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Abstract. The starting point of our paper is Kashihara’s open problem #30, concerning the sequence 
A001292 of the OEIS, asking how many terms are perfect squares. We confirm his last conjecture up 
to the 100128-th term and provide a general theorem which rules out 4/9 of the candidates. Moreover, 
we formulate a new, provocative, conjecture involving the OEIS sequence A352991 (which includes 
all the terms of A001292, except the first one). Our risky conjecture states that all the perfect powers 
belonging to the sequence A352991 are perfect squares and they cannot be written as higher order 
perfect powers. This challenging conjecture has been checked for any integer smaller than 
10111121314151617181920212223456789 and no counterexample has been found so far. 
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1 Introduction 
 
In late 2010, the author of this paper found a recreative open problem by Kenichiro Kashihara (see 
[1], open problem #30, p. 25) concerning the sequence A001292 of the On-Line Encyclopedia of 
Integer Sequences (OEIS) [2]. Kashihara’s problem #30 consists of two independent parts and the 
author solved the first one quite easily at the time (the complete solution can be found in [6], Section 
3.3, pp. 12–15), since it asks to find the probability 0 < p(𝑐) < 1 that the trailing digit of the generic 
term of the sequence A001292 is 𝑐 ∈ {0, 1, 2, . . . ,9} and the formula provided in [6] shows that p(𝑐) =
!!"#
$$

 for any 𝑐 ≠ 0, whereas p(0) = 0.0182222 (e.g., if 𝑐 = 7, then p(7) = %
$$

 = 0.0722222). 
In the present paper, we will focus ourselves on the second part of the above mentioned 

Kashihara’s problem #30, asking how many elements of the sequence A001292 are perfect powers, 
since Kashihara conjectured that there are none. 

Now, bearing in mind that a perfect power of an integer 𝑑 > 0 is a natural number 𝑘 ≥ 2 such that 
𝑎& = 𝑑, where also 𝑎 is a positive integer, we could point out that A001292 (1)	= 1 can be considered 
as a solution and argue how this disproves the conjecture, but (from here on) we will disregard this 
special case and assume that we are looking for a nontrivial counterexample to Kashihara’s 
conjecture. 

Lastly, Section 3 is devoted to introduce a (quite improbable) conjecture concerning perfect 
powers belonging to the OEIS sequence A352991 [4, 5]. 

 



2 The {𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖}(𝐦𝐨𝐝	𝟗) exclusion criterion 
 

In order to be clear on the invoked OEIS sequences, let us introduce a few useful definitions. 
 

Definition 1. We define the 𝑚-th term of the sequence A007908 as A007908(𝑚)	∶=
123_. . . _(𝑚 − 1)_𝑚, where 𝑚 ∈ ℤ'. 

 
Definition 2. We define the sequence A001292 of the OEIS as the concatenations (sorted in 
ascending order) of every cyclic permutation of the elements of the sequence A007908 (e.g., given 
𝑚 = 3, A001292(A007908(3))	= 123, 231, 312). 
 
Definition 3. We define the sequence A352991 of the OEIS as the concatenation of all the distinct 
permutations of the first strictly positive	𝑚	integers, sorted into ascending order (e.g., 12345671089 
is a term of the sequence, while 12345670189 does not belong to A352991, even if all the digits of 
the string 123. . .910 appear once and only once, since “10” is missed). 
 

After having checked the first 100128 terms of the sequence A001292 (see Appendix), exploring 
any exponent at or above 2, we have not found any perfect power, so that Kashihara’s conjecture has 
been verified up to 10!()$ (i.e., the 100129-th term of A001292 is the smallest cyclic permutation 
of A007908(448) and is greater than 10!()$ by construction). 

Moreover, we can prove the following Theorem 1, concerning the sequence A352991 which 
includes every term of A001292. 

 
Theorem 1. For any 𝑚 > 1, A352991(𝑛) cannot be a perfect power of an integer if A352991(𝑛) is a 
permutation of A007908(𝑚) and 𝑚 ∶ 𝑚 ≡ {2, 3, 5, 6}(mod	9). 
Proof. By definition, A007908(𝑚) [3] cannot be a perfect power if 123_. . . _(𝑚 − 1)_𝑚 is divisible 
by 3 and it is not divisible by 3(. Thus, from the well-known divisibility by 3 and 9 criteria, 𝑚 ∶
H3	| ∑ 𝑗*

+,! L ∧ H3( ∤ ∑ 𝑗*
+,! L is a sufficient, but not necessary, condition for letting us disregard any 

permutation of 123_. . . _(𝑚 − 1)_𝑚 (i.e., given 𝑚, if a generic permutation of A007908(𝑚) is 
divisible by 3 and is not congruent to 0(mod	9), then all the permutations of A007908(𝑚) are 
divisible by 3 once and only once, since the commutativity property holds for addition). 

It follows that, for any 𝑛 ∈ ℤ', A352991(𝑛) cannot be a perfect power if it is a permutation of the 
string 123_. . . _(𝑚 − 1)_𝑚, where 𝑚 is such that A134804(𝑚) is divisible by 3. Therefore, the residue 
modulo 9 of every perfect power belonging to A352991 cannot be 2 or 3 or 5 or 6, and this concludes 
the proof of Theorem 1.             £ 

 
Corollary 1. Kashihara’s conjecture is true for the concatenation of any cyclic permutation of 
A007908(𝑚), where 𝑚 ∶ (𝑚 ≡ {2, 3, 5, 6}(mod	9) 	∨ 	𝑚 < 448). 
Proof. We observe that A001292 is a subsequence of A352991 [2, 4]. By invoking Theorem 1, we 
can state that every perfect power candidate has to be the concatenation of a (cyclic) permutation of 
A007908(𝑚), where 𝑚 is such that 𝑚 ≡ {0, 1, 4, 7, 8}(mod	9). On the other hand, all the remaining 
terms up to 99_100_101_. . . _445_446_447_1_2_3_. . . _96_97_98 have been directly checked (see 
Appendix for details) and no perfect power has been found. 

Therefore, Corollary 1 confirms Kashihara’s conjecture for any term of A001292 such that 𝑚 is 
congruent to {2, 3, 5, 6}(mod	9) or 𝑚 ≤ 447.            £ 

 
Corollary 2. ∄𝑛 ∶	A353025(𝑛)	≡ {2, 3, 4, 5, 6, 7, 8}(mod	9), and any term of A001292 cannot be a 
perfect power if its digital root is not equal to 0 or 1.	



Proof. Trivially, 10 ≡ 1(mod	9) and also (1 + 0) ≡ 1(mod	9), so that any positive integer is 
congruent modulo 9 to its digital root. 

Now, we observe that any terms of A001292 belongs to A353025. 
Since from Theorem 1 it follows that every term of the sequence A353025 [5] is a special 

permutation of A007908(𝑚) which is characterized by 𝑚 ≡ {0, 1, 4, 7, 8}(mod	9), in order to prove 
Corollary 2, it is sufficient to note that 

   ∑ 𝑗*
+,! ≡

⎩
⎪
⎨

⎪
⎧
	0(mod	9)			if		𝑚 ∶ 𝑚 ≡ 0(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 1(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 4(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 7(mod	9)
	0(mod	9)			if		𝑚 ∶ 𝑚 ≡ 8(mod	9)

	.       (1)   

                £ 
Remark 1. A well-known property of integers is that every perfect power which is congruent modulo 
5 to 0 is also necessarily congruent to {0, 25, 75}(mod	100), while if a perfect power is congruent 
modulo 10 to 6, then its second last digit is odd. 

Thus, we are free to combine these additional constraints with Corollary 2 in order to reduce the 
number of perfect power candidates among the terms of A352991. 

 
 

3 Perfect cubes in A353025 
 

In the first half of April 2022, playing with Kashihara’s conjecture, a more risky (very likely false but 
really hard to disprove by brute force) conjecture arose, it is as follows. 
 
Conjecture 1. Let 𝑛 ∈ ℕ − {0, 1} be given. We (provocatively) conjecture that if 𝑛 is such that 
A352991(𝑛) is a perfect power of an integer, then ∄𝑘 ∈ ℕ − {0, 1, 2} ∶ A352991(𝑛) = 𝑐&, 𝑐 ∈ ℕ. 
 

On April 16 2022, a direct search was performed by the author on the first 10- terms of the 
sequence and no counterexample has been found (42 perfect squares only). 

A few days later, Aldo Roberto Pessolano, performed a deeper search running the Mathematica 
codes published in Appendix, without finding any counterexample and thus confirming Conjecture 1 
(at least) up to the smallest permutation of A007908(22)	(i.e., for any term of A352991 which is 
greater than 1 and smaller than 10111121314151617181920212223456789). 

 
Remark 2. If confirmed, Conjecture 1 would imply that all the perfect powers (greater than 1) in 
A352991 are perfect squares and nothing more (no cube, no square of square, and so forth). 
Nevertheless, under the (arbitrary, but perfectly reasonable) assumption of a standard probability 
distribution of the cubes in A352991 (i.e., we are assuming that 
./0∈ℕ	∶	5)$(66!(0)	9	*		∧		;5)$(66!(0)<

!
"∈ℕ=.

|{0∈ℕ	∶	5)$(66!(0)	9	*}|
≅ |{0∈ℕ	∶	5AAA$-B(0)	9	*}|

*
 holds for any sufficiently large 𝑚 ∈

ℕ), we would guess the existence of infinitely many counterexamples to Conjecture 1, even if the 
smallest one is expected to occur in the interval [10$B, 10C$]. On the other hand, the same argument 
would corroborate Kashihara’s conjecture, since the number of perfect powers belonging to A001292 



cannot probabilistically exceed 2 ∙ ∑ ^∑ ^
(%∙+'))∙E!A

#$∙&'"( )
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Additional open problems. Does the sequence A353025 have infinitely many perfect squares, 
infinitely many perfect cubes, infinitely many perfect squares of squares, and so forth? Which is the 
smallest nontrivial perfect cube (if any) belonging to A353025 (we point out that all the terms greater 
than one and below 1.01 ∙ 10%A have been checked without finding any cube)? 

 
 

4 Conclusion 
 

Kashihara’s open problem #30 has not been completely solved yet. Even if the first part, concerning 
the probability that the trailing digit of A001292(𝑛) is 𝑐 = 1, 2, . . . , 9, was solved by the author a 
dozen of years ago [6], the second part and the related conjecture still needs a proof or a nontrivial 
counterexample (the smallest candidate has 1236 digits). 

Moreover, in the present paper, we have introduced a wider speculation that allow us to ask to 
ourselves how to find a term of the OEIS sequence A353025 (disregarding A353025(1)) which is not 
a perfect square; a challenging open problem, considering that there is not any perfect cube among 
the terms of A352991 in the interval (1, 10%A]. 

 
 

5 Appendix 
 

Aldo Roberto Pessolano helped the author of the present paper by verifying Kashihara’s conjecture 
and Conjecture 1 for a very large number of terms. All the provided Mathematica codes run on the 
M1 processor of his Apple MacBook Air (2020). 

Kashihara’s conjecture has been currently tested up to the 100128-th term of A001292 and we 
confirm that it holds for every element of the set 
{A001292(2), A001292(3), . . ., A001292(100128)}. The search reached the term 
99_100_. . . _446_447_1_2_. . . _97_98 ≈ 9.91 ∙ 10!()( in 28823 seconds (about 8 hours of 
calculations) and the code is as follows: 
 
c = True; 
p = Table[Prime[q], {q, 1, 565}]; 
Do[rn = Range[k]; 

n = ToExpression[StringJoin[ToString[#]&/@rn]]; 
If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], 

Do[r = RotateLeft[rn, i - 1]; 
nk = ToExpression[StringJoin[ToString[#]&/@r]]; 
If[IntegerQ[nk^(1/#)], 

Print[nk, " = ", nk^(1/#), "^", #]; c = False; Break[] 
]&/@p, 

{i, 1, k}] 
]; 
If[c, Print["1..", k, " checked."], Break[]], 



{k, 2, 447}] 
 

About our investigation on the perfect powers in A352991, Pessolano has recently completed 
the direct check of every term of A352991 which falls in the interval 
(1, 987654322120191817161514131211110] (see the code below). As expected, the test has not 
returned any perfect power above two.  

 
z = False; 
h = 3; 
p = Table[Prime[q], {q, 2, 10}]; 
q[x_, k_, d_, m_] :=(y = x^k; 
 If[DigitCount[y] == d,c = True; 
  Do[If[Not[StringContainsQ[ToString[x], ToString[i]]],c = False; 
   Break[],c = True],{i, 10, m}],c = False]; 
  Return[c]) 
 Do[r = Range[k]; 
  n = ToExpression[StringJoin[ToString[#]&/@r]]; 
  If[And[Mod[n, 9] != 3, Mod[n, 9] != 6],d = DigitCount[n]; 
   (s = IntegerPart[(10^(IntegerLength[n] - 1))^(1/#)]; 
    f = IntegerPart[(10^(IntegerLength[n]))^(1/#)]; 
    Do[If[q[x, #, d, k], Print[x, "^", #, " = ", y]; 
     z = True; Break[]],{x, s, f}])&/@p;g = 2^h; 
 While[g < n,If[q[#, h, d, k],  
  Print[x, "^", h, " = ", y];  
  z = True;  
  Break[]]&/@{2, 3, 5, 6, 7}; 
 h++;g = 2^h]]; 
If[z, Break[],  
 Print["1..", k, " checked."]], 
{k, 2, 21}] 

 
On the other hand, the following code returns the complete list of the smallest 42 perfect squares 

belonging to A352991. 
 

z = 1; 
Do[r = Range[k]; 

n = ToExpression[StringJoin[ToString[#]&/@r]]; 
If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], 

d = DigitCount[n]; 
s = IntegerPart[Sqrt[10^(IntegerLength[n] - 1)]]; 
f = IntegerPart[Sqrt[10^(IntegerLength[n])]]; 
Do[y = x^2; 

If[DigitCount[y] == d, 
c = True; 
Do[ 

If[Not[StringContainsQ[ToString[y], ToString[i]]], 
c = False 

], 
{i, 10, k}]; 
If[c, Print[z, " ", y]; z++] 

], 



{x, s, f}] 
], 

{k, 2, 10}] 
 
These 42 perfect squares correspond to all the perfect powers in 

(1, 10!C] belonging to A352991, while the next perfect square is 10135681742311129 (we 
observe that 100676123( is a permutation of 123_. . . _16, as suggested by the statement of Theorem 
1). 
 
1  13527684 
2 34857216 
3  65318724 
4  73256481 
5  81432576 
6  139854276 
7  152843769 
8  157326849 
9  215384976 
10  245893761 
11  254817369 
12  326597184 
13  361874529 
14  375468129 
15  382945761 
16  385297641 
17  412739856 
18 523814769 
19  529874361 
20  537219684 
21  549386721 
22  587432169 
23  589324176 
24  597362481 
25  615387249 
26  627953481 
27  653927184 
28  672935481 
29  697435281 
30  714653289 
31  735982641 
32  743816529 
33  842973156 
34  847159236 
35  923187456 
36  14102987536 
37  24891057361 
38  27911048356 
39  28710591364 
40  57926381041 
41  59710832164 
42  75910168324 



 
In the end, our tests have finally confirmed that all the perfect powers which are smaller than 10)% 

and that belong to the OEIS sequence A352991 are perfect squares (only). 
At the present time, Conjecture 1 has been tested for every integer smaller than 

10111121314151617181920212223456789, and no counterexample has been found yet. 
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