambda \le 25$, $f_3(x) > 1$.

Let x = n, then when $n \ge 24$ and $8 \le \lambda \le 25$, $f_3(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}} > 1.$

Thus, referring to (3.2), when $n \ge 24$ and $8 \le \lambda \le 25$, $\Gamma_{\lambda n \ge p>n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1.$ (3.5) Referring to (1.3), there exists at least a prime number p such that n .

Since
$$n > \lambda - 2$$
, in $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > [\sqrt{\lambda n}]$.
Referring to (1.6), we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$.
 $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \prod_{i=1}^{(\lambda n) \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{(\lambda - 1)n}{i} \ge p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right)$, for every distinct prime number p in these ranges, the numerator $(\lambda n)!$ has the product of $p \cdot 2p \cdot 3p \dots ip = (i)! \cdot p^i$. The denominator $((\lambda - 1)n)!$ also has the same product of $(i)! \cdot p^i$. They cancel to each other in $\frac{(\lambda n)!}{((\lambda - 1)n)!}$.
Referring to (1.2), $\prod_{i=1}^{\lambda - 2} \left(\Gamma_{\frac{(\lambda - 1)n}{i} \ge p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) = 1$. Therefore, when $n \ge 24$ and $8 \le \lambda \le 25$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \ge 1$. $- (3.6)$
From (1.1), $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \ge 1$ and $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \ge 1$, then referring to (1.3), there exists at least a prime number p such that $(\lambda - 1)n . $- (3.7)$
If $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) > 1$, then at least one factor $\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. $- (3.8)$
If $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $t = tore \Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. $- (3.8)$
If $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then at least one factor $\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. When the factor $\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda$$

$$\begin{split} & \Gamma_{\lambda \cdot y_{i+1} \geq p > (\lambda - 1) \cdot y_{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1. \text{ Thus, when } y_{i+1} \geq \frac{24}{i+1} \text{, there exists at least a prime number} \\ & p \text{ such that } (\lambda - 1) \cdot y_{i+1}$$

Since $n > y_{i+1} \ge \frac{24}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda}n}_{\underline{i+1}} \ge p > \frac{(\lambda-1)n}{\underline{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\underline{\lambda}n \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. (3.9)

Referring to (3.8) and (3.9), when $n \ge 24$ and $8 \le \lambda \le 25$, if $\prod_{i=1}^{i=\lambda-2} \left(\prod_{\substack{\lambda n \\ i+1}} \sum_{j=1}^{(\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) \ge 1$,

then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus, referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n . (3.10)$

In conclusion from (3.5), (3.7), (3.10), when $n \ge 24$ and $8 \le \lambda \le 25$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. When $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime number p such that $(\lambda - 1)n . Thus,$ **Proposition 3**is proven.

Proposition 4: For $23 \ge n \ge \lambda - 2$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n . (3.11)$

We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when $8 \le \lambda \le 25$, **Proposition 4** is correct. Thus, (3.11) is valid.

					<i>,</i> 1				`		
	n	6	7	8	9	10	11	12	13	14	
	7n	42	49	56	63	70	77	84	91	98	
	р	47	53	59	67	73	83	89	97	101	$\lambda = 8$
	8n	48	56	64	72	80	88	96	104	112	
$\lambda = 9$	р		61	71	79	83	97	101	107	113	
	9n		63	72	81	90	99	108	117	126	
	p			73	83	97	101	109	127	131	$\lambda = 10$
	10 <i>n</i>			80	90	100	110	120	130	140	
$\lambda = 11$	р				97	103	113	127	139	151	
	11 <i>n</i>				99	110	121	132	143	154	
		15	10	17	10	10	20	21	22	22	
	n	15	16	17	18	19	20	21	22	23	
	7 <i>n</i>	105	112	119	126	133	140	147	154	161	
	p	107	113	127	131	137	149	151	157	163	$\lambda = 8$
	8n	120	128	136	144	152	160	168	176	184	
$\lambda = 9$	р	127	131	139	149	157	167	173	179	191	
	9n	135	144	153	162	171	180	189	198	207	
	р	137	151	163	167	181	191	193	199	211	$\lambda = 10$
	10 <i>n</i>	150	160	170	180	190	200	210	220	230	
$\lambda = 11$	р	157	167	179	191	197	211	223	227	233	
	11 <i>n</i>	165	176	187	198	209	220	231	242	253	

Table 6. When $8 \le \lambda \le 11$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

	n	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	11 <i>n</i>	110	121	132	143	154	165	176	187	198	209	220	231	242	253
$\lambda = 12$	р	113	127	137	149	157	167	181	193	199	223	229	239	257	269
	12 <i>n</i>	120	132	144	156	168	180	192	204	216	228	240	252	264	276
$\lambda = 13$	р		139	151	163	173	183	197	211	227	233	241	263	271	281
	13n		143	156	169	182	195	208	221	234	247	260	273	286	299
$\lambda = 14$	р			167	179	191	199	223	223	239	257	269	277	293	307
	14 <i>n</i>			168	182	196	210	224	238	252	266	280	294	308	322
$\lambda = 15$	р				191	199	211	229	239	263	271	283	307	311	331
	15n				195	210	225	240	255	270	285	300	315	330	345

Table 7. When $12 \le \lambda \le 15$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

Table 8. When $16 \le \lambda \le 25$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

	n	14	15	16	17	18	19	20	21	22	23	
	15n	210	225	240	255	270	285	300	315	330	345	
$\lambda = 16$	р	223	227	241	257	277	293	313	317	331	347	
	16n	224	240	256	272	288	304	320	336	352	368	
	p		251	263	281	293	307	337	349	353	373	$\lambda = 17$
	17 <i>n</i>		255	272	289	306	323	340	357	374	391	
$\lambda = 18$	p			277	293	311	331	347	359	379	397	
	18n			288	306	324	342	360	378	396	414	
	p				307	337	349	373	383	397	419	$\lambda = 19$
	19n				323	342	361	380	399	418	437	
$\lambda = 20$	p					347	367	389	401	421	439	
	20 <i>n</i>					360	380	400	420	440	460	
	p						283	409	431	443	461	$\lambda = 21$
	21 <i>n</i>						399	420	441	462	483	
$\lambda = 22$	р							433	449	463	487	
	22 <i>n</i>							440	462	484	506	
	p								467	491	509	$\lambda = 23$
	23n								483	506	529	
$\lambda = 24$	p									521	541	
	24 <i>n</i>									528	552	
	p										563	$\lambda = 25$
	25n										575	

Combining (3.1) and (3.11), we have proven that when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n . (3.12)$

4. A Prime Number Between kn and (k+1)n

From [2] [4], for every positive integer n, there exists at least a prime number p such that 2n . (4.1)

From [3] [5], for every integer n > 1, there exists at least a prime number p such that

3n .

— (4.2)

From (2.12), when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From (3.12), when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From (1.7), for $n \ge (\lambda - 2) \ge 24$, there exists at least a prime number p such that $(\lambda - 1)n .$

Combining (4.1), (4.2), (2.12), (3.12), and (1.7), we show that for $n \ge \lambda - 2 \ge 1$, there exists at least a prime number p such that $(\lambda - 1)n . (4.3)$

Let $k = \lambda - 1$, (4.3) becomes that for $n \ge k - 1 \ge 1$, there exists at least a prime number p such that kn . (4.4)

Since the Bertrand-Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that n , we can derive the**Theorem (4.5)**: For two positive $integers <math>n \ge 1$ and $k \ge 1$, if $n \ge k - 1$, then there always exists at least a prime number p such that kn . The Bertrand-Chebyshev's theorem is a special case of**Theorem (4.5)** when <math>k = 1.

5. References

- [1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
- [2] M. El Bachraoui, *Prime in the Interval* [2n, 3n], International Journal of Contemporary Mathematical Sciences, Vol.1 (2006), no. 13, 617-621.
- [3] Andy Loo, On the Prime in the Interval [3n, 4n], https://arxiv.org/abs/1110.2377
- [4] Wing K. Yu, A Different Way to Prove a Prime Number between 2N and 3N, https://vixra.org/abs/2202.0147
- [5] Wing K. Yu, A Method to Prove a Prime Number between 3N and 4N, https://vixra.org/abs/2203.0084
- [6] Wing K. Yu, *The proofs of Legendre's Conjecture and Three Related Conjectures*, https://vixra.org/abs/2206.0035
- [7] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate, Lemma 4.