On Prime Numbers Between $k n$ And ($k+1$) n

Wing K. Yu

Abstract

s

In this paper along with three previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers $n \geq 1$ and $k \geq 1$, if $n \geq k-1$, then there always exists at least a prime number p such that $k n<p \leq(k+1) n$. The Bertrand-Chebyshev's theorem is a special case of this theorem when $k=1$.

Table of Contents

1. Introduction 2
2. A Prime Number between $(\lambda-1) n$ and λn when $5 \leq \lambda \leq 7$ and $n \geq \lambda-2$ 3
3. A Prime Number between ($\lambda-1$) n and λn when $8 \leq \lambda \leq 25$ and $n \geq \lambda-2$ 7
4. A Prime Number between $k n$ and $(k+1) n$ 11
5. References 11

1. Introduction

The Bertrand-Chebyshev's theorem States that for any positive integer n, there is always a prime number p such that $n<p \leq 2 n$. It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M . El Bachraoui [2] expanded the theorem by proving that for any positive integer n, there is a prime number p such that $2 n<p \leq 3 n$. In 2011, Andy Loo [3] expanded the theorem to prove that there is a prime number in the interval $(3 n, 4 n)$ when $n \geq 2$. It comes up with a question: Does any positive integer k make $k n<p \leq(k+1) n$ stand? If it does, in what conditions? Previously, the author partially answered these questions by analyzing the binomial coefficients $\binom{3 n}{n},\binom{4 n}{n}$, and $\binom{\lambda n}{n}$ where $\lambda \geq 3$ is an integer [4] [5] [6]. In this paper, we will complete the work with the above methodology. In this section, we will cite some important concepts from the previous papers. Then in section 2 and section 3 , we will fill up the gaps of λ from 5 to 25 . And in section 4, we will convert λ to k to complete this paper.

From [4]:
For every positive integer n, there exists at least a prime number p such that $2 n<p \leq 3 n$. From [5]:
For every integer $n>1$, there exists at least a prime number p such that $3 n<p \leq 4 n$. From [6 pp2-5]:
Definition: $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}$ denotes the prime factorization operator of $\binom{\lambda n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{\lambda n}{n}$ in the range of $a \geq p>b$. In this operator, p is a prime number, a and b are real numbers, and $\lambda n \geq a \geq p>b \geq 1$.
It has some properties: It is always true that $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\} \geq 1$.
If no prime number in $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}$, then $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}=1$, or vice versa,
if $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}=1$, then no prime number in $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}$.
For example, when $\lambda=5$ and $n=4, \Gamma_{16 \geq p>10}\left\{\binom{20}{4}\right\}=13^{0} \cdot 11^{0}=1$. No prime number is in $\binom{20}{4}$ in the range of $16 \geq p>10$.
If there is at least one prime number in $\left.\Gamma_{a \geq p>b}\left\{\begin{array}{c}\lambda n \\ n\end{array}\right)\right\}$, then $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}>1$, or vice versa, if $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\}>1$, then at least one prime number is in $\Gamma_{a \geq p>b}\left\{\binom{\lambda n}{n}\right\} \quad$-(1.3)
For example, when $\lambda=5$ and $\left.n=4, \Gamma_{20 \geq p>16}\left\{\begin{array}{c}20 \\ 4\end{array}\right)\right\}=19 \cdot 17>1$. Prime numbers 19 and 17 are in $\binom{20}{4}$ in the range of $20 \geq p>16$.
For $n \geq 2$ and $\lambda \geq 3,\binom{\lambda n}{n}>\frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)^{(\lambda-1) n-\lambda+1}}$
Let $v_{p}(n)$ be the p-adic valuation of n, the exponent of the highest power of p that divides n. We define $R(p)$ by the inequalities $p^{R(p)} \leq \lambda n<p^{R(p)+1}$, and determine the p-adic valuation of $\binom{\lambda n}{n}$. We define $R(p)$ by the inequalities $p^{R(p)} \leq \lambda n<p^{R(p)+1}$. If p divides $\binom{\lambda n}{n}$, then $v_{p}\left(\binom{\lambda n}{n}\right) \leq R(p) \leq \log _{p}(\lambda n)$, or $p^{v_{p}\left(\binom{\lambda n}{n}\right)} \leq p^{R(p)} \leq \lambda n$

If $\lambda n \geq p>\lfloor\sqrt{\lambda n}\rfloor$, then $0 \leq v_{p}\left(\binom{\lambda n}{n}\right) \leq R(p) \leq 1$
For $n \geq(\lambda-2) \geq 24$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.
Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2,3 and 5 . Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1$ (MOD 6) and $p \equiv 5$ (MOD 6). Thus, $\pi(n) \leq\left\lfloor\frac{n}{3}\right\rfloor+2 \leq \frac{n}{3}+2$.
When $n>\lfloor\sqrt{\lambda n}],\binom{\lambda n}{n}=\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \cdot \Gamma_{n \geq p>\backslash \sqrt{\lambda n} \mid}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \cdot \Gamma_{[\sqrt{\lambda n}] \geq p}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}$.
When $n \leq\lfloor\sqrt{\lambda n}],\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \cdot \Gamma_{\mid \sqrt{\lambda n}] \geq p}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}$.
Thus, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \cdot \Gamma_{n \geq p>\mid \sqrt{\lambda n}]}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \cdot \Gamma_{\mid \sqrt{\lambda n}] \geq p}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}$.
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}=\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}$ since all prime numbers in $n!$ do not appear in the range of $\lambda n \geq p>n$.
Referring to (1.6), $\Gamma_{n \geq p>\mid \sqrt{\lambda n}]}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}<\Pi_{n \geq p} p$. It has been proved [7] that for $n \geq 3$,
$\Pi_{n \geq p} p<2^{2 n-3}$. Thus, for $n \geq 3$ and $\lambda \geq 3, \Gamma_{n \geq p>|\sqrt{\lambda n}|}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\}<\prod_{n \geq p} p<2^{2 n-3}$.
Referring to (1.5) and (1.8), $\Gamma_{[\sqrt{\lambda n}] \geq p}\left\{\frac{(\lambda n)!}{n!\cdot((\lambda-1) n)!}\right\} \leq(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2}$
Thus for $n \geq 3$ and $\lambda \geq 3,\binom{\lambda n}{n}<\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot 2^{2 n-3} \cdot(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2}$
Applying (1.4) to (1.10), when $n \geq 3$ and $\lambda \geq 3$, we have
$\frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)^{(\lambda-1) n-\lambda+1}}<\binom{\lambda n}{n}<\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot 2^{2 n-3} \cdot(\lambda n)^{\frac{\sqrt{2 n}}{3}+2}$.
Since when $n \geq 3$ and $\lambda \geq 3,2^{2 n-3}>0$ and $(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2}>0$,
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>\frac{\lambda^{\lambda n-\lambda+1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2} \cdot 2^{2 n-3} \cdot n(\lambda-1)^{(\lambda-1) n-\lambda+1}}=\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}}$

2. A Prime Number Between $(\lambda-1) n$ and $\lambda \boldsymbol{n}$ when $5 \leq \lambda \leq 7$ and $n \geq \lambda-2$

Proposition 1: For $n \geq 36$ and $5 \leq \lambda \leq 7$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Referring to (1.11), when $n \geq 36$ and $5 \leq \lambda \leq 7$, we have
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}}$
Let $f_{1}(x)=\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(x-1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3}+3}}$ where x is a real number, the variable, and λ is a constant at one of the 3 integers from 5 to 7 .
$f_{1}{ }^{\prime}(x)=f_{1}(x) \cdot\left(\ln \left(\frac{\lambda}{4}\right)+\ln \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}(\ln (x)+\ln (\lambda)+2)}{6 \sqrt{x}}-\frac{3}{x}\right)=f_{1}(x) \cdot f_{2}(x)$ where $f_{2}(x)=\ln \left(\frac{\lambda}{4}\right)+\ln \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}(\ln (x)+\ln (\lambda)+2)}{6 \sqrt{x}}-\frac{3}{x}$
$f_{2}{ }^{\prime}(x)=\frac{\sqrt{\lambda} \ln (\lambda)+\sqrt{\lambda} \ln (x)}{12 x \sqrt{x}}+\frac{3}{x^{2}}>0$ for $x>1$ and $\lambda>1$. Thus, $f_{2}(x)$ is a strictly increasing function.
When $x=36$ and $\lambda=5, f_{2}(x)=\ln \left(\frac{5}{4}\right)+\ln \left(\frac{5}{5-1}\right)^{5-1}-\frac{\sqrt{5}(\ln (36)+\ln (5)+2)}{6 \sqrt{36}}-\frac{3}{36} \approx 0.5859>0$.
When $x=36$ and $\lambda=6, f_{2}(x)=\ln \left(\frac{6}{4}\right)+\ln \left(\frac{6}{6-1}\right)^{6-1}-\frac{\sqrt{6}(\ln (36)+\ln (6)+2)}{6 \sqrt{36}}-\frac{3}{36} \approx 0.7155>0$.
When $x=36$ and $\lambda=7, f_{2}(x)=\ln \left(\frac{7}{4}\right)+\ln \left(\frac{7}{7-1}\right)^{7-1}-\frac{\sqrt{7}(\ln (36)+\ln (7)+2)}{6 \sqrt{36}}-\frac{3}{36} \approx 08522>0$.
Since $f_{2}(x)>0$ when $x=36$ and $5 \leq \lambda \leq 7$, and since $f_{2}(x)$ is a strictly increasing function, then when $x \geq 36$ and $5 \leq \lambda \leq 7$, we have $f_{2}(x)>0$.

Since when $x=36$ and $5 \leq \lambda \leq 7, f_{1}(x)>0$ and $f_{2}(x)>0$, and $f_{2}(x)$ is a strictly increasing function, then $f_{1}^{\prime}(x)=f_{1}(x) \cdot f_{2}(x)>0$. Thus, when $x \geq 36$ and $5 \leq \lambda \leq 7, f_{1}(x)$ is a strictly
increasing function. $f_{1}(x+1)>f_{1}(x)$.
When $\lambda=5$ and $x=36, f_{1}(x)=\frac{50 \cdot\left(\left(\frac{5}{4}\right) \cdot\left(\frac{5}{5-1}\right)^{5-1}\right)^{(36-1)}}{(180)^{\frac{\sqrt{180}}{3}+3}}=\frac{4.5522 \mathrm{E}+18}{7.1073 \mathrm{E}+16}>1$.
When $\lambda=6$ and $x=36, f_{1}(x)=\frac{72 \cdot\left(\left(\frac{6}{4}\right) \cdot\left(\frac{6}{6-1}\right)^{6-1}\right)^{(36-1)}}{(216)^{\frac{\sqrt{216}}{3}+3}}=\frac{7.5378 \mathrm{E}+21}{2.7530 \mathrm{E}+18}>1$.
When $\lambda=7$ and $x=36, f_{1}(x)=\frac{98 \cdot\left(\left(\frac{7}{4}\right) \cdot\left(\frac{7}{7-1}\right)^{7-1}\right)^{(36-1)}}{(252)^{\frac{\sqrt{252}}{3}+3}}=\frac{3.6007 \mathrm{E}+24}{8.1511 \mathrm{E}+19}>1$.
Referring to (2.4), when $x \geq 36$ and $5 \leq \lambda \leq 7, f_{1}(x)>1$.

Let $x=n$, then when $n \geq 36$ and $5 \leq \lambda \leq 7, f_{1}(n)=\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}}>1$.
Thus, referring to (2.2), when $n \geq 36$ and $5 \leq \lambda \leq 7, \Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
Referring to (1.3), there exists at least a prime number p such that $n<p \leq \lambda n$.
Since $n>\lambda-2$, in $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}, p \geq n+1=\sqrt{n^{2}+2 n+1}>\sqrt{(n+2) n}>\lfloor\sqrt{\lambda n}\rfloor$.
Referring to (1.6), we have $0 \leq v_{p}\left(\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right) \leq R(p) \leq 1$.
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}=$
$=\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{(\lambda-1) n}{i} \geq p>\frac{\lambda n}{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \Gamma_{\left.\frac{\lambda n}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)}\right.$
$\operatorname{In} \prod_{i=1}^{\lambda-2}\left(\Gamma_{\frac{(\lambda-1) n}{i} \geq p>\frac{\lambda n}{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)$, for every distinct prime number p in these ranges, the numerator (λn) ! has the product of $p \cdot 2 p \cdot 3 p \ldots i p=(i)!\cdot p^{i}$. The denominator $((\lambda-1) n)$! also has the same product of $(i)!\cdot p^{i}$. They cancel to each other in $\frac{(\lambda n)!}{((\lambda-1) n)!}$.

$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}=\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{\lambda n}{}}^{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)>1 . \quad$ (2.6)
 at least one of these two parts is greater than 1.

When $n \geq 36$ and $5 \leq \lambda \leq 7$, if $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, then referring to (1.3), there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

If $\left.\prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{\lambda n}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right.}\right\}\right)>1$, then at least one factor $\left.\Gamma_{\frac{\lambda n}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right.}\right\}>1$.
 $\Gamma_{\lambda y_{i+1} \geq p>(\lambda-1) y_{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$. Thus, when $y_{i+1} \geq \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda-1) \cdot y_{i+1}<p \leq \lambda \cdot y_{i+1}$.
Since $n>y_{i+1} \geq \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Thus, If $\prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{\lambda n}{}}^{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)>1$, then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
 it is always true that $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$. Thus when $n \geq 36$ and $5 \leq \lambda \leq 7$, referring to (1.3), there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

In conclusion from (2.5), (2.7), (2.10), when $n \geq 36$ and $5 \leq \lambda \leq 7$, then $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
When $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, and there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$. Thus, Proposition 1 is proven.

Proposition 2: For $35 \geq n \geq \lambda-2$ and $5 \leq \lambda \leq 7$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when $\lambda=5,6$, and 7 , Proposition 2 is correct. Thus, (2.11) is valid.

Table 1. When $\lambda=5$ and $3 \leq n \leq 35$, a prime number exists in the range of $4 n<p \leq 5 n$

\boldsymbol{n}	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
\boldsymbol{p}	13	17	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83
\boldsymbol{n}	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
\boldsymbol{p}	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163	167	

Table 2. When $\lambda=6$ and $4 \leq n \leq 35$, a prime number exists in the range of $5 n<p \leq 6 n$

\boldsymbol{n}	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
\boldsymbol{p}	23	29	31	37	41	47	53	59	61	67	71	79	83	89	97	101
\boldsymbol{n}	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
\boldsymbol{p}	103	107	113	127	131	137	139	149	151	157	163	167	173	179	181	191

Table 3. When $\lambda=7$ and $5 \leq n \leq 35$, a prime number exists in the range of $6 n<p \leq 7 n$

\boldsymbol{n}	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\boldsymbol{p}	31	37	43	53	59	61	67	73	79	89	97	101	103	109	127	131
\boldsymbol{n}	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
\boldsymbol{p}	137	149	151	157	163	167	173	179	181	191	193	197	211	223	227	

Combining (2.1) and (2.11), we have proven that when $5 \leq \lambda \leq 7$ and $n \geq \lambda-2$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

3. A Prime Number Between ($\lambda-1$) n and λn when $8 \leq \lambda \leq 25$ and $n \geq \lambda-2$

Proposition 3: For $n \geq 24$ and $8 \leq \lambda \leq 25$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Referring to (1.11), when $n \geq 24$ and $8 \leq \lambda \leq 25$, we have
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}}$
Let $f_{3}(x)=\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(x-1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3}+3}}$ where x is a real number, the variable, and λ is a constant at one of the 18 integers from 8 to 25 .
$f_{3}{ }^{\prime}(x)=f_{3}(x) \cdot\left(\ln \left(\frac{\lambda}{4}\right)+\ln \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}(\ln (x)+\ln (\lambda)+2)}{6 \sqrt{x}}-\frac{3}{x}\right)=f_{3}(x) \cdot f_{4}(x)$ where
$f_{4}(x)=\ln \left(\frac{\lambda}{4}\right)+\ln \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}(\ln (x)+\ln (\lambda)+2)}{6 \sqrt{x}}-\frac{3}{x}$
$f_{4}{ }^{\prime}(x)=\frac{\sqrt{\lambda} \ln (\lambda)+\sqrt{\lambda} \ln (x)}{12 x \sqrt{x}}+\frac{3}{x^{2}}>0$ for $x>1$ and $\lambda>1$. Thus, $f_{4}(x)$ is a strictly increasing function.
We now calculate the $f_{4}(x)$ values and list them in Table 4 for $x=24$ and $\lambda=8,9,10, \ldots 25$.
Table 4. When $x=24$ and λ from 8 to $25, f_{4}(x)>0$

λ	8	9	10	11	12	13	14	15	16
$f_{4}(x)$	0.805	0.876	0.935	0.985	1.028	1.064	1.096	1.124	1.148
λ	17	18	19	20	21	22	23	24	25
$f_{4}(x)$	1.168	1.186	1.202	1.215	1.227	1.237	1.246	1.253	1.259

Table 4 shows that when $x=24$ and λ from 8 to $25, f_{4}(x)>0$. Since $f_{3}(x)>0$ and $f_{4}(x)>0$, and $f_{4}(x)$ is a strictly increasing function, when $x \geq 24$ and $8 \leq \lambda \leq 25, f_{3}{ }^{\prime}(x)=f_{3}(x) \cdot f_{4}(x)>0$. Thus, under these conditions, $f_{3}(x)$ is a strictly increasing function, and $f_{3}(x+1)>f_{3}(x)$.

We now calculate the $f_{3}(x)$ values and list them in Table 5 for $x=24$ and $\lambda=8,9,10, \ldots 25$.
Table 5. When $x=24$ and λ from 8 to $25, f_{3}(x)>1$

λ	8	9	10	11	12	13	14	15	16
$f_{5}(x)$	9.366	19.132	31.150	42.517	50.475	53.571	51.866	46.527	39.386
λ	17	18	19	20	21	22	23	24	25
$f_{5}(x)$	31.212	23.760	17.383	12.287	8.421	5.633	3.679	2.536	1.481

Table 5 shows when $x=24$ and λ from 8 to $25, f_{3}(x)>1$. Since $f_{3}(x+1)>f_{3}(x)$, when $x \geq 24$ and $8 \leq \lambda \leq 25, f_{3}(x)>1$.

Let $x=n$, then when $n \geq 24$ and $8 \leq \lambda \leq 25, f_{3}(n)=\frac{2 \lambda^{2} \cdot\left(\left(\frac{\lambda}{4}\right) \cdot\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}}>1$.
Thus, referring to (3.2), when $n \geq 24$ and $8 \leq \lambda \leq 25, \Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
Referring to (1.3), there exists at least a prime number p such that $n<p \leq \lambda n$.
Since $n>\lambda-2$, in $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}, p \geq n+1=\sqrt{n^{2}+2 n+1}>\sqrt{(n+2) n}>\lfloor\sqrt{\lambda n}\rfloor$.
Referring to (1.6), we have $0 \leq v_{p}\left(\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right) \leq R(p) \leq 1$.
$\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}=$
$=\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \prod_{i=1}^{i=\lambda-2}\left(\frac{\left.\Gamma_{\frac{(\lambda-1) n}{i} \geq p>\frac{\lambda n}{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \Gamma_{\frac{\lambda n}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right), ~}{}\right.$
 numerator (λn) ! has the product of $p \cdot 2 p \cdot 3 p \ldots i p=(i)!\cdot p^{i}$. The denominator $((\lambda-1) n)$! also has the same product of $(i)!\cdot p^{i}$. They cancel to each other in $\frac{(\lambda n)!}{((\lambda-1) n)!}$.
 $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}=\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \cdot \prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\left.\frac{\lambda n}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)>1 . \quad \text { (3.6) }}\right.$ From (1.1), $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\} \geq 1$ and $\prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{\lambda n}{}}^{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right) \geq 1$, and in (3.6) at last one of these two parts is greater than 1.
When $n \geq 24$ and $8 \leq \lambda \leq 25$, if $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, then referring to (1.3), there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

If $\prod_{i=1}^{i=\lambda-2}\left(\frac{\Gamma_{\lambda n}}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)=1$, then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
If $\prod_{i=1}^{i=\lambda-2}\left(\frac{\Gamma_{\lambda n}}{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)>1$, then at least one factor $\Gamma_{\frac{\lambda n}{i+1} \geq p>} \frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
 $\Gamma_{\lambda \cdot y_{i+1} \geq p>(\lambda-1) \cdot y_{i+1}}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$. Thus, when $y_{i+1} \geq \frac{24}{i+1}$, there exists at least a prime number p such that $(\lambda-1) \cdot y_{i+1}<p \leq \lambda \cdot y_{i+1}$
Since $n>y_{i+1} \geq \frac{24}{i+1}$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Thus, If $\prod_{i=1}^{i=\lambda-2}\left(\Gamma_{\frac{\lambda n}{}}^{i+1} \geq p>\frac{(\lambda-1) n}{i+1}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}\right)>1$, then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$.
 then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$. Thus, referring to (1.3), there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.
In conclusion from (3.5), (3.7), (3.10), when $n \geq 24$ and $8 \leq \lambda \leq 25$, then $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$. When $\Gamma_{\lambda n \geq p>n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, then $\Gamma_{\lambda n \geq p>(\lambda-1) n}\left\{\frac{(\lambda n)!}{((\lambda-1) n)!}\right\}>1$, and there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$. Thus, Proposition 3 is proven.

Proposition 4: For $23 \geq n \geq \lambda-2$ and $8 \leq \lambda \leq 25$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.
We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when $8 \leq \lambda \leq 25$, Proposition 4 is correct. Thus, (3.11) is valid.

Table 6. When $8 \leq \lambda \leq 11$ and $\lambda-2 \leq n \leq 23$, a prime number between $(\lambda-1) n$ and λn

	\boldsymbol{n}	6	7	8	9	10	11	12	13	14	
	$7 n$	42	49	56	63	70	77	84	91	98	$\lambda=8$
	p	47	53	59	67	73	83	89	97	101	
$\lambda=9$	8 n	48	56	64	72	80	88	96	104	112	
	p		61	71	79	83	97	101	107	113	
	$9 n$		63	72	81	90	99	108	117	126	$\lambda=10$
	p			73	83	97	101	109	127	131	
$\lambda=11$	10n			80	90	100	110	120	130	140	
	p				97	103	113	127	139	151	
	$11 n$				99	110	121	132	143	154	
	\boldsymbol{n}	15	16	17	18	19	20	21	22	23	
	$7 n$	105	112	119	126	133	140	147	154	161	$\lambda=8$
	\boldsymbol{p}	107	113	127	131	137	149	151	157	163	
$\lambda=9$	8 n	120	128	136	144	152	160	168	176	184	
	p	127	131	139	149	157	167	173	179	191	
	$9 n$	135	144	153	162	171	180	189	198	207	$\lambda=10$
	p	137	151	163	167	181	191	193	199	211	
$\lambda=11$	10n	150	160	170	180	190	200	210	220	230	
	\boldsymbol{p}	157	167	179	191	197	211	223	227	233	
	$11 n$	165	176	187	198	209	220	231	242	253	

Table 7. When $12 \leq \lambda \leq 15$ and $\lambda-2 \leq n \leq 23$, a prime number between $(\lambda-1) n$ and λn

	n	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda=12$	$11 n$	110	121	132	143	154	165	176	187	198	209	220	231	242	253
	p	113	127	137	149	157	167	181	193	199	223	229	239	257	269
$\lambda=13$	$12 n$	120	132	144	156	168	180	192	204	216	228	240	252	264	276
	p		139	151	163	173	183	197	211	227	233	241	263	271	281
$\lambda=14$	13n		143	156	169	182	195	208	221	234	247	260	273	286	299
	p			167	179	191	199	223	223	239	257	269	277	293	307
$\lambda=15$	$14 n$			168	182	196	210	224	238	252	266	280	294	308	322
	\boldsymbol{p}				191	199	211	229	239	263	271	283	307	311	331
	$15 n$				195	210	225	240	255	270	285	300	315	330	345

Table 8. When $16 \leq \lambda \leq 25$ and $\lambda-2 \leq n \leq 23$, a prime number between $(\lambda-1) n$ and λn

	\boldsymbol{n}	14	15	16	17	18	19	20	21	22	23	
$\lambda=16$	$15 n$	210	225	240	255	270	285	300	315	330	345	
	p	223	227	241	257	277	293	313	317	331	347	
	$16 n$	224	240	256	272	288	304	320	336	352	368	$\lambda=17$
	\boldsymbol{p}		251	263	281	293	307	337	349	353	373	
$\lambda=18$	$17 n$		255	272	289	306	323	340	357	374	391	
	p			277	293	311	331	347	359	379	397	
	$18 n$			288	306	324	342	360	378	396	414	$\lambda=19$
	p				307	337	349	373	383	397	419	
$\lambda=20$	19n				323	342	361	380	399	418	437	
	p					347	367	389	401	421	439	
	$20 n$					360	380	400	420	440	460	$\lambda=21$
	p						283	409	431	443	461	
$\lambda=22$	$21 n$						399	420	441	462	483	
	p							433	449	463	487	
	$22 n$							440	462	484	506	$\lambda=23$
	p								467	491	509	
$\lambda=24$	$23 n$								483	506	529	
	p									521	541	
	$24 n$									528	552	$\lambda=25$
	p										563	
	$25 n$										575	

Combining (3.1) and (3.11), we have proven that when $8 \leq \lambda \leq 25$ and $n \geq \lambda-2$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

4. A Prime Number Between $k n$ and $(k+1) \boldsymbol{n}$

From [2] [4], for every positive integer n, there exists at least a prime number p such that $2 n<p \leq 3 n$.

From [3] [5], for every integer $n>1$, there exists at least a prime number p such that
$3 n<p \leq 4 n$.
From (2.12), when $5 \leq \lambda \leq 7$ and $n \geq \lambda-2$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

From (3.12), when $8 \leq \lambda \leq 25$ and $n \geq \lambda-2$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

From (1.7), for $n \geq(\lambda-2) \geq 24$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Combining (4.1), (4.2), (2.12), (3.12), and (1.7), we show that for $n \geq \lambda-2 \geq 1$, there exists at least a prime number p such that $(\lambda-1) n<p \leq \lambda n$.

Let $k=\lambda-1$, (4.3) becomes that for $n \geq k-1 \geq 1$, there exists at least a prime number p such that $k n<p \leq(k+1) n$.

Since the Bertrand-Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that $n<p \leq 2 n$, we can derive the Theorem (4.5): For two positive integers $n \geq 1$ and $k \geq 1$, if $n \geq k-1$, then there always exists at least a prime number p such that $k n<p \leq(k+1) n$. The Bertrand-Chebyshev's theorem is a special case of Theorem (4.5) when $k=1$.

5. References

[1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
[2] M. El Bachraoui, Prime in the Interval [2n, 3n], International Journal of Contemporary Mathematical Sciences, Vol. 1 (2006), no. 13, 617-621.
[3] Andy Loo, On the Prime in the Interval [3n, 4n], https://arxiv.org/abs/1110.2377
[4] Wing K. Yu, A Different Way to Prove a Prime Number between $2 N$ and $3 N$, https://vixra.org/abs/2202.0147
[5] Wing K. Yu, A Method to Prove a Prime Number between $3 N$ and $4 N$, https://vixra.org/abs/2203.0084
[6] Wing K. Yu, The proofs of Legendre's Conjecture and Three Related Conjectures, https://vixra.org/abs/2206.0035
[7] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand\'s_postulate, Lemma 4.

