On Prime Numbers Between kn And (k+1)n

Wing K. Yu

Abstracts

In this paper along with three previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers $n \ge 1$ and $k \ge 1$, if $n \ge k - 1$, then there always exists at least a prime number p such that kn . The Bertrand-Chebyshev's theorem is a special case of this theorem when <math>k = 1.

Table of Contents

1.	Introduction	2
2.	A Prime Number between $(\lambda - 1)n$ and λn when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$	3
3.	A Prime Number between $(\lambda - 1)n$ and λn when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$	7
4.	A Prime Number between kn and $(k+1)n$	11
5.	References	11

1. Introduction

The Bertrand-Chebyshev's theorem States that for any positive integer n, there is always a prime number p such that n . It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer <math>n, there is a prime number p such that 2n . In 2011, Andy Loo [3] expanded the theorem to prove that there is a prime number in the interval <math>(3n,4n) when $n \ge 2$. It comes up with a question: Does any positive integer k make $kn stand? If it does, in what conditions? Previously, the author partially answered these questions by analyzing the binomial coefficients <math>\binom{3n}{n}$, $\binom{4n}{n}$, and $\binom{\lambda n}{n}$ where λ is a positive integer [4] [5] [6]. In this paper, we will complete the work with the above methodology. In this section, we will cite some important concepts from the previous papers. Then in section 2 and section 3, we will fill up the gaps of λ from 5 to 25. And in section 4, we will convert λ to k to complete this paper.

From [4]:

Definition: $\Gamma_{a \geq p > b}\{n\}$ denotes the prime number decomposition operator. It is the product of the prime numbers in the decomposition of a positive integer n or a positive integer expression. In this operator, p is a prime number, a and b are real numbers, and $n \geq a \geq p > b \geq 1$.

It has some properties:

It is always true that
$$\Gamma_{a \ge p \ge b} \{n\} \ge 1$$
. — (1.1)

If no prime number in
$$\Gamma_{a\geq p>b}\{n\}$$
, then $\Gamma_{a\geq p>b}\{n\}=1$, or vice versa, if $\Gamma_{a\geq p>b}\{n\}=1$, then no prime number in $\Gamma_{a\geq p>b}\{n\}$ as in $\Gamma_{12\geq p>4}\{12\}=11^0\cdot 7^0\cdot 5^0=1$. — (1.2)

If there is at least one prime number in $\Gamma_{a\geq p>b}\{n\}$, then $\Gamma_{a\geq p>b}\{n\}>1$, or vice versa, if $\Gamma_{a\geq p>b}\{n\}>1$, then there is at least one prime number in $\Gamma_{a\geq p>b}\{n\}$ as in $\Gamma_{4\geq p>2}\{12\}=3>1$.

For every positive integer
$$n$$
, there exists at least a prime number p such that $2n . — (1.4)$

From [5]:

For every integer n > 1, there exists at least a prime number p such that 3n . — (1.5)

From [6 pp2-5]:

For
$$n \ge 2$$
 and $\lambda \ge 3$, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ — (1.6)

We define R(p) by the inequalities $p^{R(p)} \le \lambda n < p^{R(p)+1}$. If p divides $\binom{\lambda n}{n}$, then

$$v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le \log_p(\lambda n), \text{ or } p^{v_p\left(\binom{\lambda n}{n}\right)} \le p^{R(p)} \le \lambda n$$
 — (1.7)

If
$$\lambda n \ge p > \left\lfloor \sqrt{\lambda n} \right\rfloor$$
, then $0 \le v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le 1$ — (1.8)

For
$$n \ge (\lambda - 2) \ge 24$$
, there exists at least a prime number p such that $(\lambda - 1)n .

— (1.9)$

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1$ (MOD 6) and $p \equiv 5$ (MOD 6).

Thus,
$$\pi(n) \le \left| \frac{n}{2} \right| + 2 \le \frac{n}{2} + 2$$
 — (1.10)

$$\text{ when } n > \left\lfloor \sqrt{\lambda n} \right\rfloor, \ {n \choose n} = \Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{n \geq p > \left\lfloor \sqrt{\lambda n} \right\rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\left\lfloor \sqrt{\lambda n} \right\rfloor \geq p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \}$$

when
$$n \le \lfloor \sqrt{\lambda n} \rfloor$$
, $\binom{\lambda n}{n} \le \Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \ge p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \}$

$$\mathsf{Thus,} \, {\lambda n \choose n} \leq \Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{n \geq p > \left\lfloor \sqrt{\lambda n} \right\rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \cdot \Gamma_{\left\lfloor \sqrt{\lambda n} \right\rfloor \geq p} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} \qquad - (\mathbf{1.11})$$

 $\Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} = \Gamma_{\lambda n \geq p > n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \text{ since all prime numbers in } n! \text{ do not appear in the range of } \lambda n \geq p > n.$

Referring to (1.8), $\Gamma_{n \geq p > \lfloor \sqrt{\lambda n} \rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} < \prod_{n \geq p} p$. It has been proved [7] that for $n \geq 3$,

$$\prod_{n \geq p} p < 2^{2n-3}$$
. Thus, for $n \geq 3$ and $\lambda \geq 3$, $\prod_{n \geq p > \lfloor \sqrt{\lambda n} \rfloor} \{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \} < \prod_{n \geq p} p < 2^{2n-3}$.

Referring to (1.7) and (1.10),
$$\Gamma_{\lfloor \sqrt{\lambda n} \rfloor \geq p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \leq (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}$$

Thus for
$$n \ge 3$$
 and $\lambda \ge 3$, $\binom{\lambda n}{n} < \Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \cdot 2^{2n - 3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}$ — **(1.12)**

Applying (1.6) to (1.12), when $n \ge 3$ and $\lambda \ge 3$, we have

$$\frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} < {\lambda n \choose n} < \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot 2^{2n - 3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}.$$

Since $2^{2n-3} > 0$ and $(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+2} > 0$, when $n \ge 3$, and $\lambda \ge 3$,

$$\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} \cdot 2^{2n - 3} \cdot n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} = \frac{2\lambda^{2} \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1}\right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} - (1.13)^{\frac{1}{3}}$$

2. A Prime Number Between $(\lambda-1)n$ and λn when $5 \le \lambda \le 7$ and $n \ge \lambda-2$

Proposition 1: For $n \ge 36$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n .$

Referring to (1.13), when $n \ge 36$ and $5 \le \lambda \le 7$, we have

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}}$$

$$- (2.2)$$

Let $f_1(x) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(x-1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3}+3}}$ where x is a real number, the variable, and λ is a constant at

one of the 3 integers from 5 to 7.

$$f_1'(x) = f_1(x) \cdot \left(\ln\left(\frac{\lambda}{4}\right) + \ln\left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1} - \frac{\sqrt{\lambda} \left(\ln(x) + \ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x} \right) = f_1(x) \cdot f_2(x) \text{ where}$$

$$f_2(x) = \ln\left(\frac{\lambda}{4}\right) + \ln\left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1} - \frac{\sqrt{\lambda} \left(\ln(x) + \ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}$$

 $f_2'(x) = \frac{\sqrt{\lambda} \ln(\lambda)}{12x\sqrt{x}} + \frac{\sqrt{\lambda} \ln(x)}{12x\sqrt{x}} + \frac{3}{x^2} > 0$ for x > 1 and $\lambda > 1$. Thus, $f_2(x)$ is a strictly increasing function.

When
$$x = 36$$
 and $\lambda = 5$, $f_2(x) = ln\left(\frac{5}{4}\right) + ln\left(\frac{5}{5-1}\right)^{5-1} - \frac{\sqrt{5}\left(ln(36) + ln(5) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.5859 > 0.$

When
$$x = 36$$
 and $\lambda = 6$, $f_2(x) = ln\left(\frac{6}{4}\right) + ln\left(\frac{6}{6-1}\right)^{6-1} - \frac{\sqrt{6}\left(ln(36) + ln(6) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.7155 > 0.$

When
$$x = 36$$
 and $\lambda = 7$, $f_2(x) = ln\left(\frac{7}{4}\right) + ln\left(\frac{7}{7-1}\right)^{7-1} - \frac{\sqrt{7}\left(ln(36) + ln(7) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 08522 > 0$.

Since $f_2(x) > 0$ when x = 36 and $5 \le \lambda \le 7$, and since $f_2(x)$ is a strictly increasing function, then when $x \ge 36$ and $5 \le \lambda \le 7$, we have $f_2(x) > 0$.

Since when x=36 and $5 \le \lambda \le 7$, $f_1(x) > 0$ and $f_2(x) > 0$, and $f_2(x)$ is a strictly increasing function, then $f_1'(x) = f_1(x) \cdot f_2(x) > 0$. Thus, when x=36 and $5 \le \lambda \le 7$, $f_1(x)$ is a strictly increasing function. $f_1(x+1) > f_1(x)$.

When
$$\lambda = 5$$
 and $x = 36$, $f_1(x) = \frac{50 \cdot \left(\left(\frac{5}{4}\right) \cdot \left(\frac{5}{5-1}\right)^{5-1}\right)^{(36-1)}}{(180)^{\frac{\sqrt{180}}{3}+3}} = \frac{4.5522E + 18}{7.1073E + 16} > 1$.

When
$$\lambda = 6$$
 and $x = 36$, $f_1(x) = \frac{72 \cdot \left(\frac{6}{4} \cdot \left(\frac{6}{6-1}\right)^{6-1}\right)^{(36-1)}}{(216)^{\frac{\sqrt{216}}{3}+3}} = \frac{7.5378E + 21}{2.7530E + 18} > 1.$

When
$$\lambda$$
 = 7 and x = 36, $f_1(x) = \frac{98 \cdot \left(\left(\frac{7}{4} \right) \cdot \left(\frac{7}{7-1} \right)^{7-1} \right)^{(36-1)}}{(252)^{\frac{\sqrt{252}}{3}} + 3} = \frac{3.6007E + 24}{8.1511E + 19} > 1.$

Referring to (2.4), when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x) > 1$.

Let
$$x = n$$
, then when $n \ge 36$ and $5 \le \lambda \le 7$, $f_1(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1}\right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} > 1$.

Thus, referring to **(2.2)**, when
$$n \ge 36$$
 and $5 \le \lambda \le 7$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. **(2.5)**

Referring to (1.3), there exists at least a prime number p such that n .

Since
$$n > \lambda - 2$$
, in $\Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > \lfloor \sqrt{\lambda n} \rfloor$.

Referring to (1.8), we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$.

$$\begin{split} & \Gamma_{\lambda n \geq p > n} \Big\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \Big\} = \\ & = & \Gamma_{\lambda n \geq p > (\lambda - 1)n} \Big\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \Big\} \cdot \prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\underbrace{(\lambda - 1)n}_{i} \geq p > \frac{\lambda n}{i+1}} \Big\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \Big\} \cdot \Gamma_{\underbrace{\lambda n}_{i+1} \geq p > \frac{(\lambda - 1)n}{i+1}} \Big\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \Big\} \right) \end{split}$$

In $\prod_{i=1}^{\lambda-2} \left(\Gamma_{\underbrace{(\lambda-1)n}_i \geq p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right)$, every distinct prime number p in this range in the numerator $(\lambda n)!$ has the form of $(i)! \cdot p^i$. It also has the same form of $(i)! \cdot p^i$ in the denominator $((\lambda-1)n)!$. They cancel to each other. Thus, referring to **(1.2)**,

$$\prod_{i=1}^{\lambda-2} \left(\Gamma_{\underbrace{(\lambda-1)n}_i \geq p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1. \text{ Therefore, when } n \geq 36 \text{ and } 5 \leq \lambda \leq 7,$$

$$\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \Gamma_{\lambda n \geq p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) > 1.$$

$$- (2.6)$$

From **(1.1)**,
$$\Gamma_{\lambda n \geq p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \geq 1$$
 and $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda - 1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \right) \geq 1$, and in **(2.6)** at last one of these two parts is greater than 1.

When $n \ge 36$ and $5 \le \lambda \le 7$, if $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$, then referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n .$

If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) = 1$$
, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$.

If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then at least one factor $\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$.

When the factor
$$\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$$
, let $y_{i+1} = \frac{n}{i+1}$, then $y_{i+1} \geq \frac{36}{i+1}$. We have

 $\Gamma_{\lambda y_{i+1} \geq p > (\lambda-1)y_{i+1}} \{ \frac{(\lambda n)!}{((\lambda-1)n)!} \} > 1. \text{ Thus, when } y_{i+1} \geq \frac{36}{i+1} \text{, there exists at least a prime number } p$ such that $(\lambda-1) \cdot y_{i+1}$

Since $n > y_{i+1} \ge \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\frac{\Gamma_{\lambda n}}{\Gamma_{i+1}} \ge p > \frac{(\lambda n)!}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\lambda n \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. — (2.9)

Referring to **(2.8)** and **(2.9)**, when
$$n \ge 36$$
 and $5 \le \lambda \le 7$, if $\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underbrace{\lambda n}_{i+1} \ge p > \underbrace{(\lambda-1)n}_{i+1}} \left\{ \underbrace{((\lambda n)!}_{((\lambda-1)n)!} \right\} \right) \ge 1$,

then $\Gamma_{\lambda n \geq p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus, referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n .$

In conclusion from **(2.5)**, **(2.7)**, **(2.10)**, when $n \ge 36$ and $5 \le \lambda \le 7$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$.

When $\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \geq p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime number p such that $(\lambda - 1)n . Thus,$ **Proposition 1**is proven.

Proposition 2: For $35 \ge n \ge \lambda - 2$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n .$

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when λ = 5, 6, and 7, **Proposition 2** is correct. Thus, (2.11) is valid.

Table 1. When $\lambda = 5$ and $3 \le n \le 35$, a prime number exists in the range of 4n

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	13	17	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
p	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163	167	

Table 2. When $\lambda = 6$ and $4 \le n \le 35$, a prime number exists in the range of 5n

n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	23	29	31	37	41	47	53	59	61	67	71	79	83	89	97	101
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
p	103	107	113	127	131	137	139	149	151	157	163	167	173	179	181	191

Table 3. When $\lambda = 7$ and $5 \le n \le 35$, a prime number exists in the range of 6n

n	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
p	31	37	43	53	59	61	67	73	79	89	97	101	103	109	127	131
n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
p	137	149	151	157	163	167	173	179	181	191	193	197	211	223	227	

Combining **(2.1)** and **(2.11)**, we have proven that when $5 \le \lambda \le 7$ and $n \ge \lambda -2$, there exists at least a prime number p such that $(\lambda -1)n .$

3. A Prime Number Between $(\lambda-1)n$ and λn when $8 \le \lambda \le 25$ and $n \ge \lambda-2$

Proposition 3: For $n \ge 24$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n .$

Referring to (1.13), when $n \ge 24$ and $8 \le \lambda \le 25$, we have

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} - (3.2)$$

Let
$$f_3(x) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1}\right)^{(x - 1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3} + 3}}$$
 where x is a real number, the variable, and λ is a constant at

one of the 18 integers from 8 to 25.

$$\begin{split} &f_3{}'(x)=f_3(x)\cdot\left(\ln\left(\frac{\lambda}{4}\right)+\ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}\left(\ln(x)+\ln(\lambda)+2\right)}{6\sqrt{x}}-\frac{3}{x}\right)=f_3(x)\cdot f_4(x) \text{ where} \\ &f_4(x)=\ln\left(\frac{\lambda}{4}\right)+\ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}-\frac{\sqrt{\lambda}\left(\ln(x)+\ln(\lambda)+2\right)}{6\sqrt{x}}-\frac{3}{x} \end{split}$$

$$f_4'(x) = \frac{\sqrt{\lambda} \ln(\lambda)}{12x\sqrt{x}} + \frac{\sqrt{\lambda}}{12x\sqrt{x}} + \frac{3}{x^2} > 0$$
 for $x > 1$ and $\lambda > 1$. Thus, $f_4(x)$ is a strictly increasing function.

We now calculate the $f_4(x)$ values and list them in **Table 4** for x = 24 and $\lambda = 8, 9, 10, \dots 25$.

Table 4. When x = 24 and λ from 8 to 25, $f_4(x) > 0$

λ	8	9	10	11	12	13	14	15	16
$f_4(x)$	0.805	0.876	0.935	0.985	1.028	1.064	1.096	1.124	1.148
λ	17	18	19	20	21	22	23	24	25
$f_4(x)$	1.168	1.186	1.202	1.215	1.227	1.237	1.246	1.253	1.259

Table 4 shows that when x = 24 and λ from 8 to 25, $f_4(x) > 0$. Since $f_3(x) > 0$ and $f_4(x) > 0$, and $f_4(x)$ is a strictly increasing function, when $x \ge 24$ and $8 \le \lambda \le 25$, $f_3(x) = f_3(x) \cdot f_4(x) > 0$. Thus, under these conditions, $f_3(x)$ is a strictly increasing function, and $f_3(x+1) > f_3(x)$.

-(3.3)

We now calculate the $f_3(x)$ values and list them in **Table 5** for x=24 and $\lambda=8,9,10,...25$.

Table 5. When x = 24 and λ from 8 to 25, $f_3(x) > 1$

λ	8	9	10	11	12	13	14	15	16
$f_5(x)$	9.366	19.132	31.150	42.517	50.475	53.571	51.866	46.527	39.386
λ	17	18	19	20	21	22	23	24	25
$f_5(x)$	31.212	23.760	17.383	12.287	8.421	5.633	3.679	2.536	1.481

Table 5 shows when x = 24 and λ from 8 to 25, $f_3(x) > 1$. Since $f_3(x+1) > f_3(x)$, when $x \ge 24$ and $8 \le \lambda \le 25$, $f_3(x) > 1$.

Let
$$x = n$$
, then when $n \ge 24$ and $8 \le \lambda \le 25$, $f_3(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda - 1}\right)^{\lambda - 1}\right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} > 1$.

Thus, referring to **(3.2)**, when
$$n \ge 24$$
 and $8 \le \lambda \le 25$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. **(3.5)**

Referring to (1.3), there exists at least a prime number p such that n .

Since
$$n > \lambda - 2$$
, in $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > \lfloor \sqrt{\lambda n} \rfloor$.

Referring to (1.8), we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$.

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} =$$

$$= \Gamma_{\lambda n \geq p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i = 1}^{i = \lambda - 2} \left(\Gamma_{\underbrace{(\lambda - 1)n}_{i} \geq p > \underbrace{\lambda n}_{i + 1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \Gamma_{\underbrace{\lambda n}_{i + 1} \geq p > \underbrace{(\lambda - 1)n}_{i + 1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right)$$

In
$$\prod_{i=1}^{\lambda-2} \left(\frac{\Gamma_{(\lambda-1)n}}{\sum_{i} \geq p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right)$$
, every distinct prime number p in this range in the

numerator $(\lambda n)!$ has the form of $(i)! \cdot p^i$. It also has the same form of $(i)! \cdot p^i$ in the denominator $((\lambda - 1)n)!$. They cancel to each other. Thus, referring to **(1.2)**,

$$\prod_{i=1}^{\lambda-2} \left(\Gamma_{\underbrace{(\lambda-1)n}_i \geq p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1. \text{ Therefore, when } n \geq 24 \text{ and } 8 \leq \lambda \leq 25,$$

$$\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \Gamma_{\lambda n \geq p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) > 1.$$

$$- (3.6)$$

From **(1.1)**,
$$\Gamma_{\lambda n \geq p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \geq 1$$
 and $\prod_{i=1}^{i=\lambda - 2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda - 1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \right) \geq 1$, and in **(3.6)**

at last one of these two parts is greater than 1.

When $n \ge 24$ and $8 \le \lambda \le 25$, if $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$, then referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n .$

If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1$$
, then $\Gamma_{\lambda n \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$.

If
$$\prod_{i=1}^{i=\lambda-2} \left(\frac{\Gamma_{\lambda n}}{\Gamma_{i+1}} \ge p > \frac{(\lambda-1)n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then at least one factor $\frac{\Gamma_{\lambda n}}{\Gamma_{i+1}} \ge p > \frac{(\lambda-1)n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$.

When the factor
$$\Gamma_{\substack{\lambda n \\ i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$$
, let $y_{i+1} = \frac{n}{i+1}$, then $y_{i+1} \geq \frac{24}{i+1}$. We have

 $\Gamma_{\lambda y_{i+1} \geq p > (\lambda-1)y_{i+1}} \{ \frac{(\lambda n)!}{((\lambda-1)n)!} \} > 1. \text{ Thus, when } y_{i+1} \geq \frac{24}{i+1} \text{, there exists at least a prime number } p \text{ such that } (\lambda-1) \cdot y_{i+1}$

Since $n > y_{i+1} \ge \frac{24}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\lambda n \geq p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. — (3.9)

Referring to **(3.8)** and **(3.9)**, when $n \ge 24$ and $8 \le \lambda \le 25$, if $\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) \ge 1$,

then $\Gamma_{\lambda n \geq p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus, referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n .$

In conclusion from **(3.5)**, **(3.7)**, **(3.10)**, when $n \ge 24$ and $8 \le \lambda \le 25$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. When $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime number p such that $(\lambda - 1)n . Thus,$ **Proposition 3**is proven.

Proposition 4: For $23 \ge n \ge \lambda - 2$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n .$

We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when $8 \le \lambda \le 25$, **Proposition 4** is correct. Thus, (3.11) is valid.

Table 6. When $8 \le \lambda \le 11$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

	n	6	7	8	9	10	11	12	13	14	
	7 <i>n</i>	42	49	56	63	70	77	84	91	98	
	p	47	53	59	67	73	83	89	97	101	$\lambda = 8$
	8n	48	56	64	72	80	88	96	104	112	
$\lambda = 9$	р		61	71	79	83	97	101	107	113	
	9n		63	72	81	90	99	108	117	126	
	р			73	83	97	101	109	127	131	$\lambda = 10$
	10n			80	90	100	110	120	130	140	
$\lambda = 11$	p				97	103	113	127	139	151	
	11n				99	110	121	132	143	154	
	n	15	16	17	18	19	20	21	22	23	
	7n	105	112	119	126	133	140	147	154	161	
	p	107	113	127	131	137	149	151	157	163	$\lambda = 8$
	8n	120	128	136	144	152	160	168	176	184	
$\lambda = 9$	p	127	131	139	149	157	167	173	179	191	
	9n	135	144	153	162	171	180	189	198	207	
	р	137	151	163	167	181	191	193	199	211	$\lambda = 10$
	10n	150	160	170	180	190	200	210	220	230	
$\lambda = 11$	p	157	167	179	191	197	211	223	227	233	
	11n	165	176	187	198	209	220	231	242	253	

Table 7. When $12 \le \lambda \le 15$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

	n	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	11n	110	121	132	143	154	165	176	187	198	209	220	231	242	253
$\lambda = 12$	p	113	127	137	149	157	167	181	193	199	223	229	239	257	269
	12 <i>n</i>	120	132	144	156	168	180	192	204	216	228	240	252	264	276
$\lambda = 13$	p		139	151	163	173	183	197	211	227	233	241	263	271	281
	13n		143	156	169	182	195	208	221	234	247	260	273	286	299
$\lambda = 14$	p			167	179	191	199	223	223	239	257	269	277	293	307
	14n			168	182	196	210	224	238	252	266	280	294	308	322
$\lambda = 15$	p				191	199	211	229	239	263	271	283	307	311	331
	15 <i>n</i>				195	210	225	240	255	270	285	300	315	330	345

Table 8. When $16 \le \lambda \le 25$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

			1			, s. p				•		
	n	14	15	16	17	18	19	20	21	22	23	
	15 <i>n</i>	210	225	240	255	270	285	300	315	330	345	
$\lambda = 16$	p	223	227	241	257	277	293	313	317	331	347	
	16n	224	240	256	272	288	304	320	336	352	368	
	р		251	263	281	293	307	337	349	353	373	$\lambda = 17$
	17n		255	272	289	306	323	340	357	374	391	
$\lambda = 18$	р			277	293	311	331	347	359	379	397	
	18n			288	306	324	342	360	378	396	414	
	р				307	337	349	373	383	397	419	$\lambda = 19$
	19n				323	342	361	380	399	418	437	
$\lambda = 20$	р					347	367	389	401	421	439	
	20n					360	380	400	420	440	460	
	р						283	409	431	443	461	$\lambda = 21$
	21n						399	420	441	462	483	
$\lambda = 22$	p							433	449	463	487	
	22n							440	462	484	506	
	p								467	491	509	$\lambda = 23$
	23n								483	506	529	
$\lambda = 24$	p									521	541	
	24n									528	552	
	p										563	$\lambda = 25$
	25n										575	

Combining **(3.1)** and **(3.11)**, we have proven that when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n . —$ **(3.12)**

4. A Prime Number Between kn and (k+1)n

From **(1.4)**, for every positive integer n, there exists at least a prime number p such that 2n .

From (1.5), for every integer n > 1, there exists at least a prime number p such that 3n .

From **(2.12)**, when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From **(3.12)**, when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From **(1.9)**, for $n \ge (\lambda - 2) \ge 24$, there exists at least a prime number p such that $(\lambda - 1)n .$

Combining **(1.4)**, **(1.5)**, **(2.12)**, **(3.12)**, and **(1.9)**, we show that for $n \ge \lambda - 2 \ge 1$, there exists at least a prime number p such that $(\lambda - 1)n . —$ **(4.1)**

Let $k = \lambda - 1$, **(4.1)** becomes that for $n \ge k - 1 \ge 1$, there exists at least a prime number p such that kn .

Since the Bertrand-Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that n , we can derive the**Theorem (4.3)** $: For two positive integers <math>n \ge 1$ and $k \ge 1$, if $n \ge k - 1$, then there always exists at least a prime number p such that kn . The Bertrand-Chebyshev's theorem is a special case of**Theorem (4.3)**when <math>k = 1.

5. References

- [1] M. Aigner, G. Ziegler, *Proofs from THE BOOK*, Springer, 2014, 16-21
- [2] M. El Bachraoui, *Prime in the Interval* [2n, 3n], International Journal of Contemporary Mathematical Sciences, Vol.1 (2006), no. 13, 617-621.
- [3] Andy Loo, On the Prime in the Interval [3n, 4n], https://arxiv.org/abs/1110.2377
- [4] Wing K. Yu, A Different Way to Prove a Prime Number between 2N and 3N, https://vixra.org/abs/2202.0147
- [5] Wing K. Yu, *A Method to Prove a Prime Number between 3N and 4N*, https://vixra.org/abs/2203.0084
- [6] Wing K. Yu, *The proofs of Legendre's Conjecture and Related Conjectures*, https://vixra.org/abs/2203.0037
- [7] Wikipedia, https://en.wikipedia.org/wiki/Proof of Bertrand%27s postulate, Lemma 4.