
ON RIEMANN ZEROS AND WEIL CONJECTURES

LUCIAN M. IONESCU

Abstract. The article aims to motivate the study of the relations between the
Riemann zeros, and the zeros of the Weil polynomial of a hyper-elliptic curve over
finite fields, beyond the well-known formal analogy. The non-trivial distribution of
the p-sectors of the Riemann spectrum recently studied by various authors, represent
evidence of a yet unknown algebraic structure exhibited by the Riemann spectrum,
supporting the above investigations.

This preparatory article consists essentially in a review of the topics involved,
and the “maize” of relationships to be clarified subsequently. Examples are provided
and further directions of investigation are suggested.

It is, if successful, a viable, possibly new approach to proving the Riemann Hy-
pothesis, with hindsight from the proof in finite characteristic and function fields.
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1. Introduction

The Riemann zeros are, according to the present author, conjecturally related to
the zeros of the Hasse-Weil zeta function of hyper-elliptic curves, in its rational form,
as stated by the Weil Conjectures, beyond the well known formal analogy [1].

Evidence of a nontrivial structure on the Riemann spectrum, consisting of the
imaginary parts of the Riemann zeros ρ = 1/2 + it (assuming for now the RH),
comes from their high “Graham entropy” [2], and non-uniform distribution of the
p-sectors of the Riemann spectrum [3, 4, 5, 6], as well as from the well-known duality
primes-zeros [7, 8, 9].

Prior hints that the relation could come via the Mobius transformation M(z) =
1 − 1/z mapping the critical line on the unit circle (circular permutation of 0,∞,1)
(and 1/2 to −1), led the author to the study of Cramer characters Xp = pit [6],
reinterpreting the findings regarding their distribution [3, 4].

Now, how are the roots like α =
√
qeit related to the unit rational circle Q/Z =∑

Qp/Zp? Thus line of thought led to the investigation of their connections with the
adelic duality [5]. But another even earlier idea is: if the RH was proved in finite
characteristic, part of the Weil Conjectures (Dwark,Grothendieck,Delignes), in view of
the formal analogy with Weil zeros and the local-to-global principle (e.g. Minkovsky
Theorem), and the fact that in mathematics there are no coincidences, but not yet
understood connections, why not uncover the algebraic origin of the Riemann zeros,
beyond their analytical historical origin (like the source of the Niles!), and then prove
that “they are what they have to be”: zeros, of the Riemann Zeta Function, as a
generating function (or its fermionic analog ζ−1/ζ, the Dirichlet series of the Mobius
function).

As Prof. Connes writes in his recent essay [10]: the RH “... is, and will hopefully
remain for a long time, a great motivation to uncover and explore new parts of the
mathematical world.”. Indeed new for the present author, but with the hope that
this journey shared with some readers, will “spread the word” on its beauty and
importance, not just in mathematics, but apparently towards the “Ultimate Physics
Theory”: Number Theory! [11, 12] (What else!? would claim Pythagoras ...).

The article is organized as a gradual review of the topics leading to the Weil Con-
jectures and their relation to the Riemann Zeros. The “speculations”, as an Ariadne’s
thread for future research, are “sprinkled” as needed, when the “muse” cared to share
a thought of inspiration; all the other e/ho-rrors and mistakes, plenty I’m sure, will
copiously feed the patient reviewer (Hopefully there will be one! ... the feedback
hopefully received is part of the reason for writing these notes in the first place).
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2. The Weil and Euler forms of the zeta function

2.1. The Euler form of the zeta function. Let X0 be an affine variety over Fp,
i.e. X(F̄p) = limr→∞X(Fpr), as an inductive limit over field extensions of finite fields
of characteristic p.

2.1.1. The degree of an element via Galois correspondence. An orbit x0 of x ∈ X(F̄p)
under the action of the Galois group G = Gal(F̄p/Fp) is called a closed point (
[36],p.4). Denote by Xcl = X0/G the set of closed points. For [x] = xG ∈ Xcl denote
by deg([x]) = |xG|, the size of such an orbit.
The extension Fp(x) is the residue field of O(X)x, the localization of the coordinate

ring of X at the point x. Then deg([x]) = [Fp(x) : Fp] is the degree of the extension
(number of elements in the orbit, i.e. roots of the irreducible polynomial defining the
extension as Fp[X]/(f), adjoined to Fp).

Remark 2.1. The degree can be also described in terms of K-valued points, i.e. ([37],
p.2):
(1)
X(K) = HomSpeck(SpecK,X) = Homk−alg(k(x), K), deg(x) = |Homk−alg(k(x), K)|.

2.1.2. The filtration/grading of a variety via the degree function. The relation between
the number of points and sizes of Frobenius orbits is provided in the following Lemma.

Lemma 2.1. i) If x ∈ X(Fpr) and [x] = xG ∈ Xcl then deg([x]) = [X(Fpr) : X(Fr]);
ii) ([36], Lemma 2.3, p.4) Nr = |X(Fpr)| =

∑
e|r e · |{x ∈ Xcl|deg(x) = e}|;

iii) (“Burnsides Lemma”?) Nr = |X(Fpr)| =
∑

[x]∈Xcl,deg([x])|r deg([x]).

Proof. i) From the discussion above;
ii) Take K = Fpr in Equation 1.
iii) For an orbit [x] of size e = deg([x]) belongs entirely to the Galois extension

Fpr : Fp. Therefore the whole orbit contributes with e points to the variety X. □

Remark 2.2. This is related to the Burnsides Lemma, in the context of the orbit-
stabilizer theorem for the Galois action on the variety.
Xcl is the quotient set of X under the action of G =< Φ >, the Galois group

generated by Frobenius element.
Now Fpr has a natural POSet structure, and since G is isomorphic to Z, which also

has “the same” POSet structure (divisibility), the action “fibrates” over the PPOSet
structure (“functoriality”?).

I) In the algebraic closure F̄p we have:
1) Stabilizers x ∈ Fpe , of degree e, i.e. not in a smaller subfield, Gx = StabG(x) =

Φe (e.g. e = 1);
2) FixΦe = Fpe (and similarly for Xe = X(Fpe)).
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3) Orbit-Stabilizers Theorem: for x ∈ X, such that deg([x]) = |Gx| = e, i.e.
x ∈ Fpe and not in a smaller subfield, [G : Gx] = [Z : eZ] = e. Equivalently, its orbit
is of size e (the degree).

II) Similarly for the variety X(F̄p) ... ??? What is the difference?

For a concrete example, see §11.

2.1.3. Proof of the Euler form of Weil Zeta Function. The following corolary is an
easy consequence of the above Lemma [36], p.4. and of a trivial number theory
argument:

Lemma 2.2. Let D ⊂ N be a possibly infinite subset of natural numbers. Define
Nn =

∑
d∈D,d|n d Then

∑∞
n=1Nn/nt

n =
∑

d∈D log 1
1−td .

Proof 1. We follow the proof from [36], p.2, removing the Xcl dependency, since only
D = Im(deg) is used, where deg : Xcl → N is the degree of closed points:∑

Nnt
n/n =

∞∑
n=1

1

n

∑
d∈D,d|n

dtn

=
∞∑
n=1

∑
d∈D

td/n =
∑
d∈D

∞∑
n=1

td/n

=
∑
d∈D

log
1

1− td
.

Remark 2.3. Filtering the divisors of n via a subset is a limitation similar to a divisor
inequality in Riemann-Roch, because of FTA: P = SpecZ. Indeed n can be viewed as
a function on SpecZ, and its formal logarithm is a divisor div(n) =

∑
p∈P k(n) < p >,

where n =
∏
pk(p).

Remark 2.4. This Lemma is a “cross-section” by (degrees of) X of the classical Euler
form of Riemann zeta function, based on uniqueness of factorization (The Fundamen-
tal Theorem of Arithmetic).

Corollary 2.1.

Z(X0; t) =
∏
x∈Xcl

1

1− tdeg(x)
.

Proof 2. Apply the Lemma to the set D = {deg(x)|x ∈ Xcl}, of degrees of closed
points of the variety X, and exponentiate.

Remark 2.5. Note that the role of exponential and logarithm, are “marginal”; one
can work with the generating series for the number of points F (x) =

∑
Nnt

n and its
formal integral G(t) =

∫
F (t)dt =

∑
Nnt

n/n (see [42] for additional details). Bottom
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line, replace log by integration operator on (Cauchy) convolution algebra of formal
power series:

log
1

1− x
=

∞∑
n=1

xn/n.

As an example, consider the affine (projective) line X = P 1 over Fp. The “cross-
section” is “trivial’, since deg([x]) = pr, for any x ∈ Fpr and not in a “lower” subfield
Fps , with s|r. Then n =

∏
qkq defines a “cut-off” on X = F̄p, denoted Xn = Fpn ;

the extension corresponding to incrementing the exponent kq by 1 has degree q.
d = deg(x)|n implies x ∈ Fpd , but not in a proper subfield. The Galois action
partitions Fpn into constant degree level orbits. Therefore the sum of their degrees
totals pn. Together with the point at infinity, Nn = 1 + pn. The partition into orbits
corresponds to the sum

1 + pn =
∑
d|n

|Od| · d.???

Example n = 2:
1 + p2 = |Fp|+ 2|Fp2 − Fp|.

Remark 2.6. This can be expressed in terms of the fixed points of Frobenius. Then,
the roots of its characteristic polynomial should give a formula similar to the Binett’s
formula for the Fibonacci numbers, but for the “defect”, e.g. N1 = 1 + pn − a.

2.2. The orbit structure of X0. What is the orbit structure of X0, from the Galois
action etc. (cyclotomic polynomials etc.)? and why is the multiplicative function Nr

a product of eigenvalues 1 − αT? How to view the Frobenius as an operator with
characteristic equation the Weil polynomial? (numerator only; and NO l-adics, but
possibly p-adics, because of Fpr = Hom(Cp, Cr) < − > Cpr (how?) and limCpr =
Zp).

2.3. Examples. [36], p.2. Genus 0: y2 = 1− x2. ...
Genus 1: y2 = 1− x3 ...

2.4. The Weil form of Zeta Function of Elliptic Curves. In the case of elliptic
curves, assuming Nr = (1 − αr)(1 − ᾱr), which follows from the Tate-Weil proof of
the Weil Conjectures for curves [40], p.32, one can easily derive the rational form of
the ZF

Z(X0;T ) =
1− αT )(1− ᾱT )

(1− T )(1− qT )
.

2.5. From Weil Form to Euler Form. The main idea that partial fractions de-
compositions are involved, is exemplified.

Consider the partial fraction decomposition of the ZF of an EC:

1− apT + pT 2

(1− T )(1− pT )
= 1 + A/(1− T ) +B(1− pT ) = 1 + A

∑
T k +B

∑
(pT )k
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=
∑

Nnt
n/n.

3. The Projective Line

The projectve line X = P 1 has Nn = 1 + pn points over Fpn (point at infinity and
all other points).

For a concrete example of Frobenius orbits representation of Nn take n = 2. Then,
for d|n = 2, there are points with one element orbit x ∈ Fp, and 2 points orbits
x ∈ Fp2 − Fp, with a Burnside Lemma decomposition of X0 (the affine curve) giving:

N∗
2 = (p1/1) · 1 + (p2 − p1)/2 · 2 = p2, N2 = 1 +N∗

2 = 1 + p2.

Each orbit ΦZ(x) has d = deg(x) = [Fp(x) : Fp] elements, where the degree d also
equals the size of the Galois group Z/dZ (equivalently Φd fixes Fpd = Fp(x).

3.1. From Euler to Weil, as a path integral. So, in general, Nn decomposes
according to the POSet of divisors of n, in a “path integral partition function with
propagator p”, conform with the interpretation of log as an integral: exp(log 1/(1 −
x)) = exp(

∫
xkdx). For example, when n = 18 = 2 · 32, we have :

....later...

3.2. Projective line example. To transform the Weil form into the Euler form of
the zeta function of the projective line:

ZX(T ) =
1

(1− T )(1− pT )
,

consider the logarithmic derivative of the zeta function [44], p.27 (see Weierstrass zeta
functions; conform with our observation log 1/(1− x) =

∫ ∑
xk):

G(T ) = d/dT logZX(T ) =
1

1− T
+

p

1− pT
=

1

1− T
+

1

p−1 − T
,

a “lattice form” with poles at 1 and 1/p (and Riemann-Weil zeros, if the Weil poly-
nomial is non-trivial).

4. Counting Frobenius orbits and Homotopy Theory

Frobenius orbits are related to the number of irreducible polynomials P (x) over
Fp (see MathExchange comments [45]), since d = |Gx| = deg(x) = [Fp(x) : Fp]
and Fp(x) ∼= Fp[x]/(P (x)), therefore the Galois group (generated by the Frobenius)
“relates” the subfields:

Fp → Fpd → Fpn .

The skeletal category of finite extensions of of Fp (which algebraists call it the al-
gebraic closure F̄p of Fp, destroying all its “good” structure :), has a structure of a
2-category, which is equivalent (in an abstract non-sense straight forward manner)
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to a homotopy theory, with G = Gal playing the role of the fundamental groupoid
(when ignoring the base point).

Remark 4.1. A homotopy theory has an associated homology theory via abelianiza-
tion. A path integral seems to emerge naturally in this context (see above comments).
Now where do the periods come from? ... From the keywords: Spec Fp[x], duality
and Fourier Series (better: localization and Feynman Path Integral over homotopy
basis; Riemann graphs and Max-Flow-Min-Cut Theorem / discrete Hodge theory).

4.1. Example. As a concrete example, p = 3, n = 2, we have the following field
isomorphism

ϕ : F3[x]/(x
2 + 1) → F3[x]/(1− x− x2), ξ = ϕ(η) = 1− η.

When viewing fields as Klein geometry, or representations, we transition towards the
following framework: abelian category of Z-modules (discrete vector spaces), with an
“irreducible connection” (voltage graphs?), and “loop group” Gal ... Duality is not
canonical either (relate to Frobenius elements).

4.2. Relation with l-adic cohomolohgy. Pursuing the categorical picture of iso-
morphic finite fields (objects) corresponding to irreducible polynomials of Fp[x] seems
to lead to l-adic cohomology (for a “fiber”), via the etale cohomology:

Fpn = (HomSet(Z/p
nZ, Fp),∇)

where the reduction of the structure group as the multiplicative cycle, is though of as
a “connection” (see also voltage graphs). This is the “Grothendieck’s way”, which we
will avoid, since it is on the zeta function Euler product side of the bridge connecting
with the Weil form. So, what is at the other end!?

4.3. Conclusions: Quantum Physics on a Doughnut, Prezzel etc. and Fi-
nite String Theory. Counting finite points of the projective line, via the Frobenius
partition, i.e. summing degrees of extensions, and constructing the generating func-
tion, yields the logarithmic derivative of the Weil Zeta Function (Artin-Hasse).

When there are loops quantum effects are expected: resonance (periods) and “de-
structive interference” occurs (defect), and “correction terms” must be included in
this “partition function” (see / get inspiration from the Primon / Riemann Gas model;
see also my comments from “On Zeta Functions”).

Why this is String Theory? A: primes dual to fundamental frequencies and fine
structure constant, Euler beta integrals / Jacobi sums as Veneziano amplitudes etc.
etc.

5. Localization and partial fraction decomposition: adelic picture

So, how numerator and denominator of the Weil form of the zeta function, con-
tribute to the “adelic series” representation of the zeta function (partition function),
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in terms of degrees?

Q/Z =
∑

Qp/Zp, 1/6 = 1/2− 1/3 = ...(adelic representation).

Similar of polynomials?

Q[x]/Z[x] =
∑

Qp[x]/Zp

and “localization” of Z[x] polynomials at p (splitting).
Note: localization is a mode general tool / concept then the usual duality via

Fourier transform (that’s why partial fraction decomposition and Fourier series are
directly related).

5.1. An example. As a motivating example, recall how to compute the Fourier
coefficients of a periodic arithmetic function, using partial fractions decomposition
([43], Example 7.1).

The period 3 arithmetic function a(n) : 1, 5, 2, 1, 5, 2, ... has its generating function
the series F (z) = 1 + 5z + 2z2 + z3 + ... (algebra of functions, dual to convolution
algebra of power series), which is rational (like Weil’s zeta function):

F (z) = (1 + 5z + z2)
∑
k

z3k =
1 + 5z + z2

1− z3
.

Its partial fractions decomposition:

F (z) =
A0

1− z
+

A1

1− ρz
+

A2

1− ρ2z
, ρ = e2πi/3,

has coefficients Ai the Fourier series coefficients of a. Indeed, representing the frac-
tions back as geometric series (convolution algebra inverses):

F (z) =
∑
n

(A0 + A1ρ
n + A2ρ

2nzn

gives its coefficients represented as Fourier series coefficients:∑
k=0,1,2

Akρ
k = a(n) =

∑
k=0,1,2

â(k)ρk.

In this example, the constants Ai satisfy the system:

3A0 = 1 + 5 + 2, 3A1 = 1 + 5ρ2 + 2ρ4, 3A2 = 1 + 5ρ+ 2ρ2,

which yield A0 = 8/3, A1 = −(4 + 3ρ)/3, A2 = (−1 + 3ρ)/3. Thus the finite Fourier
series of a is:

a(n) =
8

3
+ (−4

3
− ρ)ρn + (−1

3
+ ρ)ρ2n.
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5.2. Generating functions, Localization and Calculus. The other “good exam-
ple” is obtaining the closed form for the Fibonacci numbers [43], 1.1.

here the arithmetic function fk is the solution of a recursive equation, or equiva-
lently the solution of a finite differences equation.

The general framework is Calculus in a convolution algebra via DF = F ⋆ µ finite
differences, and

∑
a = a ⋆ 1 the corresponding integral (FTC is µ ⋆ 1 = δ).

The paradigm is: 1) convert (duality) the arithmetic function f ∈ Hom(N,C) into
a generating function F (z) (convolution algebra); 2) the recursive equation implies a
polynomial equation for F (z), which when solved yields a rational function for F (z)
(Weil!?); 3) Decompose it into partial fractions, i.e. represent it as an adele; 4) the
(simple) pole part correspond to geometric series (integrals); 5) sum up and compare
with the original generating function.

In our example, we have:

f0 = 0, f1 = 1, and fk+2 = fk+1 + fk, for k ≥ 0.

F (z) =
∑

fkz
k, Rec. Eq. ⇒ 1

z2
(F (z)− z) =

1

z
F (z) + F (z)

F (z) =
z

1− z − z2
=

1/
√
5

1− αz
+

1/
√
5

1− ᾱz
, α = (1 +

√
5)/2, ᾱ = (1−

√
5)/2.

This yields Binet’s formula:

fk = 1/
√
5 · (αk − ᾱk).

There is a striking resemblance with the closed form for the defect of a curve from
having the maximal number of points, a consequence of the Frobenius operator on
the Tate module satisfying a certain characteristic polynomial:

ak = 1 + qk −Nk = αk + ᾱk, CharPoly(ϕ) = (1− αT )(1− ᾱT ).

In both cases (quadratic extensions), conjugation is the non-trivial Galois automor-
phism.

5.3. Localization and Riemann-Weil Zeros. How is the Fourier Series / Local-
ization picture related with the interpretation of zeros as periods? The characteristic
polynomial is similar to a recursive/differential equation. Is there a simpler convolu-
tion algebra affording an operator playing the role of the Frobenius?

The inverse of the Riemann-Weil roots should be interpreted as periods. For the
general case of hyper elliptic curves, it is probably better to focus (study) ap(n) =
1+pn−Nn, as the “defect”, which probably is related to the Fourier Transform of the
periodization of the function representing the coefficients of the polynomial defining
the curve:

1 + pn −Nn =

2g∑
1

αni , αi “periods
′′of?.
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So, the generating function G(T ) of the number of finite points has a better in-
terpretation in terms of partial fractions decomposition, which is related to Fourier
Transform [43], Ch.7.

5.4. Riemann zeros for elliptic curves. For the EC X : y2 = c − bx + x3 Weil
poly

P1(T ) = 1− aT + qT 2 = (1− αT )(1− ᾱT ), α = q1/2+iγ =
√
qeiθ,

with Re(α) ∈ 1
2
Z.

What is the geometric meaning of the generalized Pythagoras relation?
√
N

2
= 1 +

√
q2 − 2 cos θ, θ = γ log q.

(Modular lattice, Coxeter group of symmetries ...?)
See also EC/group laws / Silverman? (Primes and crypto?)
There should be a relation between the Galois group of f(x) (cyclotomic polyno-

mials) and Weil poly:

“prime poly′′ Φ(x) ⇔ primes Fp

What are the irreducible poly of degree 3? No x− k factors; Euclid’s trick DNWork.
Study the correlation f(x) ∈ SpecFp[X] and Riemann zeros γf . Relate it with

Jacobi sums as 2-cocyles of Gauss sums (extensions / deformations?). Modulo twist
fb(x) = 1 + bx+ x3; b 7→ a?.

Any f splits eventually in Fq, q = pr, r ≤ 3!. Is this the reason the zeta function
is rational?

What is the Weil poly for X : y2 = (x− a)(x− b)(x− c), with a, b, c ∈ Fp?
What about (y− y1)(y− y2) = (x− x1)(x− x2)(x− x3): transversal intersections?

(Towards Lefshetz theory).

6. The Cyclotomic Elliptic Curve y2 = 1− x3

First we look at the “base case” of points over the primary field Fp, and then
consider points over extensions to Fpl), i.e. higher dimensional representations.

This is just the intersection in Fp × Fp of the p-cycle (x, f(x)) (graph of f(x)) and
the “parabola” (x, x2) (graph of x2).

It’s s a problem suited for intersection theory and Lipschitz indexes framework.

6.1. Lefschetz intersection theory and physics interpretation. Alternatively,
one can investigate the intersection number of the two cycles on the q-torus Fq × Fq
(here q = 5):

Graph of x2, and Graph of x5.

The String Theory interpretation is clear: “What is the nodal interaction (Veneziano
amplitude?) of the 6-mode with the 2-mode on a 5-string”?

Are the Riemann zeros “resonances”, i.e. Laplacian eigenvalues?
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6.2. The projective vs. affine curve. The projective curve is Y 2Z = Z3−X3, and
if Z = 0 then X = 0, therefore the curve has just one point “at infinity”: (0 : ±1 : 0):

|C̃(Fp)| = 1 + C(Fp).

6.3. Counting branching indexes. As before, N(x3 = a) and N(y2 = b) are the
branching orders at various points. Then, viewing the defining equation as a linear
combination of monomials:

y2 = a, x3 = b, a+ b = 1,

yields

|C(Fp)| =
∑

a+b=Fp

N(y2 = a)N(x3 = b).

The branching orders can be expressed in terms of the orbit of the corresponding
character, and roots of unity:

1) If f(x) = x3 : F×
p → F×

p has trivial kernel, i.e. if there are no roots of unity,

N(x3 = b) = 1; this is the case when 3 does not divide p− 1;
2) If 3|p− 1, then x3 : F×

p → F×
p has index 3, and N(x3 = b) = 0 if b is not in the

image of f(x), or N = 3 if it is. In this case, it can be represented as a Fourier series
of a multiplicative character of order 3, for example in terms of χ(x) = x3:

N(x3 = b) = χ0(b) + χ(b) + χ2(b).

Remark 6.1. Is there a general “paradigm” if we consider the polynomials as the
algebra of monomials xn, viewed as branching covers of the p-cycle Fp, and its tori /
extensions?

Why Fourier series represents the index N(xn = b)?

The above sum can be estimated using Jacobi sums, and the Hasse-Weil bound is
obtained.

6.4. Extending the field / dimension of representation space. The main goal
is to identify the “global object”, having all the points of field extensions Fpn .

Extending the field from Fp to Fpn means representing the operator T with char-
acteristic polynomial and eigenvalues det(I − λT ) = P (T ) = 0 to higher dimensions.
Counting the points of the projective closure gives a nicer formula; is it because

of Bezout Theorem, as part of the Intersection Theory framework, or because of the
2D-representation in projective space (Mobius transformations)?

Remark 6.2. A more categorical oriented framework avoids fractions, which can be
interpreted as the result of evaluating morphisms: Ev(g : a→ b) = ba−1 = b/a.
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6.5. Weil form and Jacobi sums. Counting the points via Jacobi sums yields

Nr = 1 + pr + J + J̄ , J = (χ2 ∗ χ3)(1),

where the convolution is over Fpr .
In our example, the root α = J(χ2, χ3) is a Jacobi sum of the corresponding two

characters. Note that the Jacobi sum is a Hochschild 2-coboundary [41]:

J = dG.

Then, what is the significance when looking at N1 as an “Lefschetz” intersection
number of χ2 and 1− χ3? Same as I(χ2, χ3)?

Remark 6.3. The Theory of Jacobi and Gauss sums yield the Riemann Hypoth-
esis for EC/ff:

|J | = √
pr.

Does it yield also the power r dependency? Will a deformation argument together
with a twist, yield the general case for EC from y2 = 1− x3?

6.6. The Weil form of the Zeta Function. Then we have the Weil form of the
ZF:

Z(X, t) =
(1 + Jt)(1 + J̄t)

(1− q0t)(1− qt)
.

Remark 6.4. The main point is to notice how Nr = (1−αr)(1− ᾱr) is determined by
N1 = (1−α)(1− ᾱ), where α and its conjugate are the eigenvalues of an operator on
X(Qp) induced by the Frobenius on X(F̄p).

So, the main focus is to understand N1!
Why Nr = deg(1−ϕr) (degree of the Frobenius), and how it can be represented as

a determinant on the l-adic curve = det(1− ϕr)?
Is this the setup for a “homotopic contraction” ϕr, r → ∞ argument? and how it

related to p-adic roots of unity via Teichmuler character? ... Homotopy contraction
in Qp, via lifting Fp?

Is the “infinitesimal case” (f.f. level Fpn) due to the Theory of Jacobi-Gauss sums?
(Feynman integrals / p-string theory amplitudes).

6.7. SAGE Exercise: compute Jacobi-Gauss sums / R-Spec. Focus on the
“cyclotomic EC” y2 = 1− x3, and determine R-Spec (|R− Spec| = 2× genus) for a
few primes:

R− spectrum(g = 1) : {e±iγ}.
1) See how eiγ correlates with the prime p; is it piθ, θ = γ/2π log p more relevant?

(or similar? see [19]).
2) Generalize to the case y2 = f(x) and see how eiθ correlates with the coefficient

/ roots of f(x).
3) How hyper-elliptic curves (higher genus) “generate” more R-frequencies/periods?

Compare with the theory of Hodge cycles (Jacobi variety? Liouville action variables?).
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7. The Cyclotomic EC y2 = x3 + 2 and p = 7

For q = p = 7, counting the points: N1 = |E(F7)| by computer [39] p.19., the
Weil-Betti polynomial P1(T ; q) is:

1 + T + 7T 2, a = −1, N1 = 1 + q − a = 9, N2 = (1 + q)2 − a2 = 63.

Remark 7.1. Is Nr = (1+q)r−ar? some recursive relation (finite differences equation)
... (like Fibonacci sol. etc.). (instead of as Taylor coefficient loc. cit. p.11).

The solution should be

Nr = (1− αr)(1− ᾱr) = (1 + qr)− (αr + ᾱr), α = q1/2+iγ,

where α, ᾱ are the zeros of the Frobenius polynomial [39], p.18, and ρ = 1/2± iγ are
the Riemann zeros for finite fields (“local zeros”).

Why are αr + ᾱr = qr/2(qiγr + q−iγr) integers? They are Jacobi sums (J = dG
cocycles of Gauss sums - Feynman Integrals/ Veneziano Amplitudes ...)

How do they build up the “global” Riemann zeros?

Study the relationship between f(x) = 1 + bx + x3 forget the twist; see how the
perturbation affects the a,N and the zeros, in correlation with the primes (level 1:
π1 / Hodge basis).

Find a “simple” model for Frobenius morphism on Tate’s module. Does it matter
if f(x) = 0 is solvable in Qp? (Hensel’s Lemma)

case 1: f(x) = 0 one solution / point in E(Fp);
case 2: f(x) = 1 (quadratic residue in any Fp); N(f(x) = a) = |Ind(f ; a)|. For

example when f(x) = 1− x3, Ind = 1 etc. How does the index vary with a? Is there
a nice Lefshetz formula? (orientation matters? de Rham vs. Lebesgue)

case 3: f(x) = a quadratic non-residue, so there is no solution.
Why this has to do with Frobenius filtration and eigenvalues, which in Qp are the

roots of unity (Teichmuller character):

ω(j) = lim jp
n

, Φ(ω(j)) = ω(j).

Perron-Frobenius eigenvalue of 1? Are there other eigenvalues?

8. Turning On The Golden Key: Riemann Roch Theorem

The Euler form of the zeta function is expressed naturally in terms of Frobenius
orbits, in the context of the category of field extensions. Grothendieck’s approach, via
Grothendieck covers, is to use l-adic cohomology in this context, as a Weil cohomology
to derive the Weil form. Yet the Riemann zeros are not well accounted for in this
way.

Instead, we directly look for an algebraic-geometric object behind the Weil form,
probably the analog of the Jacobian variety / zero-Picard group, which should emerge
in the finite field case from Gauss sums and their 2-cocycle, the Jacobi sum.



ON RIEMANN ZEROS AND WEIL CONJECTURES 15

8.1. Weil form and Riemann Roch genus. The Weil form defines a genus as
q = Int(dimC/2), which should coincide with g = dimL(KC), where KC is the
canonical divisor (flow) on the curve (Riemann surface for complex numbers).

Riemann-Roch formula has also a symmetric form which exhibits duality [46]. As a
confirmation, Tate, in his thesis, calls the adelic Poisson summation formula (Fourier
duality), the Riemann-Roch Theorem.

So, what is the complex which implements the algebraic topology concepts (see
[47]), having the Jacobi sum as a 2-cocyle? probably Gauss sums play the role of
Feynman path integrals

∫
C
eS(C) (period on Zn for the n-th degree character). Or

better the powers xk : Zn → Zn play the role of “standing waves” (nodes), and the
convolution J(c, c′) = c ⋆ c′(1) is a Veneziano amplitude ... (to be made precise later
:).

8.2. Riemann-Roch and Poisson Trace Formula. Underlying RR - Poisson SF
(trace formula), there is the localization - Fourier duality connection: partial fractions
decomposition (localization at roots of unity zn = 1, i.e. iso to Zn), gives the Fourier
coefficients of the periodic arithmetic function a ∈ Hom(Zn,C).
Relate this with the counting of points of y2 = f(x) via Jacobi sums.

9. Weil zeros as Gaussian periods

9.1. Recall. The Euler form has the category of finite field extensions as the associ-
ated algebraic object, with the Frobenius orbits providing the degrees of closed points
of the variety. Tate-Weil formalism leads to the Weil form in an indirect way, while
Grothendieck l-adic cohomology uses the Grothendieck cover and homological algebra
machinery for this.

9.2. The “missing link”: analog of the Jacobian variety. The “missed” algebraic-
geometric object, analog to the Jacobian variety/zero-Picard group, is the algebra of
cyclotomic constants (see [48]; see also [50, 49]), with Gaussian periods conjecturally
corresponding to the Weil zeros:

P1(T ) ↔ det(xI − C) =
e−1∏
0

(x− θi), θi : Gaussian periods.

The author’s conjecture is based on a path integral interpretation, in analogy with
complex analysis case, where the role of path integrals is played by Gauss sums, with
their 2-cocycle the Jacobi sum which counts the points of the hyper-elliptic curve
(is it related to the fusion rule of cyclotomic constants? associativity / 2-cocycle
condition).

Moreover, the Gaussian periods framework emulates the Frobenius generator of the
Galois group whose orbits yield the zeta function, which in this finite case is played by
the automorphism σ(ξ) = ξg corresponding to a primitive root of unity (Aut(F×, ·),
F× = Aut(Zp,+)).
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Finally, the Riemann spectrum should be generated “freely” by Weil zeros, since
the Euler form of the RZF is a product of local factors; their renormalization (defor-
mation) should conjecturally correspond to the Weil factors 1/(1 −√

peiθ), for pairs
of conjugated Riemann zeros (Birkhoff decomposition). At least the relation between
these concepts should be investigated.

9.3. Duality: Riemann-Roch a.k.a. Poisson Summation Formula. The func-
tion field / spectrum paradigm of Algebraic-geometry applies here via Galois Theory
and its interpretation as a Klein geometry.

Riemann-Roch relation is really a duality relation (see [13]); in the finite case the
duality appears first via Fourier duality. But the hidden geometric interpretation of
Riemann-Roch, which for the complex case steams from the Jacobian variety as a
consequence of the path-integral duality (homotopy -¿ homology), can be mimicked
via Gauss sums (Feynman Path Integrals). The genus should be the dimension of the
integral basis of cyclotomic units.

9.4. A finite 3j-symbols theory? The corresponding fusion algebra, in the context
of Galois groups and Quadratic Reciprocity (and duality in Abf ), seems to be a finite
version of 3j-symbols theory (spin / SL2(Zn) - recoupling theory for Discrete String
Theory), and its relation with link invariants (Jones polynomial -¿ Weil poly?).

9.5. Conclusions and Plan. The best approach at this point is to try a couple of
good examples (“a theory”): for EC and HEC, compute N1 (and higher) via Jacobi
sums, and compare Gaussian periods with Weil zeros.

10. Weil Zeros and Gauss Periods

10.1. Definitions. Chinese Remainder Th. allows to reduce component wise to the
case of prime powers (p-adic numbers).

Let n = p be prime (tangent space; no infinitesimal deformations yet ...).

10.1.1. The Jacobian Variety, Picard group and Riemann-Roch Th. The Jacobian
variety over an arbitrary field was constructed by Weil (1948), as part of the proof of
the Riemann hypothesis for curves over a finite field.

Definition 10.1. The Jacobin variety of a curve C is J(C) = H0(Ω1)∗/H1(C) [14], i.e.
the quotient of of the dual of holomorphic differentials by the lattice L of functionals
[γ] 7→

∫
γ
ω.

It is derived from the path integral
∫
γ
ω of holomorphic differentials on loops, which

descends to their homology class, yielding the lattice of (co)periods (?):∫
: H1(C)× Ω1(C) → C,

∫ #

: H1(C) → H1(C)∗, J(C) = coker

∫ #

.

Why one needs to take the connected component of holomorphic forms?
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What are the periods in this context?
As a group the Jacobian variety is iso to the zero-Picard group (connection between

duality and Riemann-Roch): J(C) ∼= Pic0(C). Therefore the Jacobian has more
structure then just the quotient of formal sums of divisors.

In the discrete finite field case F×
p → Aut(Fp,+), the analog of path integration

is the Gauss sum, which is a duality pairing a character (exponential of “integration
with a propagator”, as an additive functional exp(

∫
ω)), with a subgroup H ⊂ F×

p

(“loop/cycle”), the analog of the lattice is the Gaussian periods (maybe), and the
Jacobian variety some quotient of this duality pairing.

The analog of homotopies, yielding the homology via abelianization, is the “2-
category structure” of Aut(Aut(Fp,+)), i.e. the symmetries of primitive roots of
unity (cyclotomic constants etc. - see next subsection).

For higher genus one has to consider the multiple valued map [51]:

(x1, ...xn) 7→ (

g∑
i=1

∫ xi

a

ω1, ...,

g∑
i=1

∫ xi

a

ωg),

where ω1, ..., ωg is a basis of holomorphic differentials. This defines a map

SymgC → Cg/Λ := J(C),

where Λ is the lattice of periods. The target is called the Jacobian variety, and is
isomorphic as a group with the zero-Picard group.

10.1.2. Gauss sums. A Gaussian sum is

Gψ(ξ) =
∑
r∈Zn

ξ(r)ψ(r) < − > < ξ, ψ >,

where ψ(r) = exp(2πira/n) is an additive character and ξ is a multiplicative character
(e.g. Dirichlet, Hacke etc.).

The case originally considered by Gauss was the quadratic Gauss sum, with ξ the
Legendre symbol, having the alternative form:

G(ξ) =
∑
r∈Fp

e2πir
2/p < − >

∑
r∈Fp

exp(ξ(r)),

which has a different interpretation (beware of generalizations!):

Fp
exp // Up // C

Fp

ξ

OO

eξ

??��������
G(ξ) =

∫
Fp
eξ.

In this case G(ξ) =
√
p or i

√
p, depending on p mod 4 (prime split or inert in Z[i]).

This form of Gauss sums is generalized to Kummer sums.
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The Gauss sum of a Dirichlet (multiplicative) character ξ modulo n is

G(ξ) =
∑
a∈Zn

ξ(a)e2πia/n, ξ̂(1) = (ξ ⋆ e1)(0).

It is closely elated to the finite Fourier transform of the Dirichlet character, and the
corresponding convolution of characters (here e1 is one of the primitive characters of
Zn).

If ξ is primitive then |G(ξ)| =
√
n (like a Weil zero). If n0 is the conductor of ξ

then

G(ξ) = µ(n/n0)ξ0(n/n0) G(ξ0).

Also G(ξ̄) = ξ(−1) ¯G(ξ). The Gauss sum is not multiplicative, and for relatively
prime moduli has the following 2-cocycle:

G(ξ)G(ξ′) = ξ(n)ξ(n′)G(ξ)G(xi′).

The multiplier looks like a symmetric bilinear form.
For the same modulus n = n′, with ξξ′ primitive also, the 2-cocycle is the Jacobi

sum:

J(ξ, ξ′) = G(ξ)G(ξ′)/G(ξξ′).

10.1.3. Gaussian periods. Given a subgroupH → G = Z×
n of the multiplicative group

of the cyclic group (symmetries of a higher dimensional torus), a Gaussian period is
a sum of primitive n-th roots of unity ζa, where a runs over a fixed coset of H in G,
i.e. the integral over a fiber:

G

π

��

exp // S1 Periodization/Orbit Integrals

G/H P ([g]) =
∫
π−1([g]

exp(a)da.

Gaussian periods are related to Gauss sums G(ξ) = Ge1(ξ), where H = kerξ. For
example, Gauss quadratic sum is the sum of two Gaussian periods:

G(ξ) = P − P ∗, P = ζ + ζ4 + ζ9 + ..., P ∗ = ζ2 + ...

where P is the sum over quadratic residues, and P ∗ is the sum over quadratic non-
residues.

In general, Gauss sums are linear combinations of Gaussian periods, being each
other’s Fourier transforms.

Gaussian periods generally lie in smaller fields, while Gaussian sums have nicer
algebraic properties.

What about the Jacobi sums which enter in process of counting the number of
points of a hyper-elliptic curve over a finite field?
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Remark 10.1. Gaussian periods framework in Fp is similar to that of Frobenius orbits
in the category of field extensions of Fp, which leads to the Euler form, and from
there, via l-adic cohomology, to Weil form of the zeta function.

What is the relation between Gaussian periods and Weil zeros? Is the Riemann
spectrum algebraically generated by Weil-Spectrum?

For additional detail on Gaussian periods see [52, 48]. The graphical nature
of Gaussian periods (crystallographic groups, orbifolds, quantum orbitals related,
maybe?), see [53].

Remark 10.2. Gaussian periods should be collectively viewed as a function on G/H =
∪gH, in a framework similar to periodization operator and Poisson Summation For-
mula (Riemann-Roch Theorem), especially in connection with Kummer sums, which
play the role of a zeta function. Gauss sums also play the role of the Gamma function
(Mellin transform of the exponential, the fixed point of Fourier transform).

11. Examples, computations and conjectures

We review some of the considerations from §6, regarding the EC y2 = 1−x3. Don’t
change the EC; look instead for a correlation between Weil zeros and p − 1 (F×

p as
the symmetries of our discrete Klein geometry on Fp / Galois group action), to be
justified via Gauss sums, Fourier duality, and Hochschild cohomology (Jacobi sums:
J = dG).

11.1. The “branching cover” character ξ(x) = xs. When counting points over
Fp, N(xs = a) is relevant. We may reduce s modulo p− 1, so we should consider the
bicharacter:

ξ : F×
p × Zp−1 → Fp, ξ(a, s) = as.

This is analogous to the RZF one ξ(n, s) = ns, who’s periodization over N yields the
RZF.

Exclude a = 0. Then a has x = a has a multiplicative structure in F×
p via the

Chinese Remainder Theorem and a choice of primitive root ζ s.t. < ζ >= F×
p :

η : F×
p → Zp−1 →

∏
prime q|p−1

Zqν(q) , a = ζk, k 7→ (k mod qν).

The minimal orbits of F×
p → Aut(Zp,+) are essential for the understanding of Gauss-

ian periods.
To study the number of solutions N(xm = a) in F×

p assumem|p−1 (it depends only
on gcd(m, p−1)). Then this is either zero or m [41], p.5, the size of the multiplicative
subgroup Um ⊂ F×

p of m-roots of unity.

Remark 11.1. If q = pn and m|q−1 then m = dd′ with d|p−1 and d′|1+p+ ...+pn−1;
does this give any structure to Nr, when r > 1? How is this related to the fact that
only genus g Nr’s are algebraically independent?
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The following Lemma ([41], p.5) represents the number of points as a character
sum (here ϵ is the trivial character), by duality.

Lemma 11.1.

N(xm = a) =
∑
ξm=ϵ

ξ(a).

Proof 3. For a = 0 this is trivial. If a = bm ∈ F×
p , i.e. a ∈ Imζm, with ζm(x) = xm

the corresponding character, then∑
ξm=ϵ

ξ(a) =
∑
ξm=ϵ

ϵ(b) = m = N(xm = a).

If a is not an mth power, then there is a character of order m not orthogonal on a,
under the Fourier duality for (F×

p , ·), i.e. χ′(a) ̸= 1. In general (group property):∑
ξm=ϵ

χ(a) = χ′(a)
∑
ξm=ϵ

χ(a).

But now χ′(a) ̸= 1 implies the sum vanishes, so it equals N(xm = a).

Remark 11.2. On can restate the content of the above Lemma and its proof in the
context of Fourier analysis in the multiplicative group F×

p . Viewed additively, it is a
multi-dimensional torus (Chinese Reminder Th.), and the sum is the Fourier Series
of the characteristic function of the image of ξ(x) = xm. Example p = 7 ...

Remark 11.3. The factor 2|p− 1 plays the role of the square in y2 = f(x), giving the
“surface property” to the Riemann surfaces. Can this idea be made more substantial?
It can be also associated to the two orientations on the cycle Zp−1; or the cone-like
structure.

11.2. Jacobi sums for our example. We use the above lemma to count the num-
ber of points on our main example of an elliptic curve. For the case of projective
hepersurfaces, see [41].

N(y2 = 1− x3) =
∑
b=1−a

N(x2 = b)N(x3 = a)

=
∑
a+b=1

∑
χ2
2=ϵ

∑
χ3
3=ϵ

χ2(b)χ3(a).

=
∑
chi2,χ3

∑
a+b=1

χ2(b)χ3(a) =
∑
chi2,χ3

J(χ2, χ3),

with

Definition 11.1. J(χ, χ′) =
∑

a+b=1 χ(a)χ
′(b), called the Jacobi sum (two variables).
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Since here the conductors of the Dirichlet characters χ2 and χ3 are relatively prime,
the Jacobi sum is related to Gauss sums as follows (§10.1.2, or Wikipedia):

J(χ2, χ3) = G(χ2)G(χ3)/G(χ2χ3) = dG(χ2, χ3),

where d is the Hochschild cohomology differential.

Remark 11.4. Recall that
1) for χ ̸= ϵ, |G(χ|) = √

q, belonging to the same quadratic extension as the Weil
zero.

2) the Gauss sum is essentially the Fourier coefficient of χ ([41], p.3, with α = 1;

see the role of the additive character ψ(α) = ζ
Tr(α)
p ):

G(χ) = qχ̂(−1).

11.3. Questions. A) What is the geometric interpretation of the Hochschild differ-
ential of Fourier coefficient (Gauss sum)? What kind of “curvature” is it?

B) If the Weil polynomial is the characteristic polynomial of an operator defined
in the quadratic extension Fp(

√
p), then a = 2Tr(α) (Weil root); what is the relation

with the roots of unity and the other trace and determinant (Galois group)? There
should be a relation between Weil zero and the factorization of p− 1:

α = a+ ib, a2 + b2 = p,

Are we here splitting p in the “Gaussian integer plane” of the “finite circle” Zp−1
∼=

F×
p ? Recall Lagrange sums of squares.
C) What is the numeric coincidences in our example, for a few primes p = 5, 7, ...?

What is the primes are “simple”, i.e. Fermat primes, with F×
p “Z-lines” (circles)?

12. On Weil zeros

What are the possible Weil zeros, for various EC and Fp?

12.1. Emphasis on the multiplicative structure F×
p . Let E : y2 = 1−g(x), g(x) =

x(x2 − Sx+ P ), so that we can correlate the number of points N1 of the EC E, with
the sizes of the subsets Ker(g) and Im(g) in the multiplicative group F×

p :

g : F×
p → F×

p , Ker(g) = g−1(1).

After excluding the point at infinity, the finite points (x, y) of E belong to three
different types of conditions:

1) y = 0 , x ∈ Ker(g), 2) y ̸= 0, 0 ̸= x ∈ Im(g) ∩QNR, 3) (y = ±1, x = 0).

Then N1 has two different, yet possibly related, representations:

|Ker(g)|+ 2 |Im(g) ∩QNR|+ 2 = N1 − 1 = p− Tr(α),

where α is the Weil zero of the Weil-Betti polynomial P1(x) = 1− Tr(α)x+ px2.
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12.2. Why Dirichlet characters and Gauss sums: Fourier Series. Probably a
Fourier series representation of g(x) in terms of multiplicative characters χ(x) would
relate this “numerical approach with the computation of number of points leading
to Jacobi sums. The case g(x) = x · (x − β)2 might be of special interest, with its
subcase g(x) = x3, or when g(x) = χ(x) is a multiplicative character.

When g(x) = χ(x) is a character, p − 1 = |Ker(g)| × |Im(g)|. Since |QNR| =
(p− 1)/2, a possible “Index Theorem” might relate these various sizes (or maybe an
Orbit-Stabilizer Theorem argument?).

For example, if g(x) = x3 is the character of order m = 3, assuming 3|p − 1, then
|Ker(g)| = 3 (cubic roots of unity), and Im(g) is a maximal “abelian hyper cone” in
F×
p

∼= Z/(p− 1)Z. The simplest case is p = 7.

12.3. Goals when using SAGE. Using SAGE we look for a correlation between
N1, |Ker(g), |Im(g) ∩ QNR| (QNR denotes the set of quadratic non-residues), and
the discriminant ∆ = S2 − 4P , which determines if g(x) has one or 3 roots in Fp.

Regarding the primes p tested, if 4|p− 1 and p = c2 + d2 splits, then the Weil zero
α = c+ id is a “Galois-Gaussian integer”, i.e. α ∈ Fp[i] (How to better express this?
Is Fp a “torus” already, with a complex structure? Is there a relation with Sophie
Germain primes p = 2q + 1, when p does not split?).

Since N1 = P1(1) there may be a correlation between the polynomials themselves:
P1(x) and x

2 − Sx+ P (or use 1− SX + Px2 standard form?).

12.4. Possible values from Lagrange Sum of Squares Theorem. Since α =
c+id, c2+d2 = p, the possible values correspond to the ways p splits in Z[i], assuming
p ∼= 1 mod 4, according to Fermat’s Two Squares Theorem. It means that x2 + 1 is
reducible in Fp[x], and the solutions correspond to x2 = −1, x ∈ Fp:

x2 = −1, d = cx, c ∈ Fp ⇒ α = c2 + d2 = p.

The multiplicity corresponds to 4th roots of unity. See also Wikipedia: “Proofs of
Fermat’s theorem on sums of two squares”.

The geometric analog involves branched covers of Riemann Surfaces [54].

12.5. Tasks. 1) List splittings c2 + d2 = p;
2) Compute Weil zeros / Number of points for EC for p ∼= 1 mod 4.

12.6. Is there a Deformation Theorem for EC?. How the number of points,
viewed as an intersection number of χ(x) = x2 and f(x) = a + bx + x3 in Fp,
depends on the coefficients of the Weiestrass form of the EC (or Lagrange form
y2 = x(x− 1)(x− λ))?

Is it better to represent the equation y2 = 1− xg(x) and look at the discriminant
of g instead?

The coefficients of the equation are “homotopically deformed” (in the sense of
automorphism orbits), the number of the solutions remains the same (the index does
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not change). This is an analog of Hopf’s Theorem for indexes / winding numbers
over the complex numbers.

12.7. Examples using SAGE. Fix the elliptic curve y2 = 1+x3. For various primes
the number of points etc., are:

p = 2 mod 4 = 2 N1(p) = 3 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 2x2 p− 1 = 1

p = 3 mod 4 = 3 N1(p) = 4 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 3x2 p− 1 = 2

p = 5 mod 4 = 1 N1(p) = 6 a := 1 + p−N1 = 0 P1(x) = 1− 0x+ 5x2 p− 1 = 22

p = 7 mod 4 = 3 N1(p) = 12 a := 1+p−N1 = −4 P1(x) = 1−−4x+7x2 p−1 = 2∗3
p = 11 mod 4 = 3 N1(p) = 12 a := 1+ p−N1 = 0 P1(x) = 1− 0x+11x2 p− 1 = 2 ∗ 5
p = 13 mod 4 = 1 N1(p) = 12 a := 1+p−N1 = 2 P1(x) = 1−2x+13x2 p−1 = 22 ∗3

A more detailed study will be provided elsewhere.

13. Conclusions

Proving Weil conjectures goes a long way around the still unknown geometric object
(cohomology) which yields the Weil zeta function as a graded Euler characteristic.
The study of Weil zeros considered above should provide insight into what this object
is.

14. Appendix: SAGE code

The data in the example section was generated with the following SAGE code.

14.1. Counting N(RS(y2 = f(x);Fp). Counting the number of points of a hyper-
elliptic curve y2 = f(x) over finite fields GF (pn,′ a′), for primary finite fields n = 1.
SAGE Code, as is, follows.

# Finite Field Z/pZ, so we are working mod p
# Define the procedure N1EC(p) for EC: yˆ2=1+xˆ3
def N1EC(p):
N=0;
for x in range(p):
f=mod(1+xˆ3,p)
if f==0:
N+=1;

elif kronecker(f,p)==1:
for y in range(p):
if mod(yˆ2,p)==f: N+=1;
return N+1

# End procedure
# Looping for various primes
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P=Primes();
for k in range(20):
p=P.unrank(k); N1=N1EC(p); a=1+p-N1
print “p=”, p, “ mod 4=”, mod(p,4), “ N1(p)=”, N1, “ a:=1+p-N1=”, a,
“ P1(x)=1-”,a,“x+”, p,“xˆ2”, “ p-1=”, factor(p-1)
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