Not allowed odd maxima of cyclic Collatz sequences.

Savinov Sergei

Abstraction: The preprint provides a calculation of the not allowed odd maxima of cyclic Collatz sequences

1. Formulation of the lemma on cyclic sequences:

If the numbers $(k a+1)=b 2^{q},(k b+1)=c 2^{t},(k c+1)=a 2^{u}$ form a Collatz conjecture cycle, then the expression (1) holds

$$
\begin{equation*}
(k a+1) *(k b+1) *(k c+1) \ldots=2^{m} * a * b * c \ldots \tag{1}
\end{equation*}
$$

In the text: a, b, c - are odd integers; $k, m, n, h, f, N, q, t, u$-are integers
2.

Expression (1) in another form (2)

$$
\begin{equation*}
\frac{(k a+1)(k b+1)(k c+1)}{a b c}=2^{m} \tag{2}
\end{equation*}
$$

If the numbers $b, c,(k a+1),(k b+1)$ form a Collatz conjecture corresponding to expression (3), then the only condition for the formation of a cycle is expression (4)

$$
\begin{gather*}
\frac{(k a+1)(k b+1)}{b c}=2^{n} \tag{3}\\
\frac{(k c+1)}{a}=2^{h} \tag{4}
\end{gather*}
$$

Thus, the lemma can be expressed by condition (4).

Odd numbers can be represented in the form (5), then the numbers $(k a+1)$ have the form (6)

$$
\begin{gather*}
a=2 f-1 \tag{5}\\
(k a+1)=2 k f-k+1 \tag{6}
\end{gather*}
$$

The number $(k c+1)$ can be represented in the form (7)

$$
(k a+1)-(k c+1)=2 k \Delta f
$$

$$
\begin{aligned}
& \boldsymbol{N}=\Delta f=\frac{\boldsymbol{a}+\mathbf{1}}{\mathbf{2}}-\frac{\boldsymbol{c}+\mathbf{1}}{\mathbf{2}}=\frac{\boldsymbol{a}-\boldsymbol{c}}{\mathbf{2}} \\
& (k c+1)=(k a+1)+2 k N
\end{aligned}
$$

Then the condition lemma can be represented by (8.1) and (8.2)

$$
\begin{equation*}
\frac{(k a+1)+2 k N}{a}=2^{h}(8.1) \frac{(k(2 f-1)+1)+2 k N}{(2 f-1)}=2^{h} \tag{8.2}
\end{equation*}
$$

3. Expression (8.2) is converted to (9)
$\frac{\left(k\left(2 f_{a}-1\right)+1\right)+2 k N}{\left(2 f_{a}-1\right)}=2^{h}, \quad k f_{a}-\frac{(k-1)}{2}+k N=2^{h-1}\left(2 f_{a}-1\right)$
Accordingly,
If $k=3$, then the expression (9) has the form (10):

$$
\begin{equation*}
(3 f+3 N)-1=2^{h} f-2^{h-1} \tag{10}
\end{equation*}
$$

If $k=5$, then the expression (9) has the form (11).

$$
\begin{equation*}
(5 f+5 N)-2=2^{h} f-2^{h-1} \tag{11}
\end{equation*}
$$

4. With a certain parity ratio between the numbers f and N, it is possible to exclude cycles.

$$
\begin{align*}
f_{a}=\frac{a+1}{2}, & N \\
& =\frac{c-a}{2}, \quad \frac{a+1}{2} \equiv \frac{c-a}{2} \tag{9}\\
f_{a} & \equiv \boldsymbol{N} \quad \text { (9) }
\end{align*}
$$

$$
\begin{gathered}
2 f=c-(2 f-1) \\
4 f-1=c
\end{gathered}
$$

Thus, the numbers (c) of the form $4 x-1-(3,7,11,15,19 \ldots)$ they correspond to condition (9), and cannot be the maximum of cycles for the sequence Collatz conjecture ($k=3$), but are the only maxima of possible cycles for sequencesuwith $k=5$. The remaining numbers (c) of the form $4 x+1$ have the inverse property with respect to the maxima of cycles.

