Computation of multiple binomial Series based on geometric series

Chinnaraji Annamalai
School of Management, Indian Institute of Technology, Kharagpur, India
Email: anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584

Abstract

This paper presents addition of multiple binomial series based on geometric series. In general, a finite multiple summations of a geometric series are called binomial series. Addition of multiple binomial series is a sum and summation of multiple binomial series.

MSC Classification codes: 05A10, 40A05 (65B10)
Keywords: binomial series

I. Multiple summations of a geometric series

$\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} \ldots \ldots \ldots \sum_{i_{r}=i_{r-1}}^{n} x^{i_{r}}=\sum_{i=0}^{n} V_{i}^{r} x^{i}$
When substituting $r=1$ in the above binomial series, it becomes double summation of a geometric series,

$$
\begin{aligned}
& \sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} x^{i_{2}}=\sum_{i_{2}=0}^{n} x^{i_{2}}+\sum_{i_{2}=1}^{n} x^{i_{2}}+\sum_{i_{2}=2}^{n} x^{i_{2}}+\cdots+\sum_{i_{2}=n}^{n} x^{i_{2}}=1+2 x+3 x^{2}+\cdots+(n+1) x^{n} . \\
& 1+2 x+3 x^{2}+\cdots+(n+1) x^{n}=\sum_{i=0}^{n}(i+1) x^{i}=\sum_{i=0}^{n} V_{i}^{1} x^{i} .
\end{aligned}
$$

When substituting $r=2$, it becomes triple summation of a geometric series,
$\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}=\sum_{i_{2}=0}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\sum_{i_{2}=1}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\sum_{i_{2}=2}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\cdots+\sum_{i_{2}=n}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}=\sum_{i=0}^{n} V_{i}^{2} x^{i}$.
Similarly, if the above process continues up to r times, the $r^{\text {th }}$ equation becomes as follows:
$\sum_{i=0}^{n} V_{i}^{r} x^{i}=\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} \ldots \ldots . . \sum_{i_{r}=i_{r-1}}^{n} x^{i_{r}}$.
If substituting $r=0$, the series becomes the actual geometric series,
$\sum_{i=0}^{n} V_{i}^{0} x^{i}=\sum_{i_{1}=0}^{n} x^{i_{1}}=1+x+x^{2}+x^{3}+\cdots+x^{n}\left(\because V_{0}^{0}=V_{i}^{0}=v_{0}^{i}=1, i \in N\right)$.

II. Sum and summations of multiple binomial series [Annamalai, 2018]

$\sum_{i=0}^{n} V_{i}^{p+1} x^{i}=\sum_{i=0}^{n} V_{i}^{p} x^{i}+\sum_{i=1}^{n} V_{i-1}^{p} x^{i}+\sum_{i=2}^{n} V_{i-2}^{p} x^{i}+\cdots+\sum_{i=n-1}^{n} V_{i-(n-1)}^{p} x^{i}+\sum_{i=k}^{n} V_{i-k}^{p} x^{i}$,
where $V_{k}^{p}=\prod_{i=1}^{p} \frac{(k+i)}{p!}=\frac{(k+1)(k+2)(k+3) \cdots(k+p)}{p!} \& V_{k}^{p}$ is binomial coefficient.
For Example,

$$
\begin{aligned}
& \sum_{i=0}^{5} V_{i}^{2} x^{i}=\sum_{i=0}^{5} V_{i}^{1} x^{i}+\sum_{i=1}^{5} V_{i-1}^{1} x^{i}+\sum_{i=2}^{5} V_{i-2}^{1} x^{i}+\sum_{i=3}^{5} V_{i-3}^{1} x^{i}+\sum_{i=4}^{5} V_{i-4}^{1} x^{i}+\sum_{i=5}^{5} V_{i-5}^{1} x^{i} \\
& \sum_{i=0}^{5} V_{i}^{2} x^{i}=1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+21 x^{5} \\
& \sum_{i=0}^{5} V_{i}^{1} x^{i}+\sum_{i=1}^{5} V_{i-1}^{1} x^{i}+\sum_{i=2}^{5} V_{i-2}^{1} x^{i}+\sum_{i=3}^{5} V_{i-3}^{1} x^{i}+\sum_{i=4}^{5} V_{i-4}^{1} x^{i}+\sum_{i=5}^{5} V_{i-5}^{1} x^{i} \\
& =\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}\right)+\left(x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}\right) \\
& \quad+\left(x^{2}+2 x^{3}+3 x^{4}+4 x^{5}\right)+\left(x^{3}+2 x^{4}+3 x^{5}\right)+\left(x^{4}+2 x^{5}\right)+x^{5} \\
& \quad=1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+21 x^{5}
\end{aligned}
$$

Here, both sides are equal.
We can prove the binomial identity for $p=1,2,3, \ldots$
Hence, the sum and summations are proved.

III. Reference

Annamalai, C., (2018), A Model of Iterative Computations, for Recursive Summability, Tamsui Oxford Journal of Information and Mathematical Sciences, Taiwan, 32(1), 75-77 \& Mathematical Reviews, American Mathematical Society. United States of America, MathSciNet: https://mathscinet.ams.org/mathscinet-getitem?mr=3982555.

