On some conjectures concerning perfect powers
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Abstract. The starting point of our paper is Kashihara’s open problem #30, concerning the sequence
A001292 of the OEIS, asking how many terms are perfect squares. We confirm his last conjecture up
to the 100128-th term and provide a general theorem which rules out 4/9 of the candidates. Moreover,
we formulate a new, provocative, conjecture involving the OEIS sequence A352991 (which includes
all the terms of A001292, except the first one). Our risky conjecture states that all the perfect powers
belonging to the sequence A352991 are perfect squares and they cannot be written as higher order
perfect powers. This challenging conjecture has been checked for any integer smaller than
10111121314151617181920212223456789 and no counterexample has been found so far.
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1 Introduction

In late 2010, the author of this paper found a recreative open problem by Kenichiro Kashihara (see
[1], open problem #30, p. 25) concerning the sequence A001292 of the On-Line Encyclopedia of
Integer Sequences (OEIS) [2]. Kashihara’s problem #30 consists of two independent parts and the
author solved the first one quite easily at the time (the complete solution can be found in [6], Section
3.3, pp. 12-15), since it asks to find the probability 0 < p(c) < 1 that the trailing digit of the generic

term of the sequence A001292 is ¢ € {0, 1, 2,...,9} and the formula provided in [6] shows that p(c) =

% for any ¢ # 0, whereas p(0) = 0.018 (e.g.,ifc = 7, then p(7) = % = 0.072).

In the present paper, we will focus ourselves on the second part of the above mentioned
Kashihara’s problem #30, asking how many elements of the sequence A001292 are perfect powers,
since Kashihara conjectured that there are none.

Now, bearing in mind that a perfect power of an integer d > 0 is a natural number k > 2 such that
a® = d, where also a is a positive integer, we could point out that A001292 (1) = 1 can be considered
as a solution and argue how this disproves the conjecture, but (from here on) we will disregard this
special case and assume that we are looking for a nontrivial counterexample to Kashihara’s
conjecture.

Lastly, Section 3 is devoted to introduce a (quite improbable) conjecture concerning perfect
powers belonging to the OEIS sequence A352991 [4, 5].



2 The {2,3,4,5,6,7,8}(mod 9) exclusion criterion
In order to be clear on the invoked OEIS sequences, let us introduce a few useful definitions.

Definition 1. We define the m-th term of the sequence A007908 as A007908(m):=
123_..._(m — 1)_m, where m € Z™.

Definition 2. We define the sequence A001292 of the OEIS as the concatenations (sorted in
ascending order) of every cyclic permutation of the elements of the sequence A007908 (e.g., given
m = 3, A001292(A007908(3)) = 123,231, 312).

Definition 3. We define the sequence A352991 of the OEIS as the concatenation of all the distinct
permutations of the first strictly positive m integers, sorted into ascending order (e.g., 12345671089
is a term of the sequence, while 12345670189 does not belong to A352991, even if all the digits of
the string 123...910 appear once and only once, since “10” is missed).

After having checked the first 100128 terms of the sequence A001292 (see Appendix), exploring
any exponent at or above 2, we have not found any perfect power, so that Kashihara’s conjecture has
been verified up to 101235 (i.e., the 100129-th term of A001292 is the smallest cyclic permutation
of A007908(448) and is greater than 10123 by construction).

Moreover, we can prove the following Theorem 1, concerning the sequence A352991 which
includes every term of A001292.

Theorem 1. For any m > 1, A352991(n) cannot be a perfect power of an integer if A352991(n) is a
permutation of A007908(m) and m : m = {2, 3,5, 6}(mod 9).

Proof. By definition, A007908(m) [3] cannot be a perfect power if 123_..._(m — 1)_m is divisible
by 3 and it is not divisible by 32. Thus, from the well-known divisibility by 3 and 9 criteria, m :
(3] =1 j)n (3%t =1 j) is a sufficient, but not necessary, condition for letting us disregard any
permutation of 123_..._(m —1)_m (i.e., given m, if a generic permutation of A007908(m) is
divisible by 3 and is not congruent to 0(mod 9), then all the permutations of A007908(m) are
divisible by 3 once and only once, since the commutativity property holds for addition).

It follows that, for any n € Z*, A352991(n) cannot be a perfect power if it is a permutation of the
string 123_..._(m — 1)_m, where m is such that A134804(m) is divisible by 3. Therefore, the residue
modulo 9 of every perfect power belonging to A352991 cannot be 2 or 3 or 5 or 6, and this concludes
the proof of Theorem 1. U

Corollary 1. Kashihara’s conjecture is true for the concatenation of any cyclic permutation of
A007908(m), where m : (m = {2,3,5,6}(mod 9) V m < 448).

Proof. We observe that A001292 is a subsequence of A352991 [2, 4]. By invoking Theorem 1, we
can state that every perfect power candidate has to be the concatenation of a (cyclic) permutation of
A007908(m), where m is such that m = {0, 1,4, 7, 8}(mod 9). On the other hand, all the remaining
terms up to 99_.100_101_..._445_446_447_1_2_3_..._96_97_98 have been directly checked (see
Appendix for details) and no perfect power has been found.

Therefore, Corollary 1 confirms Kashihara’s conjecture for any term of A001292 such that m is
congruent to {2, 3,5, 6}(mod 9) or m < 447. O

Corollary 2. Zn : A353025(n) = {2,3,4,5,6,7,8}(mod 9), and any term of A001292 cannot be a
perfect power if its digital root is not equal to 0 or 1.



Proof. Trivially, 10 = 1(mod 9) and also (1 + 0) = 1(mod 9), so that any positive integer is
congruent modulo 9 to its digital root.

Now, we observe that any terms of A001292 belongs to A353025.

Since from Theorem 1 it follows that every term of the sequence A353025 [5] is a special
permutation of A007908(m) which is characterized by m = {0, 1, 4, 7, 8}(mod 9), in order to prove
Corollary 2, it is sufficient to note that

0(mod 9) if m: m = 0(mod9)
1(mod9) if m: m = 1(mod9)
721J =4 1(mod 9) if m:m = 4(mod9). (1)
1(mod9) if m: m = 7(mod?9)
0(mod 9) if m: m = 8(mod9) -

Remark 1. A well-known property of integers is that every perfect power which is congruent modulo
5 to 0 is also necessarily congruent to {0, 25, 75}(mod 100), while if a perfect power is congruent
modulo 10 to 6, then its second last digit is odd.

Thus, we are free to combine these additional constraints with Corollary 2 in order to reduce the
number of perfect power candidates among the terms of A352991.

3 Perfect cubes in A353025

In the first half of April 2022, playing with Kashihara’s conjecture, a more risky (very likely false but
really hard to disprove by brute force) conjecture arose, it is as follows.

Conjecture 1. Let n € N — {0, 1} be given. We (provocatively) conjecture that if n is such that
A352991(n) is a perfect power of an integer, then 2k € N — {0, 1,2} : A352991(n) = c*, c € N.

On April 16 2022, a direct search was performed by the author on the first 107 terms of the
sequence and no counterexample has been found (42 perfect squares only).

A few days later, Aldo Roberto Pessolano, performed a deeper search running the Mathematica
codes published in Appendix, without finding any counterexample and thus confirming Conjecture 1
(at least) up to the smallest permutation of A007908(22) (i.e., for any term of A352991 which is
greater than 1 and smaller than 10111121314151617181920212223456789).

Remark 2. If confirmed, Conjecture 1 would imply that all the perfect powers (greater than 1) in
A352991 are perfect squares and nothing more (no cube, no square of square, and so forth).
Nevertheless, under the (arbitrary, but perfectly reasonable) assumption of a standard probability
distribution  of the cubes in  A352991 (ie., we are assuming that

1
{nEN :A352991(n) sm A (A352991(n))§€N}‘ |{(neN : A000578(n) < m)|
= ' — — holds for any sufficiently large m €

|[{neN: A352991(n) < m}|
N), we would guess the existence of infinitely many counterexamples to Conjecture 1, even if the
smallest one is expected to occur in the interval [10%8, 10°%]. On the other hand, the same argument
would corroborate Kashihara’s conjecture, since the number of perfect powers belonging to A001292
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Additional open problems. Does the sequence A353025 have infinitely many perfect squares,
infinitely many perfect cubes, infinitely many perfect squares of squares, and so forth? Which is the
smallest nontrivial perfect cube (if any) belonging to A353025 (we point out that all the terms greater
than one and below 1.01 - 10*° have been checked without finding any cube)?

4 Conclusion

Kashihara’s open problem #30 has not been completely solved yet. Even if the first part, concerning
the probability that the trailing digit of A001292(n) is ¢ = 1,2,...,9, was solved by the author a
dozen of years ago [6], the second part and the related conjecture still needs a proof or a nontrivial
counterexample (the smallest candidate has 1236 digits).

Moreover, in the present paper, we have introduced a wider speculation that allow us to ask to
ourselves how to find a term of the OEIS sequence A353025 (disregarding A353025(1)) which is not
a perfect square; a challenging open problem, considering that there is not any perfect cube among
the terms of A352991 in the interval (1, 10%°].

S  Appendix

Aldo Roberto Pessolano helped the author of the present paper by verifying Kashihara’s conjecture
and Conjecture 1 for a very large number of terms. All the provided Mathematica codes run on the
M1 processor of his Apple MacBook Air (2020).

Kashihara’s conjecture has been currently tested up to the 100128-th term of A001292 and we
confirm that it holds for every element of the set
{A001292(2), A001292(3),..., A001292(100128)}. The search reached the term
99_100_..._446_447_1_2_... 9798 ~ 9.91-101232 in 28823 seconds (about 8 hours of
calculations) and the code is as follows:

¢ = True;
p = Table[Prime[q], {q, 1, 565}];
Do[rn = Range[k];
n = ToExpression[StringJoin[ ToString[#]&/@rn]];
IffAnd[Mod|n, 9] != 3, Mod[n, 9] != 6],
Do[r = RotateLeft[rn,i - 1];
nk = ToExpression[StringJoin[ToString[#]&/@r]];
If[IntegerQ[nkA(1/#)],
Print[nk, " =", nkA(1/#), "A", #]; ¢ = False; Break(]
|&/@p,
{i, 1,k}]
I;
If[c, Print["1..", k, " checked."], Break[]],



{k,2,447}]

About our investigation on the perfect powers in A352991, Pessolano has recently completed
the direct check of every term of A352991 which falls in the interval
(1, 987654322120191817161514131211110] (see the code below). As expected, the test has not
returned any perfect power above two.

z = False;
h=3;
p = Table[Prime[q], {q, 2, 10}];
qx .k ,d ,m ]:=(y=x"k;
If[ DigitCount[y] == d,c = True;
Do[If[Not[StringContainsQ[ ToString[x], ToString[i]]],c = False;
Break[],c = True],{i, 10, m}],c = False];
Return[c])
Dol[r = Range[k];
n = ToExpression[StringJoin[ ToString[#]&/(@r]];
I[fTAnd[Mod[n, 9] != 3, Mod|n, 9] != 6],d = DigitCount[n];
(s = IntegerPart[(10"(IntegerLength[n] - 1))(1/#)];
f = IntegerPart[(10"(IntegerLength[n]))"(1/#)];
Do[If[q[x, #, d, k], Print[x, """, #," =", y];
z = True; Break[]],{x, s, f}|)&/@p;g = 2"h;
While[g < n,If[q[#, h, d, k],
Print[x, """, h, " =", y];
z = True;
Break[]]&/@1{2, 3, 5, 6, 7};
h++;g=2"h]];
If[z, Break(],
Print["1..", k, " checked."]],
{k, 2,21}]

On the other hand, the following code returns the complete list of the smallest 42 perfect squares
belonging to A352991.

z=1;
Dol[r = Range[k];
n = ToExpression[StringJoin[ ToString[#]&/@r]];
IffAnd[Mod|n, 9] != 3, Mod[n, 9] != 6],
d = DigitCount[n];
s = IntegerPart[Sqrt[ 10A(IntegerLength[n] - 1)]];
f = IntegerPart[Sqrt[10*(IntegerLength[n])]];

Doly = x"2;
If[DigitCount[y] ==d,

¢ = True;

Dol
If[Not[StringContainsQ[ToString[y], ToString[i]]],

¢ = False

Is

{i, 10, k}];

If[c, Print[z, " ", y]; z++]



{x,s,{}]
I,
{k, 2, 10}]

These 42  perfect squares correspond to all the perfect powers in
(1, 10%®] belonging to A352991, while the next perfect square is 10135681742311129 (we
observe that 1006761232 is a permutation of 123_..._16, as suggested by the statement of Theorem

1).

1 13527684

2 34857216

3 65318724

4 73256481

5 81432576

6 139854276

7 152843769

8 157326849

9 215384976
10 245893761
11 254817369
12 326597184
13 361874529
14 375468129
15 382945761
16 385297641
17 412739856
18 523814769
19 529874361
20 537219684
21 549386721
22 587432169
23 589324176
24 597362481
25 615387249
26 627953481
27 653927184
28 672935481
29 697435281
30 714653289
31 735982641
32 743816529
33 842973156
34 847159236
35 923187456
36 14102987536
37 24891057361
38 27911048356
39 28710591364
40 57926381041
41 59710832164
42 75910168324



In the end, our tests have finally confirmed that all the perfect powers which are smaller than 103*
and that belong to the OEIS sequence A352991 are perfect squares (only).

At the present time, Conjecture 1 has been tested for every integer smaller than
10111121314151617181920212223456789, and no counterexample has been found yet.
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