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Abstracts  
 
In this paper along with three previous studies on analyzing the binomial coefficients, we will 

complete the proof of a theorem. The theorem states that for two positive integers 𝑛 ≥ 1 and  

𝑘 ≥ 1, if 𝑛 ≥ 𝑘 −1, then there always exists at least a prime number 𝑝 such that 𝑘𝑛 < 𝑝 ≤ (𝑘 + 1)𝑛. 

The Bertrand-Chebyshev’s theorem is a special case of this theorem when 𝑘 =1.  
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1. Introduction 

 

The Bertrand-Chebyshev’s theorem States that for any positive integer 𝑛, there is always a 
prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛. It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, 
M. El Bachraoui [2] expanded the theorem by proving that for any positive integer 𝑛, there is a 
prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛. In 2011, Andy Loo [3] expanded the theorem to prove 
that there is a prime number in the interval (3𝑛, 4𝑛) when 𝑛 ≥ 2. It comes up with a question: 
Does any positive integer 𝑘 make 𝑘𝑛 < 𝑝 ≤ (𝑘+1)𝑛 stand? If it does, in what conditions? 
Previously, the author partially answered these questions by analyzing the binomial coefficients 

(3𝑛
𝑛

), (4𝑛
𝑛

), and (𝜆𝑛
𝑛

) where 𝜆 is a positive integer [4] [5] [6]. In this paper, we will complete the 

work with the above methodology. In this section, we will cite some important concepts from 
the previous papers. Then in section 2 and section 3, we will fill up the gaps of 𝜆 from 5 to 25. 
And in section 4, we will convert 𝜆 to 𝑘 to complete this paper. 

From [4]: 

Definition:  Γ𝑎≥𝑝˃𝑏{𝑛} denotes the prime number decomposition operator. It is the 

product of the prime numbers in the decomposition of a positive integer 𝑛 or a positive 

integer expression. In this operator, 𝑝 is a prime number, 𝑎 and 𝑏 are real numbers, 

and 𝑛 ≥ 𝑎 ≥ 𝑝 ˃ 𝑏 ≥ 1.  

It has some properties:  

It is always true that Γ𝑎≥𝑝≥𝑏{𝑛} ≥ 1.                  — (1.1) 

If no prime number in Γ𝑎≥𝑝˃𝑏{𝑛}, then Γ𝑎≥𝑝˃𝑏{𝑛} = 1, or vice versa, if Γ𝑎≥𝑝˃𝑏 {𝑛} = 1,  

then no prime number in Γ𝑎≥𝑝˃𝑏{𝑛} as in Γ12≥𝑝˃4{12} = 110·70· 50 = 1.              — (1.2) 

If there is at least one prime number in Γ𝑎≥𝑝˃𝑏{𝑛}, then Γ𝑎≥𝑝˃𝑏{𝑛} ˃ 1, or vice  

versa, if Γ𝑎≥𝑝˃𝑏{𝑛} ˃ 1, then there is at least one prime number in Γ𝑎≥𝑝˃𝑏{𝑛} as in  

Γ4≥𝑝˃2{12} = 3 ˃ 1.                 — (1.3) 

For every positive integer 𝑛, there exists at least a prime number 𝑝 such that  
2𝑛 < 𝑝 ≤ 3𝑛.                         — (1.4) 

From [5]: 
For every integer 𝑛 ˃ 1, there exists at least a prime number 𝑝 such that  
3𝑛 < 𝑝 ≤ 4𝑛.                      — (1.5)                                      

From [6 pp4-5]: 

For 𝑛 ≥ 2 and 𝜆 ≥ 3,  (𝜆𝑛
𝑛

) ˃ 
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
                   — (1.6) 

If 𝑝 divides (𝜆𝑛
𝑛

), then 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(𝜆𝑛), or 𝑝
𝑣𝑝((𝜆𝑛

𝑛 ))
 ≤ 𝑝𝑅(𝑝) ≤ 𝜆𝑛        — (1.7) 

If 𝜆𝑛 ≥ 𝑝 ˃ ⌊√𝜆𝑛⌋, then 0 ≤ 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1                 — (1.8) 
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For 𝑛 ≥ (𝜆 −2) ≥ 24, there exists at least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  
                     — (1.9) 

Let π(𝑛) be the number of distinct prime numbers less than or equal to 𝑛. For the first six 

sequential natural numbers, there are three prime numbers 2, 3, and 5. For counting any 
successive set of six sequential natural numbers, there are at most two prime numbers added, 
𝑝 ≡ 1 (MOD 6) and 𝑝 ≡ 5 (MOD 6).  

Thus, π(𝑛) ≤ ⌊
𝑛

3
⌋+2 ≤  

𝑛

3
 +2                 — (1.10) 

when 𝑛 ˃ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) = Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} 

when 𝑛 ≤ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} 

Thus, (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} ·Γ⌊√𝜆𝑛⌋≥𝑝{

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}       — (1.11) 

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} = Γ𝜆𝑛≥𝑝˃𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)!
}  since all prime numbers in 𝑛! do not appear in the 

range of 𝜆𝑛 ≥ 𝑝 ˃ 𝑛. 

Referring to (1.8), Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} < Π𝑛≥𝑝 𝑝. It has been proved [7] that for 𝑛 ≥ 3, 

Π𝑛≥𝑝 𝑝 ≤ 22𝑛−3. Thus, for 𝑛 ≥ 3 and 𝜆 ≥ 3,  Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
} < Π𝑛≥𝑝 𝑝 < 22𝑛−3. 

Referred to (1.7) and (1.10), Γ⌊√𝜆𝑛⌋≥𝑝{
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)!
}  ≤ (𝜆𝑛)

√𝜆𝑛

3
 +2   

Thus for 𝑛 ≥ 3 and 𝜆 ≥ 3,  (𝜆𝑛
𝑛

) < Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)!
} ·22𝑛−3·(𝜆𝑛)

√𝜆𝑛

3
 +2          — (1.12) 

Applying (1.6) to (1.12), when 𝑛 ≥ 3 and 𝜆 ≥ 3, we have 

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
 < (𝜆𝑛

𝑛
) < Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · 22𝑛−3 · (𝜆𝑛)

√𝜆𝑛

3
 +2

. 

Since 22𝑛−3 ˃ 0 and (𝜆𝑛)
√𝜆𝑛

3
 +2 ˃ 0, when 𝑛 ≥ 3, and 𝜆 ≥ 3,  

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

𝜆𝜆𝑛−𝜆+1

(𝜆𝑛)
√𝜆𝑛

3
 +2

· 22𝑛−3 · 𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1

 = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

      — (1.13) 

  

  

2. A Prime Number Between (𝝀-1)𝒏 and 𝝀𝒏 when 5 ≤ 𝝀 ≤ 7 and 𝒏 ≥ 𝝀-2 

 

Proposition 1: For 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, there exists at least a prime number 𝑝 such that  

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                    — (2.1) 
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Referring to (1.13), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, we have  

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

                    — (2.2) 

Let 𝑓1(𝑥) = 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑥−1)

(𝜆𝑥)
√𝜆𝑥

3
+3

 where 𝑥 is a real number, the variable, and 𝜆 is a constant at 

one of the 3 integers from 5 to 7. 

𝑓1
′(𝑥) = 𝑓1(𝑥) · (𝑙𝑛 (

𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
) = 𝑓1(𝑥) · 𝑓2(𝑥) where 

𝑓2(𝑥) = 𝑙𝑛 (
𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
   

𝑓2
′(𝑥) = √𝜆 𝑙𝑛(𝜆)

12𝑥√𝑥
+

√𝜆 𝑙𝑛(𝑥)

12𝑥√𝑥
+

3 

𝑥2 > 0 for 𝑥 > 0 and 𝜆 > 0. Thus, 𝑓2(𝑥) is a strictly increasing 

function. 

When 𝑥 = 36 and 𝜆 = 5,  𝑓2(𝑥) = 𝑙𝑛 (
5

4
) + 𝑙𝑛 (

5

5−1
)

5−1

−
√5 (𝑙𝑛(36)+𝑙𝑛(5)+2)

6√36
−

3 

36
 ≈ 0.5859 > 0. 

When 𝑥 = 36 and 𝜆 = 6,  𝑓2(𝑥) = 𝑙𝑛 (
6

4
) + 𝑙𝑛 (

6

6−1
)

6−1

−
√6 (𝑙𝑛(36)+𝑙𝑛(6)+2)

6√36
−

3 

36
 ≈ 0.7155 > 0. 

When 𝑥 = 36 and 𝜆 = 7,  𝑓2(𝑥) = 𝑙𝑛 (
7

4
) + 𝑙𝑛 (

7

7−1
)

7−1

−
√7 (𝑙𝑛(36)+𝑙𝑛(7)+2)

6√36
−

3 

36
 ≈ 08522 > 0. 

Since 𝑓2(𝑥) > 0 when 𝑥 = 36 and 5 ≤ 𝜆 ≤ 7, and since 𝑓2(𝑥) is a strictly increasing function, then 

when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7, we have 𝑓2 (𝑥) > 0.                  — (2.3) 

Since when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7, 𝑓1(𝑥) > 0 and 𝑓2(𝑥) > 0, then 𝑓1
′(𝑥) = 𝑓1(𝑥) · 𝑓2(𝑥) > 0.  Thus, 

when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7, 𝑓1(𝑥) is a strictly increasing function. 𝑓1(𝑥 + 1) > 𝑓1(𝑥).        — (2.4) 

When 𝜆 = 5 and 𝑥 = 36,  𝑓1(𝑥) = 
50 · ((

5

4
) · (

5

5−1
)

5−1
)

(36−1)

(180)
√180

3
+3

 = 
4.5522E+18

7.1073E+16
 > 1. 

When 𝜆 = 6 and 𝑥 = 36,  𝑓1(𝑥) = 
72 · ((

6

4
) · (

6

6−1
)

6−1
)

(36−1)

(216)
√216

3
+3

 = 
7.5378E+21

2.7530E+18
 > 1. 

When 𝜆 = 7 and 𝑥 = 36,  𝑓1(𝑥) = 
98 · ((

7

4
) · (

7

7−1
)

7−1
)

(36−1)

(252)
√252

3
+3

 = 
3.6007E+24

8.1511E+19
 > 1. 

Referring to (2.4), when 𝑥 ≥ 36 and 5 ≤ 𝜆 ≤ 7,  𝑓1(𝑥) > 1.     
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Let  𝑥 = 𝑛, then when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, 𝑓1(𝑛) = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 > 1. 

Thus, referring to (2.2), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1.             — (2.5) 

Since 𝑛 ˃ 𝜆 − 2, in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
},  𝑝 ≥ 𝑛 +1 = √𝑛2 + 2𝑛 + 1 ˃ √(𝑛 + 2)𝑛  ˃ ⌊√λ𝑛⌋. 

Referring to (1.8), we have 0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1. 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} = 

=  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1   

In ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1 , 𝑣𝑝=∑ (𝑖 − 𝑖)
𝜆−2

𝑖=1
 = 0 when any 𝑝 in Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} 

Thus, referring to (1.2),  ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1  = 1. 

Therefore, when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7,  

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1.     

                               — (2.6) 

From (1.1), Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ≥ 1 and ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1, and in (2.6) 

at last one of these two parts is greater than 1. 

When 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, if Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, then referring to (1.3), there exists at 

least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                 — (2.7) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  = 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (2.8) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then at least one factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. 

When the factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, let 𝑦𝑖+1= 

𝑛

𝑖+1
 , then 𝑦𝑖+1 ≥  

36

𝑖+1
 . We have 

Γ𝜆𝑦𝑖+1≥𝑝˃(𝜆−1)𝑦𝑖+1
{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, when 𝑦𝑖+1 ≥  

36

𝑖+1
 , there exists at least a prime number 𝑝 

such that (𝜆 − 1) · 𝑦𝑖+1 < 𝑝 ≤ 𝜆 · 𝑦𝑖+1  

Since 𝑛 ˃ 𝑦𝑖+1 ≥  
36

𝑖+1
 , there exists at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.  



Page 6 
 

Thus, If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (2.9) 

Referring to (2.8) and (2.9), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, if ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1,  

then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, referring to (1.3), there exists at least a prime number 𝑝 

such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                  — (2.10) 

In conclusion from (2.5), (2.7), (2.10), when 𝑛 ≥ 36 and 5 ≤ 𝜆 ≤ 7, then Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1. 

When Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, and there exists at least a prime 

number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛. Thus, Proposition 1 is proven. 

Proposition 2: For 35 ≥ 𝑛 ≥ 𝜆 −2 and 5 ≤ 𝜆 ≤ 7, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (2.11) 

We use tables to prove (2.11). Table 1, Table 2, and Table 3 show that when 𝜆 = 5, 6, and 7, 

Proposition 2 is correct. Thus, (2.11) is valid. 

 

Table 1. When 𝜆 = 5 and 3 ≤ 𝑛 ≤ 35, a prime number exists in the range of 4𝑛 < 𝑝 ≤ 5𝑛 

𝒏 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

𝒑 13 17 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 

 
𝒏 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

𝒑 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167  

 
Table 2. When 𝜆 = 6 and 4 ≤ 𝑛 ≤ 35, a prime number exists in the range of 5𝑛 < 𝑝 ≤ 6𝑛 

𝒏 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

𝒑 23 29 31 37 41 47 53 59 61 67 71 79 83 89 97 101 

 
𝒏 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

𝒑 103 107 113 127 131 137 139 149 151 157 163 167 173 179 181 191 

 

Table 3. When 𝜆 = 7 and 5 ≤ 𝑛 ≤ 35, a prime number exists in the range of 6𝑛 < 𝑝 ≤ 7𝑛 

𝒏 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝒑 31 37 43 53 59 61 67 73 79 89 97 101 103 109 127 131 

 
𝒏 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

𝒑 137 149 151 157 163 167 173 179 181 191 193 197 211 223 227  

 

Combining (2.1) and (2.11), we have proven that when 5 ≤ 𝜆 ≤ 7 and 𝑛 ≥ 𝜆 −2, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                — (2.12)

          



Page 7 
 

3. A Prime Number Between (𝝀-1)𝒏 and 𝝀𝒏 when 8 ≤ 𝝀 ≤ 25 and 𝒏 ≥ 𝝀-2 

 

Proposition 3: For 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                    — (3.1) 

Referring to (1.13), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, we have 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

                    — (3.2) 

Let 𝑓3(𝑥) = 

2𝜆2· ((
𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑥−1)

(𝜆𝑥)
√𝜆𝑥

3
+3

 where 𝑥 is a real number, the variable, and 𝜆 is a constant at 

one of the 18 integers from 8 to 25. 

𝑓3
′(𝑥) = 𝑓3(𝑥) · (𝑙𝑛 (

𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
) = 𝑓3(𝑥) · 𝑓4(𝑥) where 

𝑓4(𝑥) = 𝑙𝑛 (
𝜆

4
) + 𝑙𝑛 (

𝜆

𝜆−1
)

𝜆−1

−
√𝜆 (𝑙𝑛(𝑥)+𝑙𝑛(𝜆)+2)

6√𝑥
−

3 

𝑥
   

𝑓4
′(𝑥) = √𝜆 𝑙𝑛(𝜆)

12𝑥√𝑥
+

√𝜆 

12𝑥√𝑥
+

3 

𝑥2 > 0 for 𝑥 > 0 and 𝜆 > 0. Thus, 𝑓4(𝑥) is a strictly increasing function. 

We now calculate the 𝑓4(𝑥) values and list them in Table 4 for 𝑥 = 24 and 𝜆 = 8, 9, 10, … 25.  

Table 4. When 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓4(𝑥) > 0  

𝜆 8 9 10 11 12 13 14 15 16 

𝑓4(𝑥) 0.805 0.876 0.935 0.985 1.028 1.064 1.096 1.124 1.148 

 
𝜆 17 18 19 20 21 22 23 24 25 

𝑓4(𝑥) 1.168 1.186 1.202 1.215 1.227 1.237 1.246 1.253 1.259 

 
Table 4 shows that when 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓4(𝑥) > 0. Since 𝑓3(𝑥) > 0 and 𝑓4(𝑥) > 0, 

thus when 𝑥 ≥ 24 and 8 ≤ 𝜆 ≤ 25, 𝑓3
′(𝑥) = 𝑓3(𝑥) · 𝑓4(𝑥) > 0.  Thus, under these conditions, 

𝑓3(𝑥) is a strictly increasing function, and 𝑓3(𝑥 + 1) > 𝑓3(𝑥).                — (3.3)  

We now calculate the 𝑓3(𝑥) values and list them in Table 5 for 𝑥 = 24 and 𝜆 = 8, 9, 10, … 25.  

Table 5. When 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓5(𝑥) > 1  

𝜆 8 9 10 11 12 13 14 15 16 

𝑓5(𝑥) 9.366 19.132 31.150  42.517  50.475  53.571  51.866  46.527  39.386  

 
𝜆 17 18 19 20 21 22 23 24 25 

𝑓5(𝑥) 31.212  23.760  17.383   12.287  8.421 5.633   3.679  2.536 1.481  

 
Table 5 shows when 𝑥 = 24 and 𝜆 from 8 to 25, 𝑓5(𝑥) > 1. Since 𝑓3(𝑥 + 1) > 𝑓3(𝑥), when  

𝑥 ≥ 24 and 8 ≤ 𝜆 ≤ 25, 𝑓5(𝑥) > 1.                    — (3.4)  



Page 8 
 

Let  𝑥 = 𝑛, then when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25,  𝑓3(𝑛) = 
2𝜆2· ((

𝜆

4
) · (

𝜆

𝜆−1
)

𝜆−1
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 > 1. 

Thus, referring to (3.2), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25,  Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1.              — (3.5) 

Thus, referring to (1.3), there exists at least a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 𝜆𝑛. 

Since 𝑛 ˃ 𝜆 − 2, in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
},  𝑝 ≥ 𝑛 +1 = √𝑛2 + 2𝑛 + 1 ˃ √(𝑛 + 2)𝑛  ˃ ⌊√λ𝑛⌋. 

Referring to (1.8), we have 0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1. 

Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} = 

=  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1   

In ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1 , 𝑣𝑝=∑ (𝑖 − 𝑖)
𝜆−2

𝑖=1
 = 0 when any 𝑝 in Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
}. 

Thus, referring to (1.2),  ∏ (Γ(𝜆−1)𝑛

𝑖
≥𝑝˃

𝜆𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝜆−2

𝑖=1  = 1. 

Therefore, when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25,  

Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1.     

                               — (3.6) 

From (1.1), Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ≥ 1 and ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1, and in (3.6) 

at last one of these two parts is greater than 1. 

When 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, if Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, then referring to (1.3), there exists 

at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                — (3.7) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  = 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (3.8) 

If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then at least one factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. 

When the factor Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, let 𝑦𝑖+1= 

𝑛

𝑖+1
 , then 𝑦𝑖+1 ≥  

24

𝑖+1
 . We have 

Γ𝜆𝑦𝑖+1≥𝑝˃(𝜆−1)𝑦𝑖+1
{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, when 𝑦𝑖+1 ≥  

24

𝑖+1
 , there exists at least a prime number 𝑝 

such that (𝜆 − 1) · 𝑦𝑖+1 < 𝑝 ≤ 𝜆 · 𝑦𝑖+1  

Since 𝑛 ˃ 𝑦𝑖+1 ≥  
24

𝑖+1
 , there exists at least a prime number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.  
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Thus, If ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ˃ 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1.             — (3.9) 

Referring to (3.8) and (3.9), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, if ∏ (Γ𝜆𝑛

𝑖+1
≥𝑝˃

(𝜆−1)𝑛

𝑖+1

{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
})𝑖=𝜆−2

𝑖=1  ≥ 1,  

then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Thus, referring to (1.3), there exists at least a prime number 𝑝 

such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                  — (3.10) 

In conclusion from (3.5), (3.7), (3.10), when 𝑛 ≥ 24 and 8 ≤ 𝜆 ≤ 25, then Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1. 

When Γ𝜆𝑛≥𝑝˃𝑛{ (𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1, then Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛{

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1, and there exists at least a prime 

number 𝑝 such that (𝜆 − 1)𝑛 < 𝑝 ≤ 𝜆𝑛. Thus, Proposition 3 is proven. 

Proposition 4: For 23 ≥ 𝑛 ≥ 𝜆 −2 and 8 ≤ 𝜆 ≤ 25, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (3.11) 

We use tables to prove (3.11). Table 6, Table 7, and Table 8 show that when 8 ≤ 𝜆 ≤ 25, 

Proposition 4 is correct. Thus, (3.11) is valid. 

Table 6. When 8 ≤ 𝜆 ≤ 11 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 6 7 8 9 10 11 12 13 14  

𝟕𝒏 42 49 56 63 70 77 84 91 98  

𝝀 = 8 𝒑 47 53 59 67 73 83 89 97 101 

 

𝝀 = 9 

𝟖𝒏 48 56 64 72 80 88 96 104 112 

𝒑  61 71 79 83 97 101 107 113  

𝟗𝒏  63 72 81 90 99 108 117 126  

𝝀 = 10  𝒑   73 83 97 101 109 127 131 

 

𝝀 = 11 

𝟏𝟎𝒏   80 90 100 110 120 130 140 

𝒑    97 103 113 127 139 151  

𝟏𝟏𝒏    99 110 121 132 143 154 

 
 𝒏 15 16 17 18 19 20 21 22 23  

𝟕𝒏 105 112 119 126 133 140 147 154 161  

𝝀 = 8 𝒑 107 113 127 131 137 149 151 157 163 

 

𝝀 = 9 

𝟖𝒏 120 128 136 144 152 160 168 176 184 

𝒑 127 131 139 149 157 167 173 179 191  

𝟗𝒏 135 144 153 162 171 180 189 198 207  

𝝀 = 10  𝒑 137 151 163 167 181 191 193 199 211 

 

𝝀 = 11 

𝟏𝟎𝒏 150 160 170 180 190 200 210 220 230 

𝒑 157 167 179 191 197 211 223 227 233  

𝟏𝟏𝒏 165 176 187 198 209 220 231 242 253 
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Table 7. When 12 ≤ 𝜆 ≤ 15 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

 

𝝀 = 12 

𝟏𝟏𝒏 110 121 132 143 154 165 176 187 198 209 220 231 242 253 

𝒑 113 127 137 149 157 167 181 193 199 223 229 239 257 269 

 

𝝀 = 13 

𝟏𝟐𝒏 120 132 144 156 168 180 192 204 216 228 240 252 264 276 

𝒑  139 151 163 173 183 197 211 227 233 241 263 271 281 

 

𝝀 = 14 

𝟏𝟑𝒏    143 156 169 182 195 208 221 234 247 260 273 286 299 

𝒑   167 179 191 199 223 223 239 257 269 277 293 307 

 

𝝀 = 15 

𝟏𝟒𝒏   168 182 196 210 224 238 252 266 280 294 308 322 

𝒑    191 199 211 229 239 263 271 283 307 311 331 

𝟏𝟓𝒏    195 210 225 240 255 270 285 300 315 330 345 

 

 

Table 8. When 16 ≤ 𝜆 ≤ 25 and 𝜆 −2 ≤ 𝑛 ≤ 23, a prime number between (𝜆 −1)𝑛 and 𝜆𝑛 

 𝒏 14 15 16 17 18 19 20 21 22 23  

 

𝝀 = 16 

𝟏𝟓𝒏 210 225 240 255 270 285 300 315 330 345 

𝒑 223 227 241 257 277 293 313 317 331 347 

𝟏𝟔𝒏 224 240 256 272 288 304 320 336 352 368  

𝝀 = 17  𝒑  251 263 281 293 307 337 349 353 373 

 

𝝀 = 18 

𝟏𝟕𝒏  255 272 289 306 323 340 357 374 391 

𝒑   277 293 311 331 347 359 379 397  

𝟏𝟖𝒏   288 306 324 342 360 378 396 414  

𝝀 = 19  𝒑    307 337 349 373 383 397 419 

 

𝝀 = 20 

𝟏𝟗𝒏    323 342 361 380 399 418 437 

𝒑     347 367 389 401 421 439  

𝟐𝟎𝒏     360 380 400 420 440 460  

𝝀 = 21  𝒑      283 409 431 443 461 

 

𝝀 = 22 

𝟐𝟏𝒏      399 420 441 462 483 

𝒑       433 449 463 487  

𝟐𝟐𝒏       440 462 484 506  

𝝀 = 23  𝒑        467 491 509 

 

𝝀 = 24 

𝟐𝟑𝒏        483 506 529 

𝒑         521 541  

𝟐𝟒𝒏         528 552  

𝝀 = 25  𝒑          563 

𝟐𝟓𝒏          575 

 

Combining (3.1) and (3.11), we have proven that when 8 ≤ 𝜆 ≤ 25 and 𝑛 ≥ 𝜆 −2, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.               — (3.12)  
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4. A Prime Number Between 𝒌𝒏 and (𝒌+1)𝒏 

 

From (1.4), for every positive integer 𝑛, there exists at least a prime number 𝑝 such that  
2𝑛 < 𝑝 ≤ 3𝑛. 

From (1.5), for every integer 𝑛 ˃ 1, there exists at least a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛. 
 
From (2.12), when 5 ≤ 𝜆 ≤ 7 and 𝑛 ≥ 𝜆 −2, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  

From (3.12), when 8 ≤ 𝜆 ≤ 25 and 𝑛 ≥ 𝜆 −2, there exists at least a prime number 𝑝 such that 

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.  

From (1.9), for 𝑛 ≥ (𝜆 −2) ≥ 24, there exists at least a prime number 𝑝 such that  

(𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛. 

Combining (1.4), (1.5), (2.12), (3.12), and (1.9), we have that for 𝑛 ≥ 𝜆 −2 ≥ 1, there exists at 

least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.                   — (4.1) 

Let 𝑘 = 𝜆 −1, (4.1) becomes that for 𝑛 ≥ 𝑘 −1 ≥ 1, there exists at least a prime number 𝑝 such 

that 𝑘𝑛 < 𝑝 ≤ (𝑘 + 1)𝑛.                      — (4.2) 

Since the Bertrand-Chebyshev’s theorem states that for any positive integer 𝑛, there is always a 
prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛, we can state that for two positive integers 𝑛 ≥ 1 and 𝑘 ≥ 1, 
if 𝑛 ≥ 𝑘 −1, then there always exists at least a prime number 𝑝 such that 𝑘𝑛 < 𝑝 ≤ (𝑘 + 1)𝑛. The 
Bertrand’s postulate / Chebyshev’s theorem is a special case when 𝑘 = 1. 
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