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1 Introduction

The divergence of the harmonic series was first proven in the 14th century
by Nicole[2]. Then people started to think about what would happen if
we replaced the natural numbers with primes. Intuitively, the set of prime
numbers is a subset of natural numbers. Will the series converge in that
case? The answer is that the series of the reciprocals of the primes diverges.
This was first proved by Leonhard Euler in 1737[1], so the theorem is also
called Euler’s Theorem. The proof that I’m referring to is provided by Prof.
Ruben and Peter[3]. They proved it by contradiction, and the key idea of
their proof is to use the Fundamental Theorem of Arithmetic1.

Fundamental Theorem of Arithmetic:

Every positive integer (except the number 1) can be repre-
sented in exactly one way apart from rearrangement as a
product of one or more primes [5]

In this paper, I will provide more details of their proofs and some basic
definitions of series.

1The proof actually does not require uniqueness of FTA. It only requires that every
integer greater than 1 is either prime or a product of primes[3].
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2 Definitions

Definition 2.1. A series is an operation of adding ai one after another.
Usually, it writes as

a1 + a2 + · · ·+ an =

n∑
i=1

ai

We call it the nth partial sum of the series.
If we take the limit of the sum as n goes to infinity, then it becomes an

infinity series.

lim
n→∞

n∑
i=1

ai =

∞∑
i=1

ai

We have seen a lot of examples of infinity series, such as geometric series,
harmonic series, and the series of reciprocals of the primes2.

Definition 2.2. A series converges to a real number L, if the sequence of
its partial sums converges to L3. Usually writes:

lim
n→∞

n∑
i=1

ai = L

If the series does not converge, we say it diverges to ±∞.

lim
n→∞

n∑
i=1

ai = ±∞

3 Theorems and Proofs

Theorem 3.1. If pj denotes the jth prime number, then the series
∑∞

j=1
1
pj

diverges.

Proof. Suppose the series converges. There would exist an M such that

∞∑
j=M

1

pj
<

1

2

2According to Euclid’s theorem, there are infinitely many prime numbers
3A sequence (an) of real numbers is said to converge to the real number L provided

that for each ε > 0, there exists a number N such that n > N implies |an − L| < ε [4]
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This is because a series converges if and only if it satisfies the Cauchy cri-
terion4. Cauchy criterion implies the tails of that series also converges. So
we know there must exist a such M .

Now we consider the following series.

∞∑
k=0

( ∞∑
j=M

1

pj

)k
(1)

Since
∑∞

j=M
1
pj

converges and it’s less than a half, then series (1) will be a

convergent geometric series5.
Fix the j, then for each j < M , the series

∞∑
k=0

( 1

pj

)k
(2)

is also a convergent geometric series because 1
pj
≤ 1

2 for all j6.

For each j < M , let’s multiply the series (2) together with the series (1).
Then we have the following expression.( ∞∑

k=0

1

2k

)( ∞∑
k=0

1

3k

)
· · ·
( ∞∑
k=0

1

pkM−1

)( ∞∑
k=0

( ∞∑
j=M

1

pj

)k)
(3)

For now, the only thing we know about the expression (3) is that each term
is a convergent geometric series. Hence, after expanding the whole expres-
sion, it equals a real number.

Now suppose the set {pn1 , pn2 , . . . , pns} is a collection of primes with
pni ≥ pM for all i. Let the set {α1, α2, . . . , αs} be a subset of N. Then I
claim that

1

pα1
n1 · pα2

n2 · · · pαs
ns

(4)

is a term that occurs in the expansion of( ∞∑
j=M

1

pj

)α1+α2+···+αs

(5)

4The Cauchy criterion is satisfied when, for all ε > 0, there is a fixed number N such
that |aj − ai| < ε for all i, j > N [4]

5For |r| < 1, the geometric series converges to
∑∞

n=0 ar
n = a

1−r
[4]

62 is the smallest prime number
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To see this, we can expand the expression (5).( ∞∑
j=M

1

pj

)α1+α2+···+αs

=

(
1

pM
+

1

pM+1
+ · · ·

)α1

·
(

1

pM
+

1

pM+1
+ · · ·

)α2

· · ·

=

(
1

pα1
M

+
1

pα1
M+1

+ · · ·
)
·
(

1

pα2
M

+
1

pα2
M+1

+ · · ·
)
· · ·

=
1

pα1
n1 · pα2

n2 · · · pαs
ns

+ · · ·

The last equality holds because we have pni ≥ pM for all i and for each
1/pni , it will multiply itself αi times. Hence, after expanding the bracket,
one of the term will be the expression (4)

Let M be our cutting line that separates the prime numbers into two
parts: pmi < pM , and pni ≥ pM . Let any n be a natural number that is
greater than 1 and the set {β1, β2, . . . , βt} be another subset of N. By the
Fundamental Theorem of Arithmetic, we can write n as

n = pβ1m1
· pβ2m2

· · · pβtmt
· pα1
n1
· pα2
n2
· · · pαs

ns

Note that there is nothing special about pmi and pni . They are all prime
factors of n. The whole expression is just saying n has a prime factorization.

Then we can write 1/n as the following expression.

1

n
=

1

pβ1m1 · p
β2
m2 · · · p

βt
mt

·
(

1

pα1
n1 · pα2

n2 · · · pαs
ns

)
We just showed that the part in the bracket occurs in the expansion of
equation (5). So, we can say 1/n occurs as a term in the product of

1

pβ1m1 · p
β2
m2 · · · p

βt
mt

·
( ∞∑
j=M

1

pj

)α1+α2+···+αs

(6)

Now I claim that the equation (6) is in the expansion of equation (3)
which is the product of geometric series.( ∞∑

k=0

1

2k

)( ∞∑
k=0

1

3k

)
· · ·
( ∞∑
k=0

1

pkM−1

)( ∞∑
k=0

( ∞∑
j=M

1

pj

)k)
(3)

This is because pmi < pM and we have all the pmi in (3). For each pmi ,

4



it multiplies itself k times and since k ∈ [0,∞), we must have the term,

1/(pβ1m1 · p
β2
m2 · · · p

βt
mt) in the expansion of the product of the first pM−1 ge-

ometric series. Similarly, for the double sum part, since we the power k is
from 0 to∞, there must exist a number where k = α1+α2+ · · ·+αs. Hence,
if we expand the products (3), we will see the expression (6). Moreover, we
can conclude that the product (3) contains 1/n for every natural number7.

However, as we showed before, expression (3) is the product of a bunch
of convergent geometric series and that means 1+ 1

2 + 1
3 +· · · should converge

to real number which contradicts the fact that the harmonic series diverges8.

4 Conclusion

Looking back at the proof, we start by constructing a product of convergent
geometric series. Then by the fundamental theorem of arithmetic, we express
n in terms of the product of pj . And we found that every term of the
harmonic series (1/n) for all n ≥ 1 occurs in the expansion of that product
of convergent geometric series. Then we reach the contradiction. Since each
geometric series converges to a real number, the product of them is equal to
a real number as well.

We see that prime factorization plays an important role in the proof. It
builds a bridge between the primes and the natural numbers, and because
we know the harmonic series diverges, it allows us to obtain a contradiction.

7Note that we initially assume our n is any natural number that is greater than 1, but
it is not hard to see when k = 0, the expression (3) is equal to 1.

8See the appendix for the proof
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5 Appendix

Theorem 5.1. Harmonic series diverges.

Proof. First, we write down the expression of harmonic series.

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

We replace the denominator with the next-largest power of 2 and get the
following expression.

1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · ·

Since we replaced the denominator by a larger number, the equality will
become inequality. Then we have

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+
(1

4
+

1

4

)
+
(1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · ·

=

∞∑
n=1

1

=∞
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