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Abstract. We review and comment on the Weil conjectures.
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1. Introduction

The Weil conjectures are usually approached by example, and proved “construc-
tively”, bottom-up. We first review and comment on a few examples, and the proof
provided in [1]. Our goal is a graduate level direct proof, avoiding the “heavy” ma-
chinery of Grothendieck’s Lefshets formula for etale cohomology (see [1], p.6), either
via finite de Rham cohomology (iso to Hochschild; and with singular cohomology in
the complex case), or via Degree Theory (Lefschetz), by interpreting Jacobi sums as
2-cocycles of Gauss sums, which are discrete Feynman path integrals.

2. Computing the zeta function of a variety

The zeta function ZX(t) of a variety X is defined as the generating function keeping
track of the number of solutionsNn(X) = |X(Fpn)| of the algebraic equation P (x, y) =
0, over the tower of finite fields in characteristic p (§2.4.2) 1. But first, a few examples
are in order: counting the number of points on curves over finite fields (“volume”).

2.1. Example 1 - the complex “circle”. Let C be the affine curve x2 + y2 = 1
over F 2

p
2.

1See also [2].
2We’ll interpret these “points” geometrically soon, as affordable representations by symmetries

of the corresponding “discrete vector space” (Z-module).
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2.1.1. The “angle” parameterization. The standard algebraic-geometry parametriza-
tion by lines / slopes [1] (“linearizing the circle”) 3, yields the bijection:

t : Fp − {t|t2 + 1 = 0 mod p} → C(Fp)− {(−1, 0)}
So the number of points of the curve is p − 2 + 1 if −1 is a quadratic residue, and
p+ 1 if not:

|C(Fp)| = p− Lp(−1),

where Lp is the Legendre symbol (the unique character of index 2); it corresponds to
x2 : Fp → Fp, i.e. to the y2-term of the equation defining the variety.

The above equation can be interpreted as follows:

|C(Fp)| =
∫
C
ds =

∫
Fp

dx− Index(x2),

where we look at x2 as a branching cover of Fp (analog of the zn basis for complex
functions).

2.1.2. The projective curve. When considering the projective curve C̃ instead:

X2 + Y 2 = Z2, X, Y, Z ∈ Fp,

its number of points is C̃(Fp) = p+1 irrespective of the type of prime p, i.e. whether
Fp has or has not a “complex structure” i2 = −1.

Remark 2.1. Why the presence of “rotation” by i affects the number of points? When
−1 = a2, the homogeneous equation is equivalent to x2 + y2 + z2 = 0 (cone) ...

2.1.3. The Riemann Surface / Splitting field approach. A “brute force” approach just
solves locally the equation, in the appropriate extension of Fp

y = ±
√
1− x2 = ±

√
1− x

√
1 + x, x ∈ Fp.

Here it is perhaps better to think of the “Riemann surface”

y2 = f(x), f(x) = 1− x2,

as a way to represent multi-valued functions, e.g. y = ±√
, in terms of path integra-

tion. Then the path integral can be reinterpreted as a genuine function on a Riemann
surface.

In this way the homotopy groupoid of the path integration pairing is represented
as the homology of a space, the Riemann Surface. This would provide a natural
framework for a de Rham cohomology model of Fp.
Regarding the additional points of the curve when enlarging the field from Fp to

Fpn , the “maximal curve” should correspond to the splitting field of of f(x), that is
Fp[x]/(f(x)), unless further ramifications of linear factors are involved (?).

3“Rational points” are “true points” of the projective space, reflecting the advantage of thinking
of fraction fields as the finite part of the projective space of the corresponding ring of integers.
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Then the number of points of the curve is

|C(Fp)| =
∑
x∈Fp

(
Lp(1− x2) + 1

)
= p+

∑
x∈Fp

Lp(1− x2).

Remark 2.2. How to interpret this relation? Some transversality? or “total index” of
y2 on the image of f(x) = 1− x2, with “multiplicity” if f collapses points?

2.1.4. The linear combination of monomials interpretation of X. Another way to
count the points [1] consists in viewing the defining polynomial as a linear combination
of monomials, in this example x2 and y2:

x2 + y2 = 1 ↔ a+ b = 1, x2 = a, y2 = b.

Now the number of solutions N(x2 = a) is 1+L(a), with L(x) the legendre character,
and it is the “ramification index” of f(x) = x2 over a.

Remark 2.3. Combining the two ways of counting, yields a relation not so easy to
prove:

Lp(−1) +
∑
x∈Fp

Lp(1− x2) = 0.

relation which we will atempt to interprete geometrically as Poincare-Hopf Theorem
for the “discrete (displacement) field” f(x) = 1 − x2, with divisor div(f) = |1 >
+| − 1 > (roots of unity).

2.1.5. Using Jacobi sums/ Euler Beta Integrals / Veneziano Amplitudes. Question:
Why the p-circle has two points at infinity when |X| = p − 1, and none, when
|X| = p+ 1?
Counting “finite” solutions (affine curve):

(1) N1 = |X(Fp)| =
∑

a+b=1,a,b∈Fp

N(y2 = a)N(x2 = b),

=
∑

a+b=1

(1 + L(a))(1 + L(b)).

Remark 2.4. As before, the number of solutions of xn = a is either 0 when a ∋ Im(xn)
or else it is the number of nth roots of unity, in which case it is

N(xn = a) = (1 + χ+ χ2 + ...+ χn−1)(a) =
1

1− χ
(a)

for a character χ of order n.
Question: Is there a way to unify these two cases, and interpret in terms of

Intersection Theory (indexes)?
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Is the Jacoby sum
∑

a+b=1N(xn = a)N(f(x) = b) related to the “Cauchy Integral”?

Indn(f ; a) =
∑
a∈Fp

N(f(x) = 1− a)

1− χ(a)

and Discrete Fourier Transform of f(x) via partial fractions decompositions?

The above sum is an Euler Beta integral (convolution value at 1) with an important
meaning: the Veneziano amplitude of the interference of the two modes of the p-
astring Fp, i.e. the inner product of the left and right movers χ1(x) and χ2(1− x) on
the p-string Fp:

(χ1 ∗ χ2)(1) =

∫
x∈Fp

χ(x)χ2(1− x) =< χ1, χ
∗
2 >,

where the “Riemann symmetry” s 7→ 1 − s corresponds to complex conjugation
(reference?).

It expands bilinearly as a sum of the following terms:

1 ∗ 1 = p, (1 ∗ L)(1) =
∫
Fp

L(a)da =< 1, L∗ >= 0, (L ∗ 1)(1) = 0, < L, L∗ > .

Therefore 4

|X(Fp)| = 1 + ||L||2.
When considering the points at “infinity”, i.e. in the projective closure, we get
(1 + L)(−1) additional points (0 or 2), for a total which must be as before p+ 1:

|X̄(Fp)| =< 1, 1 > + < L,L∗ > +N(x2 = −1)

=< 1, 1 > + < L,L∗ > +(1 + L)(−1) =< 1, 1 > +1.

2.1.6. The Maurer-Cartan of a p-String. Therefore this Jacobi sum (Veneziano am-
plitude) satisfies the equation

< L,L∗ > +L(−1) = 0

analog to the relation for 1− x2, [1], p.2.
Question Is L(−1) an Lefshetz index? Is there a String Theory interpretation for

it?
We call this equation the Maurer-Cartan String Equation:

< L,L∗ > +δ2 ∗ L = 0.5

Alternatively (and plainly; |F×
p |/2 = (p− 1)/2):

< L,L∗ > +(−1)
p−1
2 = 0.

4Is it worth emphasizing the norm?
5Kind of forcing the interpretation ...
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One way or another X(Fp) ∼= Z/pZ ∪ {∞} = P 1(Z/pZ), the natural “bi-field”
(“Riemann sphere”) associated to the field Fp.

Remark 2.5. Look for extension of computing Jacobi sums (convolutions) from char-
acters to functions via Fourier Transform:∑

a+b=1,a,b∈Fp

N(y2 = a)N(f(x) = b,

using intersection theory instead of fixed point theory f(x) = g(x).

2.2. Intermezzo - The de Rham cohomology of (Z/pZ,+). The “discrete 1-D
manifold” (Fp,+) = Z/pZ, with its Lie-Klein geometry (F×

p , ·) → Aut(Z/pZ,+), has
a natural differential (finite difference) and corresponding path integral (sum):

f ∈ HomSets(Z/pZ,C), f ′(x) = f(x+ 1)− f(x),

γ : {1, ...,m} → Fp,

∫
γ

f(x)dx =
m∑
1

f(γ(k)),

where C is some field of coefficients (e.g. complex numbers), and γ is a path in Fp,
i.e. an isometry for the natural distance functions: |γ(k + 1)− γ(k)| = 1.
The two K-linear operators D (finite differences) and I, path integration from 0,

as a natural choice of a base point (
∫
is rather a pairing), can be represented as usual

in the convolution algebra of functions (F = (HomSets(Z/pZ,K), ∗):
Df = f ∗ µ, I(f) = f ∗ 1,

in terms of the Mobius function µ, the convolution inverse of the “zeta function” 1
(see [10] for Mobius inversion in the context of aritmetic functions on Z, and [9] for
details).

Now the de Rham cohomology of D is dual to Tate cohomology of the cyclic group
G = (Z/pZ,+) ([5], p.35):

. . . // Z[G]
NG // Z[G]

x−1 // . . .

where the dual of D is multiplication by x− 1, and the dual of I is multiplication by
NG =

∑p−1
0 xk.

To interprete the above formula counting of elements of C as a discrete analog
of Poincare-Hopf Theorem, we first interpret the Legendre symbol of −1 as an in-
dex. Then consider the Poincare-Hopf Theorem for the “vector (displacement) field”
f(x) = x2, or via Gauss-Bonnett Theorem [3], with the appropriate normalization of
the curvature K = 1 for the finite torus T 2 = Fp × Fp:∫

Fp×Fp

Kdx× dy = χ(T 2) = Ind(0) + Ind(1).

??
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...
or study P (x, y) = x2 + y2 instead?
For additional discrete analogue of traditional mathematics concepts, e.g. the

Fourier “analysis” on finite abelain groups, see [4].

2.3. Example 2 - the elliptic curve y2 = 1 − x3 over Fp. This is just the inter-
section in Fp × Fp of the p-cycle (x, f(x)) (graph of f(x)) and the “parabola” (x, x2)
(graph of x2).

Remark 2.6. It’s s setup suited for intersection theory and Lipschitz indexes etc.

2.3.1. The projective vs. affine curve. The projective curve is Y 2Z = Z3 −X3, and
if Z = 0 then X = 0, therefore the curve has just one point “at infinity”: (0 : ±1 : 0):

|C̃(Fp)| = 1 + C(Fp).

2.3.2. Counting branching indexes. As before, N(x3 = a) and N(y2 = b) are the
branching orders at various points. Then, viewing the defining equation as a linear
combination of monomials:

y2 = a, x3 = b, a+ b = 1,

yields

|C(Fp)| =
∑

a+b=Fp

N(y2 = a)N(x3 = b).

The branching orders can be expressed in terms of the orbit of the corresponding
character, and roots of unity:

1) If f(x) = x3 : F×
p → F×

p has trivial kernel, i.e. if there are no roots of unity,

N(x3 = b) = 1; this is the case when 3 does not divide p− 1;
2) If 3|p− 1, then x3 : F×

p → F×
p has index 3, and N(x3 = b) = 0 if b is not in the

image of f(x), or N = 3 if it is. In this case, it can be represented as a Fourier series
of a multiplicative character of order 3, for example in terms of χ(x) = x3:

N(x3 = b) = χ0(b) + χ(b) + χ2(b).

Remark 2.7. Is there a general “paradigm” if we consider the polynomials as the
algebra of monomials xn, viewed as branching covers of the p-cycle Fp, and its tori /
extensions?

Why Fourier series represents the index N(xn = b)?

The above sum can be estimated using Jacobi sums, and the Hasse-Weil bound is
obtained.

2.4. Extending the field / dimension of representation space. The main goal
is to identify the “global object”, having all the points of field extensions Fpn .

Extending the field from Fp to Fpn means representing the operator T with char-
acteristic polynomial and eigenvalues det(I − λT ) = P (T ) = 0 to higher dimensions.
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2.4.1. The p-circle x2 + y2 = 1 over Fpn. Let’s count the points of the p-cycle X :
x2 + y2 = 1 over extensions Fqn of Fq, where q = pm [1], Ex. 2.5, p.5. We will use
Jacobi sums as a route (L(x) = χ2(x) = χ(x) for short):

|X(Fpn)| =
∑

a+b=1,a,b∈Fpn

N(x2 = a)N(y2 = 1)

=
∑
a+b

(1 + χ2(a)(1 + χ2(b)) =
∑

(1 + χ(a) + χ(b) + χ(a)χ(b)

= |Fqn|+ (χ ∗ χ)(1)

since
∑

χ(x) = 0 and the Jacobi sum J(χ, χ) =
∑

a χ(a)χ(1 − a) is a convolution
value. The “nice” results about Jacobi sums occur in projective space, probably
because of the nice intersection theory (Bezout Th. etc.). So we expect χ ∗χ(1) = 0,
and the size of the projective curve in n-dim space over Fq is:

Nn(X) = |X̃(Fqn)| = 1 + qn

Then the zeta function is:

Z(X, t) = exp(
∑

Nn(X)tn/n) = exp(
∑

(1 + qn)tn/n)

=
1

(1− q0t)(1− qnt
.

2.4.2. Zeta function, log and formal path integration. This is plainly because

log
1

1− x
= 1 + x/1 + x2/2 + ...,

so the formal logarithm integrates the geometric series!

log(1 + x+ x2 + x3 + . . . ) = 1 + x+ x2/2 + · · · =
∫

(1 + x+ x2 + ...),

as expected from a path integral definition of the numerical (convergent, real or com-
plex etc.) logarithm:

log(x) =

x∫
1

dt/t.
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2.4.3. Why Euler product is the factorization by degrees? How can the Euler product
Lemma 2.3 [1], p.4 have the Weil product form?∏

x∈XCl

1

1− tdeg(x)
=

1∏2d
i=0 Pi(t)(−1)i

The polynomials seem to belong to formal groups (p-adics?), with a factorization in
terms of the “periods” αi

j (Jacobian variety?):

Pi(t) = 1 + αi
1t+ αi

2t
2 + ...

In the p-cycle example P1(t) = 1, but in the EC case (see later on), it is not 1, so
how can (here q = p):

1− apt+ pt2

(1− t)(1− qt)
=

(1 + Jt)(1 + J̄t)

(1− t)(1− pt)

equal ∏
x∈XCl

1

(1− tdeg(x))
?

What are the closed points (orbits)? Does the Frobenius (Galois generator) generates
the orbits?

... and why not work with the “de Rham differential forms” of primes, i.e. the
exterior algebra of primes, with super-grading the Mobius function µ, so we would
have

Z−(X, t) = 1/Z(X, t) = P0 · P−1
1 · P2... = exp(Tr(D)).

2.4.4. Galois, Frobenius and roots of unity (p-adic fields). Note that the field ex-
tensions are cyclotomic (uniqueness of extensions), so one expects a “selection by
sectors” operated by the polynomial f(x) defining the variety X : y2 = f(x), on the
cyclotomic polinomials defining the extensions. In other words, there should be a
correlation between the “roots” of f(x) and the roots of unity. This is reminiscent
of Kroneker-Weber Theorem that the maximal abelian (“homology, not homotopy”)
extension QAb of Q (better lift to algebraic adeles) is generated by roots of unity, all
present in the unramified extensiond of the p-adic numbers (see canonical / Frobenius
lift and vershibung maps [7]; the Teicmuller representation of p-adic integers are Witt
vectors, suitable for algebraically representing the carry-over cocycles / deformation
of component-wise addition and products of power series).

So, f(x) = 1 + ... + xd is a deformation of a cyclotomic polynomial 1 − xd; then
the corresponding curve is a deformation of the torus (Z/MZ conductor?), which is
a product of (finite) circles of roots of unity Zpk (CRTr.) The Laplace spectrum (or
better Dirac equation/ quaternions, not to “stumble” on p = 1/3 mod 4, i.e. to split
all rational prime nicely, for enough “rotations”; everything is the theory of SL2(Z)),
should follow suit.
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2.4.5. Zeta function of the elliptic curve y2 = 1 − x3 over Fpn. Counting the points
of the projective closure gives a nice formula (b/c Bezout Theorem?).

Counting the points via Jacobi sums yields

Nr = 1 + pr + J + J̄ , J = (χ2 ∗ χ3)(1),

where the convolution is over Fpr .

Remark 2.8. The Theory of Jacobi and Gauss sums yield the Riemann Hypoth-
esis for EC/ff:

|J | = √
pr.

Does it yield also the power r dependency? Will a deformation argument together
with a twist, yield the general case for EC from y2 = 1− x3?

Then we have the Weil form of the ZF:

Z(X, t) =
(1 + Jt)(1 + J̄t)

(1− q0t)(1− qt)
.

Remark 2.9. The main point is to notice how Nr = (1−αr)(1− ᾱr) is determined by
N1 = (1−α)(1− ᾱ), where α and its conjugate are the eigenvalues of an operator on
X(Qp) induced by the Frobenius on X(F̄p) (see [8]).

So, the main focus is to understand N1!
Why Nr = deg(1−ϕr) (degree of the Frobenius), and how it can be represented as

a determinant on the l-adic curve = det(1− ϕr)?
Is this the setup for a “homotopic contraction” ϕr, r → ∞ argument? and how it

related to p-adic roots of unity via Teichmuler character? ... Homotopy contraction
in Qp, via lifting Fp?

Is the “infinitesimal case” (f.f. level Fpn) due to the Theory of Jacobi-Gauss sums?
(Feynman integrals / p-string theory amplitudes).

2.4.6. SAGE Exercise: compute Jacobi-Gauss sums / R-Spec. Focus on the “cyclo-
tomic EC” y2 = 1 − x3, and determine R-Spec (|R − Spec| = 2 × genus) for a few
primes:

R− spectrum(g = 1) : {e±iγ}.

1) See how eiγ correlates with the prime p; is it piθ, θ = γ/2π log p more relevant?
(or similar? see [12]).

2) Generalize to the case y2 = f(x) and see how eiθ correlates with the coefficient
/ roots of f(x).

3) How hyper-elliptic curves (higher genus) “generate” more R-frequencies/periods?
Compare with the theory of Hodge cycles (Jacobi variety? Liuville action variables?).
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2.4.7. Zeta function of the hyper-elliptic curve y2 = 1 − x6. Keep studying the “cy-
clotomic hyper-EC” (finite Riemann Surfaces), consider n = 6, i.e. genus g =
Integer[(6 − 1)/2] = 2 [8] 6. Let q = 5 as before. The Zeta function in its Weil
form is:

Z(T )−1 = (1− T )P (T )−1(1− qT ),

with the expected characteristic polynomial

P (T ) = (1− aT + 5T 2)(1− bT + 5T 2),

of an operator on the cohomology of this “Riemann Surface” (to be identified!). Its
degree is deg(P ) = dim(H1) = 2 · g (χ(X) = 2− 2g).

Remark 2.10. Formal manifolds/groups (deformations and diffeos etc.) lead to graded

cohomology rings? deg(Z−1) = 2− deg(P ) = χ(X) =
∑D

0 (−1)kdim(Hk), D = 2 via
some augmentation homomorphism.

This time Z(T ) is determined by two coefficients N1 = 6 and N2 = 46, counted by
computer.

The Taylor series of logZ(T ) (from the Weil form) yields:

logZ(T ) = (6− a− b)T + (23− 1

2
(a2 + b2))T 2 + ...

and comparing with exp(N1T +N2T
2/2 + ...) (mod T 3), yields

6− a− b = 6, 23− 1

2
(a2 + b2) = 46/2 ⇒ a+ b = 0, a2 + b2 = 0 ⇒ a = 0, b = 0.

Remark 2.11. It is tempting to interpret a + b = Tr(?), a2 + b2 = N(?) = det(?) ...
or maybe as zero zeta sums Sk =

∑1
0 a

k
i ... ??

Now let’s compute the coefficients Nr by “hand”:

N1 = 1 +
∑

a+b=1

N(y2 = a)N(x6 = b).

Remark 2.12. For the homogeneus eq., for genus g > 0 (n > 2) we always get just
one point “at infinity” (projective):

Y 2X4 +X6 = Z6, Z = 0 ⇒ X = 0.

So why real hyper-elliptic curves have 2 points? (Multiplicity?)

As before, the computation reduces via

N(x2 = a) = 1 + χ2(a), N(x6 = a) =
5∑
0

χk(a), N1 = 1 +
∑

i=0..1,j=0..4

χi
2 ∗ χ

j
6(1)

6If deg(f(x)) = 2g + 1 it is an imaginary hyper-EC, with one point at infinity; if the degree is
2g + 2 it is a real hyper-EC, with 2 points at infinity (see Wiki).
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to Jacobi sums: χ2 ∗χ6, since higher relatively prime powers “don’t interact” and by
“rotational symmetry” (primitive roots) the case reduces to the above “fundamental
resonance, to be evaluated using SAGE (for several primes).

Remark 2.13. Since 2|6 one expects a “nice” answer, computable directly by “sym-
metry” arguments.

x5 = x in F5, so N(x6 = b) = N(x2 = b), and

N1 = 1 + |F5|+ 2
∑
a

χ2(a) +
∑
a

χ2(a)χ2(1− a) = 6,

since the other sums are zero as before.
In F25 is more complicated

N2 =
∑

a+b=1,a,b∈F25

(1 + χ2(a))(1 + χ6(b) + ...)

= 2
∑

a∈ker(χ2)

(1 + χ6(1− a) + ...)

Why for 2D-case Jacobi sums are no longer trivial?

N2 = 1 + |F52|+ 20 = 46.

Check with SAGE.

2.4.8. Lefschetz intersection theory. Alternatively, one can investigate the intersec-
tion number of the two cycles on the q-torus Fq × Fq (here q = 5):

Graph of x2, and Graph of x5.

The String Theory interpretation is clear: “What is the nodal interaction (Veneziano
amplitude?) of the 6-mode with the 2-mode on a 5-string”?

Are the Riemann zeros “resonances”, i.e. Laplacian eigenvalues?

2.4.9. Main points / relations. Investigate the relation between the degree n of the
cyclotomic polynomial f(x) = 1 − xn, the prime modulus q = p and the coefficients
of the Betti polynomial

P (T ) = (1− a1T + pT )...(1− agT + pT ), aj =
√

(p)(eiγj + e−iγj), j = 1..g,

with ai given by Viete’s relations in terms of the reciprocal of the Riemann zeros
ρj = 1/

√
p eiγj .

Since Chinese remainder Theorem should apply to the structure of Fpm = Hom(Cp, Cm),
one should study the prime sectors of the Zeta function: m = ql a prime power.
The “cyclotomic primes” (irreducible) should play a similar role as the rational

primes, so maybe study the irreducible pieces of 1−xn; is 1−x6 = (1−x)(1+x)(1−
x+ x2)(1 + x+ x2) “equivalent” to a “surgery” on the two spheres 1± x+ x2?
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The Riemann zeros should have a clear meaning in the theory of complex curves,
i.e. Riemann surfaces: harmonic basis ... ? The simpler case: Elliptic Curves and
Jacobian variety?

2.4.10. The Cyclotomic EC y2 = x3 + 2 and p = 7. For q = p = 7, counting the
points: N1 = |E(F7)| by computer [7] p.19., the Weil-Betti polynomial P1(T ; q) is:

1 + T + 7T 2, a = −1, N1 = 1 + q − a = 9, N2 = (1 + q)2 − a2 = 63.

Remark 2.14. Is Nr = (1 + q)r − ar? see [8], p.12; some recursive relation (finite
differences equation) ... (like Fibonacci sol. etc.). (instead of as Taylor coefficient
loc. cit. p.11).

The solution should be

Nr = (1− αr)(1− ᾱr) = (1 + qr)− (αr + ᾱr), α = q1/2+iγ,

where α, ᾱ are the zeros of the Frobenius polynomial [7], p.18, and ρ = 1/2± iγ are
the Riemann zeros for finite fields (“local zeros”).

Why are αr + ᾱr = qr/2(qiγr + q−iγr) integers? They are Jacobi sums (J = dG
cocycles of Gauss sums - Feynman Integrals/ Veneziano Amplitudes ...)

How do they build up the “global” Riemann zeros?

Study the relationship between f(x) = 1 + bx + x3 forget the twist; see how the
perturbation affects the a,N and the zeros, in correlation with the primes (level 1:
π1 / Hodge basis).

Find a “simple” model for Frobenius morphism on Tate’s module. Does it matter
if f(x) = 0 is solvable in Qp? (Hensel’s Lemma)

case 1: f(x) = 0 one solution / point in E(Fp);
case 2: f(x) = 1 (quadratic residue in any Fp); N(f(x) = a) = |Ind(f ; a)|. For

example when f(x) = 1− x3, Ind = 1 etc. How does the index vary with a? Is there
a nice Lefshetz formula? (orientation matters? de Rham vs. Lebesgue)

case 3: f(x) = a quadratic non-residue, so there is no solution.
Why this has to do with Frobenius filtration and eigenvalues, which in Qp are the

roots of unity (Teichmuller character):

ω(j) = lim jp
n

, Φ(ω(j)) = ω(j).

Perron-Frobenius eigenvalue of 1? Are there other eigenvalues?

2.4.11. Quadratic twists: ay2 = c + bx + x3. When a is a quadratic non-residue,
V : y2 = f(x) and V ′ : ay2 = f(x) have ZF with Weil polynomials related by a′ = −a
[8], p.18. Example V : y2 = x3 − 1 over F5 has a = 0 and V ′ : 3y2 = x3 − 1 has also
a′ = 0. V ′ is iso to y2 = x3 − 2, since 2 · 3 = 1 mod 5.
What is the meaning of such a symmetry a 7→ −a (symmetric space)? Here g(y) =

y2 and g′(y) = ay2 are “transversal cycles” decompose Fq = Im(g)⊕Im(g′), or rather
F×
q = Im(g) ∪ Im(g′), q − 1 = 2m ...
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2.5. Riemann zeros for elliptic curves. For the EC X : y2 = c − bx + x3 Weil
poly

P1(T ) = 1− aT + qT 2 = (1− αT )(1− ᾱT ), α = q1/2+iγ =
√
qeiθ,

with Re(α) ∈ 1
2
Z.

What is the geometric meaning of the generalized Pythagora relation?
√
N

2
= 1 +

√
q2 − 2 cos θ, θ = γ log q.

(Modular lattice, Coxeter group of symmetries ...?)
See also EC/group laws / Silverman? (Primes and crypto?)
There should be a relation between the galois group of f(x) (cyclotomic polynomi-

als) and Weil poly:

“prime poly′′ Φ(x) ⇔ primes Fp

What are the irreducible poly of degree 3? No x− k factors; Euclid’s trick DNWork.
Study the correlation f(x) ∈ SpecFp[X] and Riemann zeros γf . Relate it with

Jacobi sums as 2-cocyles of Gauss sums (extensions / deformations?). Modulo twist
fb(x) = 1 + bx+ x3; b 7→ a?.

Any f splits eventually in Fq, q = pr, r ≤ 3!. Is this the reason the zeta function
is rational?

What is the Weil poly for X : y2 = (x− a)(x− b)(x− c), with a, b, c ∈ Fp?
What about (y− y1)(y− y2) = (x− x1)(x− x2)(x− x3): transversal intersections?

(Towards Lefshetz theory).

3. On the proof of Weil Conjectures for Elliptic Curves

The main ingredients are the Tate module and the Weil pairing.

Remark 3.1. Why in order to study the reduction of EC(Q) at p, Tate “deforms”
the curve in the direction of l ̸= p, to have a characteristic zero framework, instead
of just using Hensel’s philosophy, and deform EC(Q) into EC(Qp) directly!?

EC/Q

p−deform

��

mod p // EC/Fp

l−deform

��
EC/Qp

mod p
77ppppppppppp

iso?// Tl
∼= Zl × Zl.

Recall that, by Hensel’s Lemma, IVPs in Qp have unique solutions (assuming smooth
points on EC), so “infinitesimal points” on EC(Fp) correspond 1:1 to p-adic points
on EC(Qp); extends to unramified extensions too).

We will review the proof following [8] and “run” it on the following example:

E/F7 : y2 = x3 + 2.
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The EC has 9 points: O(0 : 1 : 0), (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6).
The zeta function (Weil form) is:

Z(E/F7;T ) =
1 + T + 7T 2

(1 + T )(1 + 7T )
.

The next coefficient is [7], p.19:

N2 = |E(F72)| = 1 + q2 + α2 + frm[o]−−+ 72 − (1− 2 · 7),
since α =

√
7eiθ, with θ = 2π/3, i.e. α/

√
7 is a cubic root of unity. Thus α2 + β2 =√

7(ξ2+ξ) = −7 !? (what’s wrong?), or rather α2+ᾱ2 = (α+ᾱ)2−2αᾱ = (−1)2−2·7 =
−13.

3.1. The Tate Module.

3.1.1. The torsion subgroups. The torsion subgroups of an EC are V [m] = {P ∈
E(K̄)|[m]P = O}.

Question: For our example, if m = 3, p = 7 how to determine E[m]? How to
“extract” the minimal extension of Fp which implements E[m]? More primarily,
what is the group law in E(F7)?

...

Remark 3.2. The Tate module approach needs the whole category of extensions of
Fp, just in order to get to a characteristic zero setup. It also uses the “mysterious”
group law: clear geometrically, but unclear its meaning (Intersecting a line and the
cubic in the plane: why the intersection is such a 2-cocycle?)

4. In search of the ”missing complex”

The Weil polynomial is a characteristic poly of some operator which should oc-
cur naturally in the initial context of the EC/f.f. For higher genus g, N1 does not
determine the ZF (the Weil poly).

4.1. A wild guess. If y2 = f(x) = a0+ ...+ anx
n over Fp and ai are reduced mod p,

think: linear combination of characters xk : F×
p → Sp−1− > C and p-adic digits ai.

What are the Teichmuller digits and the Teichmuller decomposition of

Z/pn+1Z = Fp × U1, Z/pn+1Z× ∼= F×
p × Z/pnZ.

Why is the genus g = Integer[(n− 1)/2]?
It’s the other way around: higher degree extensions / representations of Cpn−1 →

Aut(Z/pZn,+) allow for more eigenspaces and eigenvalues (Riemann zeros) in a “sym-
plectic” / complex way (“everything is SL2(C)”), “producing” more solutions of the
given constraint: f(T ) ∈ H, where [G : H] = 2, G ∼= Cpn−1.
So, a direct relation with Fourier transform of ? should exist ...
The key is to understand Fpn as the convolution algebra A = Hom(Cn, Fp): what

is a generator X of the pn − 1-cycle?
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5. Examples revisited

For an EC X(Fq) : y
2 = c− bx+ x3 the Weil form of the ZF is

Z(T ) = P1(T )/[(1− T )(1− qT ), P1(T ) = 1− aT + qT 2),

where a = 1 + q − N1 is the relation with the number of points over Fq, which
determines the zeta function, and related to Jacobi sum (via the computation of N1)
by a = J + J̄ (in general or just for our main example?). It’s also the trace of the
Frobenius operator (in Tate’s formalism).

Via Viete’s relations a = α+ β, sum of the two Riemann zeros (β = ᾱ) of the Weil
poly

P1(T ) = 1− aT + qT 2 = (1− αT )(1− ᾱT ), α = q1/2+iγ =
√
qeiθ,

with Re(α) ∈ 1
2
Z.

Remark 5.1. What is the geometric meaning of the generalized Pythagora relation?
√
N

2
= 1 +

√
q2 − 2 cos θ, θ = γ log q.

(Modular lattice, Coxeter group of symmetries ...?)

The number of points is determined by the zeros α, β = ᾱ of the Weil polynomial,
which correspond to Riemann zeros ρ:

Nr = (1− αr)(1− ᾱr) = 1 + qr −Re(αr), α = qρ, ρ =
1

2
+ iγ,

5.1. EC y2 = 2 + x3. The EC has 9 points over F7 (localized at p = 7): O(0 : 1 :
0), (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6), so N1 = 9.
Since a = 1 + q −N1 (here q = p = 7), The zeta function (Weil form) is:

Z(E/F7;T ) =
1 + T + 7T 2

(1 + T )(1 + 7T )
.

The next coefficient is [7], p.19:

N2 = |E(F72)| = (1 + q2)− (α2 + ᾱ2) = 1 + 72 − (1− 2 · 7),

since α =
√
7eiθ, with θ = 2π/3, i.e. α/

√
7 is a cubic root of unity. Thus α2 + β2 =√

7(ξ2+ξ) = −7 !? (what’s wrong?), or rather α2+ᾱ2 = (α+ᾱ)2−2αᾱ = (−1)2−2·7 =
−13.

For q = p = 7, counting the points: N1 = |E(F7)| by computer [7] p.19., the
Weil-Betti polynomial P1(T ; q) is:

1 + T + 7T 2, a = −1, N1 = 1 + q − a = 9, N2 = (1 + q)2 − a2 = 63.

Remark 5.2. Is Nr = (1 + q)r − ar? see [8], p.12; some recursive relation (finite
differences equation) ... (like Fibonacci sol. etc.). (instead of as Taylor coefficient
loc. cit. p.11).
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The solution should be

Nr = (1− αr)(1− ᾱr) = (1 + qr)− (αr + ᾱr), α = q1/2+iγ,

where α, ᾱ are the zeros of the Frobenius polynomial [7], p.18, and ρ = 1/2± iγ are
the Riemann zeros for finite fields (“local zeros”).

Why are αr + ᾱr = qr/2(qiγr + q−iγr) integers? They are Jacobi sums (J = dG
cocycles of Gauss sums - Feynman Integrals/ Veneziano Amplitudes ...)

How do they build up the “global” Riemann zeros?
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6. Appendix

6.1. Number of solutions N(χ(x) = a). For a character χ(x), e.g. Legendre char-
acter of index 2, the number of solutions can be represented as [11], Lemma 3.1,
p.5:

N(χ) =
∑

χk =
1

1− χ

6.2. On Jacobi and Gauss sums. see [11].

6.3. Frobenius morphism. Our example y2 = x3 − 2, p = 7, q = 1, f (1) = f, C(1) =
C, F : C → C,F (x, y) = (xp, yp) = (x, y) is the identity.

For q = p2 ...
Study the “Grothendieck cover” of K = F̄p as a directed system and the Galois

action of frobenius, with norm = det(Lx) and trace =? For Tate/Weil formalism the
Char poly is Weil poly, and trace = sum of eigenvalues/ Rioemann zeros.

See is something similar happens when “Hensel-deforming” (lifting) the curve from
Fp to p-adic field Qp, instead of “up”, by extending Fp (is this ramifying the curve?)
Curves correspond to fields, and the Galois Theory gives the directed system

(“grothendieck cover”): invariant subfields etc. Extending the curve via extend-
ing the coefficients (duality by evaluation), corresponds to extending their fields of
functions (separable/“space-like”/horizontally, and ramified/“time-like”/vertically).
The uniformizer, tangent space Mp/M

2
p etc. formalism for function fields of curves,

seems to correspond exactly to the deformation formalism, from Fp to Qp.
The Frobenius morphism captures the ramified component of the curve extension:

K− > L,C(K)− > C(L), with the q-th power Frobenius Φq (generic Galois group
element) an endomorphism purely inseparable (ramified) of degree deg = q = pr.
Forget about the q-th power, deal with the generator: the Frobenius Φ.
How is the Galois action on fields, dual to the action of fields on their discrete

vector space (Z-modules)? Is there a “partial reflexivity”?

2− category/Homotopy Theory : Galois → Aut(Fields), F ield → Aut(Zpk)

Aut(Aut()) ∼ Id => Frob.(F̄p) 7→ Frob(Qp)...?
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7. Questions and Problems

7.1. 1/18/2015. 1) How can the Weil rational form of the ZF equal the algebraic
geometry form? see [1], p.4. Lemma 2.3 and Theorem 2.4, p.5:

Weil Form
∏ P1P3...

P0P2...
= Z(X0, t) =

∏
x∈|X0|

1

1− tdeg(x)
AG− Form.

Why there is no numerator in the AG-form of the ZF?
What about Example 2.5 (Elliptic Curves)?

2) Riemann-Roch Theorem for Projective Line (Exercise 2.3, [13], p.38).
Let F : P 1− > P 1 (rational function). Then i) Sumf(P )=Qe(P ) = deg(F ); ii)

degs(Q) = |F−1(Q)|; iii) Prove RR Th. for P1; iv) Prove Hurwitz Th.
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8. Collected Examples

8.1. EC y2 = 1 + x+ x3. From Wikipedia: Counting Points on Elliptic Curves.
Let p = 5. Then C(Fp) = {(0,±1), (2,±1), (3,±1), (4, 2), (4, 3)} ∪ O (point at

infinity). So N1 = 9, a = 1 + p − N1 = −3 and P1(T ) = 1 + 3T + 5T 2. Note:
N1 = P1(1) (any significance? 1 is the multiplicative “origin”).

If we look at the projective space / curve, what are the Mobius transformations and
how do they relate to the function field of the curve? 3-transitive? preserving circles?
Characteristic polynomial of MT and multiplier (elliptic, hyperbolic, loxodromic); is
the Frobenius one MT and the roots α, β of Weil poly, its roots?
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