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Abstract. We investigate the zeros of the Betti portion of the Weil rational zeta
function for elliptic curves, towards a direct understanding of the Weil conjectures.

Examples are provided and various directions of investigations are considered.
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1. Introduction

To understand what Riemann zeros really are, we must first understand Weil zeros.
Although Weil conjectures have been proven in various ways, starting from the

Euler form towards the Weil rational form, the main algebraic-geometric object un-
derlying the Weil zeta function as its graded Euler characteristic is still missing [2].

The natural analog of a path integral from the complex numbers case, with its
Jacobi variety, is the Gauss sum and its 2-cocycle the Jacobi sum[1], which allows to
count the number of points of the curve [3].

To have a better grasp of the basic “players”, we investigate here ground-up the
Weil zeros of the “cyclotomic” elliptic curve EC : y2 = 1− x3

Recall the notation:

Z(x) = (1− x)−1P1(x)(1− px)−1, P1(x) = 1− ax+ px2,

Defect : a = 1 + p−N1, Number of points : N1 = |EC(Fp)|,
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where a is the “defect” from what one would expect as the number of points 1 + p
(counting the point at infinity), P1(x) is the Weil-Betti polynomial with Weil roots
α = c+ id, c2 + d2 = p (Riemann hypothesis: |α| = √

p).
Except for p = 2, for our EC all reductions are “good”: the roots of f(x) = 1− x3

are distinct in Fp.

1.1. Case 3 ∤ p − 1. In this case the multiplicative character x3 : F×
p → F×

p has

no kernel, and f(x) = 1 − x3 is a bijection of Fp, thus the number of solutions of
y2 = f(x) is N1 = 1 + p:

y = 0 : one, y ̸= 0 : 2× (p− 1), P = ∞, N1 = 1 + 2 · p− 1

2
+ 1 = 1 + p, a = 0.

Remark 1.1. The projective closure of the EC belongs to the corresponding projec-
tive space P 1Fp = Fp × Fp/ ∼. One may start comparing with the complex case,
and consider the theory of Mobius transformations SL2(Fp) “interacting” with the
symmetries of the “discrete vector space” (Z-module) AutAb(Fp,+) ∼= (F×

p , ·).

For example, using SAGE (See Annex, [2]), we obtain:

p = 3 mod 4 = 3 N1(p) = 4 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 3x2 p− 1 = 2

p = 5 mod 4 = 1 N1(p) = 6 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 5x2 p− 1 = 22

p = 11 mod 4 = 3 N1(p) = 12 a := 1+ p−N1 = 0 P1(x) = 1− 0x+11x2 p− 1 = 2 ∗ 5
p = 17 mod 4 = 1 N1(p) = 18 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 17x2 p− 1 = 24.

The Weil-Betti polynomial is P1(x) = 1+ px2, a = 2c = 0 and the Weil zero α =
√
pi

1.

Remark 1.2. The Weil zeros belong to the quadratic extension Z[i], wether p splits
or not, i.e. irrespective of the existence of a 4th root of unity in Fp.

Questions:2

1) What is the corresponding Gauss and Jacobi sum?
2) What are the Gauss periods?

1.2. Case 3|p−1. Here |kerx3| = 3, the order of χ3(x) = x3 is (p−1)/3. Restricting
to F×

p , and using the notation χn(x) = xn, Im(χ3) and Im(χ2) are “transversal” (the
exponents 2 and 3 are relatively prime), so the intersection has (p− 1)/(2 · 3) points.
Then, N1 results from the following sum:

y = 0 : 3 points, y ̸= 0 : 2× |(p− 1)/6, N1 = 3 + (p− 1)/3 + 1 = 4 + (p− 1)/3.

Remark 1.3. Note that f(x) and χ3 differ by a translation. In the more general case
when f(x) splits and is transversal to χ2, the same argument yields the same formula.

1It is in fact the reciprocal of the Weil zero, for the purpose of comparing with the Riemann zeros.
2... for later.
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Examples using SAGE:

p = 7 mod 4 = 3 N1(p) = 12 a = −4, P1(x) = 1 + 4x+ 7x2p− 1 = 2 ∗ 3
p = 13 mod 4 = 1 N1(p) = 12 a = 2, P1(x) = 1− 2x+ 13x2, p− 1 = 22 ∗ 3

1.2.1. Primes p = 2k ∗ 3 + 1. The data suggests the conjecture:

Conjecture 1.1. The discriminant ∆ = a2 − 4p of the Weil-Betti polynomial is
essentially the number of symmetries of the finite field as a discrete vector space
(Klein-Galois geometry).

∆ = 4(p− 1).

Proof 1. (... analize χ3 and QR ...)

1.3. The relation between ∆ and AutAb(Fp,+). Weil-Betti polynomial reduced
modulo a prime p, is an element of Fp[x]. The Weil zeros belong to the corresponding
extension Fp(∆).

1.4. Questions. 1) What is the meaning of the factors of ∆, e.g. 2k ∗ 3 when con-
sidering such a field extension? What is the structure of the prime ideals of the
corresponding ring of integers? Do those primes split? (Yes).

2) Does it mean that the Galois group is not enough to “reveal” the geometry of
the field extension? Is the theory of SL2(Z(∆)) more relevant?

3) For other primes, such that the summands of Aut(Fp,+) are higher order poly-
nomial p-adic numbers, is there an “interference” due to some Kuneth formula for
tensoring finite field extensions?

4) Is the case of prime exponents easier to understand? (e.g. p = 2q ∗ 3l + 1, with
q, l prime).

2. Appendix

More data obtained using SAGE.

2.1. p− 1 = 2k ∗ 32.
k = 1 p mod4 = 3N1 = 22 ∗ 3a = 8p− 1 = 2 ∗ 32 −Delta/4 : 3

k = 2 p mod4 = 1N1 = 24 ∗ 3a = −10p− 1 = 22 ∗ 32 −Delta/4 : 22 ∗ 3
k = 3 p mod4 = 1N1 = 22 ∗ 3 ∗ 7a = −10p− 1 = 23 ∗ 32 −Delta/4 : 24 ∗ 3

k = 2 ∗ 3 p mod4 = 1N1 = 24 ∗ 3 ∗ 13a = −46p− 1 = 26 ∗ 32 −Delta/4 : 24 ∗ 3
k = 7 p mod4 = 1N1 = 22 ∗ 3 ∗ 7 ∗ 13a = 62p− 1 = 27 ∗ 32 −Delta/4 : 26 ∗ 3

k = 11 p mod4 = 1N1 = 26 ∗ 3 ∗ 97a = −190p− 1 = 211 ∗ 32 −Delta/4 : 26 ∗ 3 ∗ 72

k = 2 ∗ 7 p mod4 = 1N1 = 28 ∗ 3 ∗ 193a = −766p− 1 = 214 ∗ 32 −Delta/4 : 28 ∗ 3
k = 17 p mod4 = 1N1 = 22∗3∗7∗14029a = 1214p−1 = 217∗32−Delta/4 : 26∗3∗52∗132
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