On Prime Numbers Between kn And (k+1)n

Wing K. Yu

Abstracts

In this paper along with three previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers $n \ge 1$ and $k \ge 1$, if $n \ge k - 1$, then there always exists at least a prime number p such that kn . The Bertrand-Chebyshev's theorem is a special case of this theorem when <math>k = 1.

Table of Contents

1.	Introduction	2
2.	A Prime Number between (λ $-$ 1) n and λn when 5 \leq λ \leq 7 and n \geq λ $-$ 2	3
3.	A Prime Number between (λ $-$ 1) n and λn when 8 \leq λ \leq 25 and n \geq λ $-$ 2	7
4.	A Prime Number between kn and $(k+1)n$	11
5.	References	11

1. Introduction

The Bertrand-Chebyshev's theorem States that for any positive integer n, there is always a prime number p such that n . It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer <math>n, there is a prime number p such that 2n . In 2011, Andy Loo [3] expanded the theorem to prove that there is a prime number in the interval <math>(3n, 4n) when $n \ge 2$. It comes up with a question: Does any positive integer k make $kn stand? If it does, in what conditions? Previously, the author partially answered these questions by analyzing the binomial coefficients <math>\binom{3n}{n}$, $\binom{4n}{n}$, and $\binom{\lambda n}{n}$ where λ is a positive integer [4] [5] [6]. In this paper, we will complete the work with the above methodology. In this section, we will cite some important concepts from the previous papers. Then in section 2 and section 3, we will fill up the gaps of λ from 5 to 25. And in section 4, we will convert λ to k to complete this paper.

From [4]:

Definition: $\Gamma_{a \ge p > b}\{n\}$ denotes the prime number decomposition operator. It is the product of the prime numbers in the decomposition of a positive integer n or a positive integer expression. In this operator, p is a prime number, a and b are real numbers, and $n \ge a \ge p > b \ge 1$.

It has some properties:

It is always true that $\Gamma_{a \ge p \ge b} \{n\} \ge 1$.

If no prime number in $\Gamma_{a \ge p > b} \{n\}$, then $\Gamma_{a \ge p > b} \{n\} = 1$, or vice versa, if $\Gamma_{a \ge p > b} \{n\} = 1$, then no prime number in $\Gamma_{a \ge p > b} \{n\}$ as in $\Gamma_{12 \ge p > 4} \{12\} = 11^0 \cdot 7^0 \cdot 5^0 = 1$. **(1.2)** If there is at least one prime number in $\Gamma_{a \ge p > b} \{n\}$, then $\Gamma_{a \ge p > b} \{n\} > 1$, or vice versa, if $\Gamma_{a \ge p > b} \{n\} > 1$, then there is at least one prime number in $\Gamma_{a \ge p > b} \{n\}$ as in $\Gamma_{4 \ge p > 2} \{12\} = 3 > 1$. **(1.3)** For every positive integer n, there exists at least a prime number p such that

2n .

— (1.4)

-(1.1)

From [5]:

For every integer n > 1, there exists at least a prime number p such that 3n . - (1.5)

From [6 pp4-5]:

For
$$n \ge 2$$
 and $\lambda \ge 3$, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ – (1.6)

If
$$p$$
 divides $\binom{\lambda n}{n}$, then $v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le \log_p(\lambda n)$, or $p^{v_p\left(\binom{\lambda n}{n}\right)} \le p^{R(p)} \le \lambda n$ — (1.7)

If
$$\lambda n \ge p > \lfloor \sqrt{\lambda n} \rfloor$$
, then $0 \le v_p \left(\binom{\lambda n}{n} \right) \le R(p) \le 1$ – (1.8)

For $n \ge (\lambda - 2) \ge 24$, there exists at least a prime number p such that $(\lambda - 1)n .$ - (1.9)

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. For the first six sequential natural numbers, there are three prime numbers 2, 3, and 5. For counting any successive set of six sequential natural numbers, there are at most two prime numbers added, $p \equiv 1 \pmod{6}$ and $p \equiv 5 \pmod{6}$.

Thus,
$$\pi(n) \leq \left[\frac{n}{3}\right] + 2 \leq \frac{n}{3} + 2$$
 — (1.10)
when $n > \left[\sqrt{\lambda n}\right]$, $\binom{\lambda n}{n} = \Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot \Gamma_{n \geq p > \left[\sqrt{\lambda n}\right]} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot \Gamma_{\left[\sqrt{\lambda n}\right] \geq p} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$
when $n \leq \left[\sqrt{\lambda n}\right]$, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot \Gamma_{\left[\sqrt{\lambda n}\right] \geq p} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$
Thus, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot \Gamma_{n \geq p > \left[\sqrt{\lambda n}\right]} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$
Thus, $\binom{\lambda n}{n} \leq \Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot \Gamma_{n \geq p > \left[\sqrt{\lambda n}\right]} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$ or $\left[\sqrt{\lambda n}\right] \geq p \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$ or $\left[\sqrt{\lambda n}\right] \geq p \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$
Referring to (1.8), $\Gamma_{n \geq p > \left[\sqrt{\lambda n}\right]} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} < \prod_{n \geq p > n} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\}$ or $n \geq 3$ and $\lambda \geq 3$, $\Gamma_{n \geq p > \left[\sqrt{\lambda n}\right]} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} < (\pi_n \geq p p < 2^{2n-3})$.
Referred to (1.7) and (1.10), $\Gamma_{\left[\sqrt{\lambda n}\right] \geq p} \left\{\frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!}\right\} \cdot 2^{2n-3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}$
Thus for $n \geq 3$ and $\lambda \geq 3$, $\binom{\lambda n}{n} < \Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{((\lambda - 1)n)!}\right\} \cdot 2^{2n-3} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}$.
Applying (1.6) to (1.12), when $n \geq 3$ and $\lambda \geq 3$, we have
 $\frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} < \binom{\lambda n}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{(\lambda n)!}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$, when $n \geq 3$, and $\lambda \geq 3$,
 $\Gamma_{\lambda n \geq p > n} \left\{\frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 2^{2n - 3} \cdot (\lambda n)^$

2. A Prime Number Between $(\lambda - 1)n$ and λn when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$

Proposition 1: For $n \ge 36$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n . (2.1)$

Referring to (1.13), when $n \ge 36$ and $5 \le \lambda \le 7$, we have

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} \qquad - (2.2)$$
Let $f_1(x) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(x - 1)}}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3} + 3}}$ where x is a real number, the variable, and λ is a constant at

one of the 3 integers from 5 to 7.

$$f_1'(x) = f_1(x) \cdot \left(ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x} \right) = f_1(x) \cdot f_2(x) \text{ where}$$

$$f_2(x) = ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}$$

 $f_2'(x) = \frac{\sqrt{\lambda} \ln(\lambda)}{12x\sqrt{x}} + \frac{\sqrt{\lambda} \ln(x)}{12x\sqrt{x}} + \frac{3}{x^2} > 0 \text{ for } x > 0 \text{ and } \lambda > 0. \text{ Thus, } f_2(x) \text{ is a strictly increasing function.}$

When
$$x = 36$$
 and $\lambda = 5$, $f_2(x) = ln\left(\frac{5}{4}\right) + ln\left(\frac{5}{5-1}\right)^{5-1} - \frac{\sqrt{5}\left(ln(36) + ln(5) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.5859 > 0.5599 > 0.5599 > 0.5599 >$

When x = 36 and $\lambda = 6$, $f_2(x) = ln\left(\frac{6}{4}\right) + ln\left(\frac{6}{6-1}\right)^{6-1} - \frac{\sqrt{6}\left(ln(36) + ln(6) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 0.7155 > 0.$

When
$$x = 36$$
 and $\lambda = 7$, $f_2(x) = ln\left(\frac{7}{4}\right) + ln\left(\frac{7}{7-1}\right)^{7-1} - \frac{\sqrt{7}\left(ln(36) + ln(7) + 2\right)}{6\sqrt{36}} - \frac{3}{36} \approx 08522 > 0.$

Since $f_2(x) > 0$ when x = 36 and $5 \le \lambda \le 7$, and since $f_2(x)$ is a strictly increasing function, then when $x \ge 36$ and $5 \le \lambda \le 7$, we have $f_2(x) > 0$. **(2.3)**

Since when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x) > 0$ and $f_2(x) > 0$, then $f_1'(x) = f_1(x) \cdot f_2(x) > 0$. Thus, when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x)$ is a strictly increasing function. $f_1(x + 1) > f_1(x)$. **– (2.4)**

When
$$\lambda = 5$$
 and $x = 36$, $f_1(x) = \frac{50 \cdot \left(\left(\frac{5}{4}\right) \cdot \left(\frac{5}{5-1}\right)^{5-1}\right)^{(50-1)}}{(180)^{\frac{\sqrt{180}}{3}+3}} = \frac{4.5522E+18}{7.1073E+16} > 1.$

When
$$\lambda = 6$$
 and $x = 36$, $f_1(x) = \frac{72 \cdot \left(\left(\frac{6}{4}\right) \cdot \left(\frac{6}{6-1}\right)^{6-1}\right)^{(36-1)}}{(216)^{\frac{\sqrt{216}}{3}+3}} = \frac{7.5378E+21}{2.7530E+18} > 1.$

When
$$\lambda = 7$$
 and $x = 36$, $f_1(x) = \frac{98 \cdot \left(\left(\frac{7}{4}\right) \cdot \left(\frac{7}{7-1}\right)^{7-1}\right)^{(36-1)}}{(252)^{\frac{\sqrt{252}}{3}+3}} = \frac{3.6007E+24}{8.1511E+19} > 1.$

Referring to (2.4), when $x \ge 36$ and $5 \le \lambda \le 7$, $f_1(x) > 1$.

Let x = n, then when $n \ge 36$ and $5 \le \lambda \le 7$, $f_1(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(n-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}} > 1.$

Thus, referring to (2.2), when $n \ge 36$ and $5 \le \lambda \le 7$, $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1.$ (2.5)

Since $n > \lambda - 2$, in $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > \lfloor \sqrt{\lambda n} \rfloor$. Referring to **(1.8)**, we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$.

$$\begin{split} &\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} = \\ &= \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underbrace{(\lambda - 1)n}_{i} \ge p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \Gamma_{\underbrace{\lambda n}_{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \\ &\ln \prod_{i=1}^{\lambda-2} \left(\Gamma_{\underbrace{(\lambda - 1)n}_{i} \ge p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right), v_p = \sum_{i=1}^{\lambda-2} (i - i) = 0 \text{ when any } p \text{ in } \Gamma_{\underbrace{(\lambda - 1)n}_{i} \ge p > \frac{\lambda n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \end{split}$$

Thus, referring to (1.2),
$$\prod_{i=1}^{\lambda-2} \left(\Gamma_{\underline{(\lambda-1)n}}_{\underline{i}} \ge p > \frac{\lambda n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1.$$

Therefore, when $n \ge 36$ and $5 \le \lambda \le 7$,

$$\Gamma_{\lambda n \ge p > n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} = \Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \right) > 1.$$

$$- (2.6)$$

From (1.1),
$$\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \ge 1$$
 and $\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \right) \ge 1$, and in (2.6) at last one of these two parts is greater than 1.

When $n \ge 36$ and $5 \le \lambda \le 7$, if $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$, then referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n . -$ **(2.7)** $If <math>\prod_{i=1}^{i=\lambda-2} \left(\frac{\Gamma_{\lambda n}}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} \right) = 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$. - **(2.8)** If $\prod_{i=1}^{i=\lambda-2} \left(\frac{\Gamma_{\lambda n}}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} \right) > 1$, then at least one factor $\frac{\Lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$. When the factor $\frac{\Lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$, let $y_{i+1} = \frac{n}{i+1}$, then $y_{i+1} \ge \frac{36}{i+1}$. We have $\Gamma_{\lambda y_{i+1} \ge p > (\lambda - 1)y_{i+1}} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$. Thus, when $y_{i+1} \ge \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda - 1) \cdot y_{i+1}$

Since $n > y_{i+1} \ge \frac{36}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda}n}_{\underline{i+1}} \ge p > \frac{(\lambda-1)n}{\underline{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\underline{\lambda}n \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. (2.9)

Referring to (2.8) and (2.9), when $n \ge 36$ and $5 \le \lambda \le 7$, if $\prod_{i=1}^{i=\lambda-2} \left(\prod_{\substack{\lambda n \\ i+1} \ge p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) \ge 1$,

then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus, referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n . –$ **(2.10)**

In conclusion from (2.5), (2.7), (2.10), when $n \ge 36$ and $5 \le \lambda \le 7$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$.

When $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime number p such that $(\lambda - 1)n . Thus,$ **Proposition 1**is proven.

Proposition 2: For $35 \ge n \ge \lambda - 2$ and $5 \le \lambda \le 7$, there exists at least a prime number p such that $(\lambda - 1)n . (2.11)$

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when λ = 5, 6, and 7, **Proposition 2** is correct. Thus, (2.11) is valid.

Table 1. When $\lambda = 5$ and $3 \le n \le 35$, a prime number exists in the range of 4n

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	13	17	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
p	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163	167	

Table 2. When $\lambda = 6$ and $4 \le n \le 35$, a prime number exists in the range of 5n

						-						-	•			
n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p	23	29	31	37	41	47	53	59	61	67	71	79	83	89	97	101
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
p	103	107	113	127	131	137	139	149	151	157	163	167	173	179	181	191

Table 3. When $\lambda = 7$ and $5 \le n \le 35$, a prime number exists in the range of 6n

n	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
p	31	37	43	53	59	61	67	73	79	89	97	101	103	109	127	131
n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
p	137	149	151	157	163	167	173	179	181	191	193	197	211	223	227	

Combining (2.1) and (2.11), we have proven that when $5 \le \lambda \le 7$ and $n \ge \lambda -2$, there exists at least a prime number p such that $(\lambda -1)n . (2.12)$

3. A Prime Number Between $(\lambda - 1)n$ and λn when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$

Proposition 3: For $n \ge 24$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n . (3.1)$

Referring to (1.13), when $n \ge 24$ and $8 \le \lambda \le 25$, we have

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}}$$

$$- (3.2)$$
Let $f_{\tau}(x) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4} \right) \cdot \left(\frac{\lambda}{\lambda - 1} \right)^{\lambda - 1} \right)^{(n - 1)}}{(\lambda - 1)^{n - 1}}$ where x is a real number, the variable, and λ is a constant as

Let $f_3(x) = \frac{(x) + (x + y)}{(\lambda x)^{\frac{\sqrt{\lambda x}}{3} + 3}}$ where x is a real number, the variable, and λ is a constant at

one of the 18 integers from 8 to 25.

Table 4. When x = 24 and λ from 8 to 25, $f_4(x) > 0$

$$f_{3}'(x) = f_{3}(x) \cdot \left(ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x} \right) = f_{3}(x) \cdot f_{4}(x) \text{ where}$$

$$f_{4}(x) = ln\left(\frac{\lambda}{4}\right) + ln\left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1} - \frac{\sqrt{\lambda}\left(ln(x) + ln(\lambda) + 2\right)}{6\sqrt{x}} - \frac{3}{x}$$

 $f_4'(x) = \frac{\sqrt{\lambda} \ln(\lambda)}{12x\sqrt{x}} + \frac{\sqrt{\lambda}}{12x\sqrt{x}} + \frac{3}{x^2} > 0 \text{ for } x > 0 \text{ and } \lambda > 0. \text{ Thus, } f_4(x) \text{ is a strictly increasing function.}$ We now calculate the $f_4(x)$ values and list them in **Table 4** for x = 24 and $\lambda = 8, 9, 10, \dots 25$.

λ	8	9	10	11	12	13	14	15	16
(())	0.005	0.070	0.005	0.005	4 0 0 0	1 0 6 4	1 000	4 4 9 4	4 4 4 9
$J_4(x)$	0.805	0.876	0.935	0.985	1.028	1.064	1.096	1.124	1.148
λ	17	18	19	20	21	22	23	24	25
$f_4(x)$	1.168	1.186	1.202	1.215	1.227	1.237	1.246	1.253	1.259

Table 4 shows that when x = 24 and λ from 8 to 25, $f_4(x) > 0$. Since $f_3(x) > 0$ and $f_4(x) > 0$, thus when $x \ge 24$ and $8 \le \lambda \le 25$, $f_3'(x) = f_3(x) \cdot f_4(x) > 0$. Thus, under these conditions, $f_3(x)$ is a strictly increasing function, and $f_3(x + 1) > f_3(x)$. - (3.3)

We now calculate the $f_3(x)$ values and list them in **Table 5** for x = 24 and $\lambda = 8, 9, 10, ... 25$. **Table 5.** When x = 24 and λ from 8 to 25, $f_5(x) > 1$

λ	8	9	10	11	12	13	14	15	16
$f_5(x)$	9.366	19.132	31.150	42.517	50.475	53.571	51.866	46.527	39.386
λ	17	18	19	20	21	22	23	24	25
$f_5(x)$	31.212	23.760	17.383	12.287	8.421	5.633	3.679	2.536	1.481

Table 5 shows when x = 24 and λ from 8 to 25, $f_5(x) > 1$. Since $f_3(x + 1) > f_3(x)$, when

 $x \ge 24$ and $8 \le \lambda \le 25$, $f_5(x) > 1$.

 - (3.4)

Let x = n, then when $n \ge 24$ and $8 \le \lambda \le 25$, $f_3(n) = \frac{2\lambda^2 \cdot \left(\left(\frac{\lambda}{4}\right) \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda-1}\right)^{(\lambda-1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3}+3}} > 1.$

Thus, referring to (3.2), when
$$n \ge 24$$
 and $8 \le \lambda \le 25$, $\Gamma_{\lambda n \ge p > n} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1.$ (3.5)

Thus, referring to (1.3), there exists at least a prime number p such that n . $Since <math>n > \lambda - 2$, in $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$, $p \ge n + 1 = \sqrt{n^2 + 2n + 1} > \sqrt{(n + 2)n} > \lfloor \sqrt{\lambda n} \rfloor$. Referring to (1.8), we have $0 \le v_p \left(\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right) \le R(p) \le 1$. $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} =$

$$= \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{(\lambda - 1)n}} \sum_{i=1}^{\lambda n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \Gamma_{\underline{\lambda n}} \sum_{i=1}^{\lambda n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right)$$

$$\ln \prod_{i=1}^{\lambda-2} \left(\Gamma_{\underline{(\lambda - 1)n}} \sum_{i=1}^{\lambda n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right), v_p = \sum_{i=1}^{\lambda-2} (i - i) = 0 \text{ when any } p \text{ in } \Gamma_{\underline{(\lambda - 1)n}} \sum_{i=1}^{\lambda n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \right)$$
Thus, referring to (1.2), $\Pi^{\lambda-2} \left(\Gamma_{\underline{(\lambda - 1)n}} \sum_{i=1}^{\lambda - 2} \left($

Thus, referring to (1.2),
$$\prod_{i=1}^{\lambda-2} \left(\Gamma_{\underline{(\lambda-1)n}}_{i} \ge p > \frac{\lambda n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1.$$

Therefore, when $n \ge 24$ and $8 \le \lambda \le 25$,

$$\Gamma_{\lambda n \ge p > n}\left\{\frac{(\lambda n)!}{((\lambda - 1)n)!}\right\} = \Gamma_{\lambda n \ge p > (\lambda - 1)n}\left\{\frac{(\lambda n)!}{((\lambda - 1)n)!}\right\} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}}\left\{\frac{(\lambda n)!}{((\lambda - 1)n)!}\right\}\right) > 1.$$

$$- (3.6)$$

From (1.1), $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \ge 1$ and $\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\frac{\lambda n}{i+1} \ge p > \frac{(\lambda - 1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} \right) \ge 1$, and in (3.6) at last one of these two parts is greater than 1.

When $n \ge 24$ and $8 \le \lambda \le 25$, if $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{\frac{(\lambda n)!}{((\lambda - 1)n)!}\} > 1$, then referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n . —$ **(3.7)**

$$If \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda n}\atop i+1} \ge p > \frac{(\lambda-1)n}{i+1} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) = 1, \text{ then } \Gamma_{\underline{\lambda n} \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1.$$
(3.8)

$$If \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda n}_{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda-1)n)!} \} \right) > 1, \text{ then at least one factor } \Gamma_{\underline{\lambda n}_{i+1} \geq p > \frac{(\lambda-1)n}{i+1}} \{ \frac{(\lambda n)!}{((\lambda-1)n)!} \} > 1.$$

When the factor $\prod_{i+1} \sum_{j=1}^{n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$, let $y_{i+1} = \frac{n}{i+1}$, then $y_{i+1} \ge \frac{24}{i+1}$. We have

 $\Gamma_{\lambda y_{i+1} \ge p > (\lambda - 1)y_{i+1}} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1. \text{ Thus, when } y_{i+1} \ge \frac{24}{i+1} \text{, there exists at least a prime number } p \text{ such that } (\lambda - 1) \cdot y_{i+1}$

Since $n > y_{i+1} \ge \frac{24}{i+1}$, there exists at least a prime number p such that $(\lambda - 1)n .$

Thus, If
$$\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{\lambda}n}_{\underline{i+1}} \ge p > \frac{(\lambda-1)n}{\underline{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) > 1$$
, then $\Gamma_{\underline{\lambda}n \ge p > (\lambda-1)n} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} > 1$. (3.9)

Referring to (3.8) and (3.9), when $n \ge 24$ and $8 \le \lambda \le 25$, if $\prod_{i=1}^{i=\lambda-2} \left(\prod_{\substack{\lambda n \\ i+1} \ge p > \frac{(\lambda-1)n}{i+1}} \left\{ \frac{(\lambda n)!}{((\lambda-1)n)!} \right\} \right) \ge 1$,

then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \} > 1$. Thus, referring to **(1.3)**, there exists at least a prime number p such that $(\lambda - 1)n . (3.10)$

In conclusion from (3.5), (3.7), (3.10), when $n \ge 24$ and $8 \le \lambda \le 25$, then $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$. When $\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, then $\Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1$, and there exists at least a prime number p such that $(\lambda - 1)n . Thus,$ **Proposition 3**is proven.

Proposition 4: For $23 \ge n \ge \lambda - 2$ and $8 \le \lambda \le 25$, there exists at least a prime number p such that $(\lambda - 1)n . (3.11)$

We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when $8 \le \lambda \le 25$, **Proposition 4** is correct. Thus, (3.11) is valid.

	n	6	7	8	9	10	11	12	13	14	
	7 <i>n</i>	42	49	56	63	70	77	84	91	98	
	p	47	53	59	67	73	83	89	97	101	$\lambda = 8$
	8n	48	56	64	72	80	88	96	104	112	
$\lambda = 9$	р		61	71	79	83	97	101	107	113	
	9n		63	72	81	90	99	108	117	126	
	р			73	83	97	101	109	127	131	$\lambda = 10$
	10 <i>n</i>			80	90	100	110	120	130	140	
$\lambda = 11$	p				97	103	113	127	139	151	
	11n				99	110	121	132	143	154	
			L	L	Г	Г	L	L	[
	n	15	16	17	18	19	20	21	22	23	
	7 n	105	112	119	126	133	140	147	154	161	
	p	107	113	127	131	137	149	151	157	163	$\lambda = 8$
	8n	120	128	136	144	152	160	168	176	184	
$\lambda = 9$	р	127	131	139	149	157	167	173	179	191	
	9n	135	144	153	162	171	180	189	198	207	
	p	137	151	163	167	181	191	193	199	211	$\lambda = 10$
	10 <i>n</i>	150	160	170	180	190	200	210	220	230	
$\lambda = 11$	p	157	167	179	191	197	211	223	227	233	
	11 <i>n</i>	165	176	187	198	209	220	231	242	253	

Table 6. When $8 \le \lambda \le 11$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

						,					•	,			
	n	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	11n	110	121	132	143	154	165	176	187	198	209	220	231	242	253
$\lambda = 12$	р	113	127	137	149	157	167	181	193	199	223	229	239	257	269
	12 <i>n</i>	120	132	144	156	168	180	192	204	216	228	240	252	264	276
$\lambda = 13$	p		139	151	163	173	183	197	211	227	233	241	263	271	281
	13n		143	156	169	182	195	208	221	234	247	260	273	286	299
$\lambda = 14$	p			167	179	191	199	223	223	239	257	269	277	293	307
	14 <i>n</i>			168	182	196	210	224	238	252	266	280	294	308	322
$\lambda = 15$	р				191	199	211	229	239	263	271	283	307	311	331
	15 <i>n</i>				195	210	225	240	255	270	285	300	315	330	345

Table 7. When $12 \le \lambda \le 15$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

Table 8. When $16 \le \lambda \le 25$ and $\lambda - 2 \le n \le 23$, a prime number between $(\lambda - 1)n$ and λn

	n	14	15	16	17	18	19	20	21	22	23	
	15n	210	225	240	255	270	285	300	315	330	345	
$\lambda = 16$	p	223	227	241	257	277	293	313	317	331	347	
	16n	224	240	256	272	288	304	320	336	352	368	
	p		251	263	281	293	307	337	349	353	373	$\lambda = 17$
	17 <i>n</i>		255	272	289	306	323	340	357	374	391	
$\lambda = 18$	р			277	293	311	331	347	359	379	397	
	18 n			288	306	324	342	360	378	396	414	
	p				307	337	349	373	383	397	419	$\lambda = 19$
	19 n				323	342	361	380	399	418	437	
$\lambda = 20$	р					347	367	389	401	421	439	
	20n					360	380	400	420	440	460	
	p						283	409	431	443	461	$\lambda = 21$
	21 <i>n</i>						399	420	441	462	483	
$\lambda = 22$	p							433	449	463	487	
	22n							440	462	484	506	
	p								467	491	509	$\lambda = 23$
	23n								483	506	529	
$\lambda = 24$	р									521	541	
	24 <i>n</i>									528	552	
	p										563	$\lambda = 25$
	25n										575	

Combining (3.1) and (3.11), we have proven that when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n . (3.12)$

4. A Prime Number Between kn and (k+1)n

From (1.4), for every positive integer n, there exists at least a prime number p such that 2n .

From (1.5), for every integer n > 1, there exists at least a prime number p such that 3n .

From (2.12), when $5 \le \lambda \le 7$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From (3.12), when $8 \le \lambda \le 25$ and $n \ge \lambda - 2$, there exists at least a prime number p such that $(\lambda - 1)n .$

From (1.9), for $n \ge (\lambda - 2) \ge 24$, there exists at least a prime number p such that $(\lambda - 1)n .$

Combining (1.4), (1.5), (2.12), (3.12), and (1.9), we have that for $n \ge \lambda - 2 \ge 1$, there exists at least a prime number p such that $(\lambda - 1)n . (4.1)$

Let $k = \lambda - 1$, (4.1) becomes that for $n \ge k - 1 \ge 1$, there exists at least a prime number p such that kn . (4.2)

Since the Bertrand-Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that $n , we can state that for two positive integers <math>n \ge 1$ and $k \ge 1$, if $n \ge k - 1$, then there always exists at least a prime number p such that kn . The Bertrand's postulate / Chebyshev's theorem is a special case when <math>k = 1.

5. References

- [1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
- [2] M. El Bachraoui, *Prime in the Interval* [2n, 3n], International Journal of Contemporary Mathematical Sciences, Vol.1 (2006), no. 13, 617-621.
- [3] Andy Loo, On the Prime in the Interval [3n, 4n], https://arxiv.org/abs/1110.2377
- [4] Wing K. Yu, A Different Way to Prove a Prime Number between 2N and 3N, https://vixra.org/abs/2202.0147
- [5] Wing K. Yu, *A Method to Prove a Prime Number between 3N and 4N*, https://vixra.org/abs/2203.0084
- [6] Wing K. Yu, *The proofs of Legendre's Conjecture and Related Conjectures*, https://vixra.org/abs/2203.0037

[7] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate, Lemma 4.