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ABSTRACT 

In this paper we consider a result on rings in which each element is a sum of two 
idempotents appeared in [1] and we improve the result by providing a counterexample.  
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Introduction 

Rings in which each element is a sum of two idempotents have been studied in [1-2]. In 
this note we consider an important result appeared in [1] and we provide an important 
observation on this result. We improve this result by providing a counterexample.  

As per [1, Proposition 6.1] the following are equivalent for a ring R . 

(1) Every element of R is a sum of two idempotents. 

(2) 21 RRR  , here   21 Rch  and every element of 1R  is a sum of two 
idempotents, and 2R  is zero or a subdirect product of 3Z ’s. 

 

In this note each ring R is a unital and associative ring. It may be noted that an 
element Ra  is called idempotent if aa 2  and R  is called Boolean if aa 2 for 
each Ra [1-2]. 



 

In the next section we provide an example which serves as a counterexample for the 
above result of [1]. 

 

2. Observation 
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R  .  

One may verify that R is a commutative ring of characteristic three under addition and 
multiplication of matrices modulo three.  

We note that  
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Thus each element of R is a sum of two idempotents. 

Let 21 RRR  . It may be noted that since R  is a ring of order nine and its 
characteristic is three and therefore the characteristic of 1R  can never be two.  

Therefore this example serves as a counterexample for the above result of [1]. 
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