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Abstract. Intuitively, prime numbers of “Number systems” (rings) are the build-
ing blocks of their elements.

We start from natural numbers and Gaussian integers to explain more general
frameworks, like the structure theorem for finitely generated Abelian groups.

We end with a 1 million dollar puzzle, the Riemann Hypothesis, and point to the
fact that prime numbers are dual to the Riemann zeros.

Some easy references are provided.
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1. Fundamental Theorem of Arithmetic

1.1. Rational primes. Primes 2, 3, 5... are the natural numbers that cannot be fac-
tored.

Through multiplication they generate all natural numbers:

(N, ·) =< 2, 3, 5, ... >

This is known as the Fundamental Theorem of Arithmetic

Theorem 1. Any natural number can be represented as a product of primes, in a
unique way modulo order:

n =
∏

pk11 ...pkll , ex. : 12 = 22 · 3.

This is the “free case”, where the generators are independent, and we may think
of elements as functions: Q = F (Spec(Z), Z) (extending the framework to ring of
rational numbers).

1.2. Gaussian primes. If we extend (Z,+, ·) to Gaussian integers, which are com-
plex numbers of the form n+ im, with n and m integers, we have an analog of such
elements that cannot be factored non-trivially, called Gaussian primes.

Examples: 1+ i, 1 + 2i, 2 + 3i etc. Some rational primes are still Gaussian primes:
3, 7, 11 etc.

Since we have enlarged the number system from Z to Z[i], we expect more fac-
torizations of integers are possible, hence some of the rational primes are no longer
irreducible here:

2 = (1 + i)(1− i), 5 = (1 + 2i)(1− 2i) · · ·

1.2.1. ... and the Two Squares Theorem of Fermat. A beautiful theorem due to
Pierre de Fermat, a French “amateur” mathematician from 17th century, tells us
which rational primes factor into a product of Gaussian primes (split), and which do
not (are inert).

Theorem 2. An odd rational prime p factors as a Gaussian integer iff p ∼= 1 mod 4.
Then we have:

p = (m+ in)(m− in) ⇔ p = m2 + n2.
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Example 13 = (2 + 3i)(2− 3i), 13 = 22 + 32, where indeed 13 ∼= 1 mod 4.

Why mod 4? ... to have a congruence arithmetic analog of i, i.e. an element of
order four i4 = 1, so we would have a 2D analog of the Gaussian plane / integers (a
torus here).

The analog of the Fundamental Theorem of Arithmetic holds true in this Number
System.

It is not true that il will hold in more general extensions. For example

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provides two distinct factorizations of 6 in Z[
√
−5].

1.3. On Mathematical Structures.

1.3.1. Numbers as Shadows of Mathematical Structures. For the Abstract Algebra
aficionado, we mention that natural numbers are sizes of Abelian groups (“integrals”
with respect to counting measure) and the Fundamental Th. of Arithmetic is the
“shadow” of the Fundamental Theorem for (finitely generated) Abelian Groups.

For example 6 = 2 · 3 “comes from” the Chinese reminder Theorem saying in this
case Z/6 = Z/2× Z/3.

Specifically, taking the number of elements of abelian groups in the FT for Finitely
Generated Abelian Groups yields the FTA for natural numbers.

Example: for n = 12 we have, with notation Zn := Z/n:

Z/12 ∼= Z22 × Z3, 12 = |Z12| = |Z22 × Z3| = 22 · 3,

The linear version of this is taking the dimension of vector spaces.

2. Structure of Prime Numbers

2.1. Generating primes.

2.1.1. What is the structure of Primes Numbers? While N =< Primes >, what
about Primes =< · · · >? How can we generate the prime numbers?
For example, new primes can be generated by the Euclid “trick”, used in his proof

that there are infinitely many prime numbers:

N = p1p2...+ 1 =
∏

qi.

We use here the term “generated” in the sense that new primes qi result from the
factorization of N .
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For example:

2 · 3 · 5 + 1 = 31

but the 6-th primorial fails to yield in this way a prime:

N(p5#) = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509.

2.1.2. Generating the Prime Numbers. The ancient method for determining prime
numbers less then a given bound, and hence “generating” prime numbers, is the
well-known Erathostene’s Sieve.

There is a new procedure for generating prime numbers invented by McCanney
(2006) [3, 2], using primorials.

Specifically, apply Erathostene Sieve elimination of multiples of previously found
primes, to the integers generated by a generalization of Euclid’s trick:

N = p#n ± q.

Here we add or subtract q, which is either the unit as in Euclid’s trick, or a prime
already generated, but bigger than pn. Example: with 2, 3 already found, N1 = 2·3±1

gives 5, 7 and N2 = 6 + 5 = 11, N3 = 6 + 7 = 13. We get in one iteration four more
primes.

2.2. Deconstructing primes.

2.2.1. Deconstructing primes. The reverse procedure of deconstructing a prime works
every time:

13− 1 = 22 · 3, 31− 1 = 2 · 3 · 5.

This is the shadow of the Chinese Reminder Theorem applied to the group of
automorphisms of the primary abelian groups (Z/p,+); or if you like better, the
group of units of the ring (Z/p,+, ·), which happens (for a reason) to be a field 1.

For example:

F ∗
13 = (Z/13,+, ·)∗ ∼= Z/12 = Z/22 × Z/3.

Lazlo Fuchs-like Question: when Euclid’s trick yields a prime? Equivalently
when multiplying primary abelian groups yields the group of units of a ring, and
when is that ring a field?

2.3. The POSet of Prime Numbers.

1this may be confusing at first reading ...
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2.3.1. The POSet of Primes. This leads to a partial order set structure on the set of
primes: to each prime we can associate a rooted tree, by repeatedly deconstructing
primes (see my paper [1]).

For example 13− > (2, 3) and 3− > 2 while 2 is a final node in such a rooted tree.
Another example for p = 47 can be found in [1].

The rooted tree comes from the graph representing the partial order, with 2 as a
final node.

If we consider all primes, we have an infinite graph originating from 2, extending
“upwards”, representing the POSet of Prime Numbers.
More examples: p = 131, ...

2.3.2. Parameters and Properties. There are several parameters / weights that “grade”
the primes, refining the linear order defined by their sizes (position on the x-axis):

1) Depth of the graph associated to a prime; ex. d(31) = 3, depth of Fermat
primes is 1;

2) Width of the POSet at a given height; e.g. w(1) = 2 etc.

One has obvious candidates for “refining” The Prime Number Theorem: how many
primes are there at a given height, correlation depth / size etc.

Note there are other properties associated to primes, like the branching rank rk;
for Sophie Germain primes q = 2p + 1 (safe primes) it is rk = 1 (number of cyclic
generators of symmetries; 2 is a reflection in Fq).
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Here we have disregarded the powers of primes entering as descendants (symme-
tries) of a prime (finite field).

3. The Duality Primes - Riemann Zeros

3.1. Riemann Zeta Function Zeros. Riemann zeros are the non-trivial zeros of
the Riemann zeta function, which is an analytic function of a complex variable s:

ζ(s) =
∑

n=1,2,3...

n−s =
∏ 1

1− p−s
.

These are zeros in the sense of analitic continuation (ln ζ(s) has periods there:
Cauchy loop integrals).

All the zeros computed are of the form sk = xk + iyk, with xk = 1/2. The first few
ordinates are yk : 14.1..., 21.0..., 25.0..., 31.4..., for k = 1..3.

Riemann Conjecture. All Riemann zeros are situated on the vertical line z = 1/2.

It is one of the Millennium Problems, with a 1 mil dollars price on its proof.

3.2. The Duality.

3.2.1. A first connection with Primes. Note the presence of primes in Euler’s product
form of the RZF.

Assuming RC and rewriting, yields:

p−sk
j = p

− 1
2

j p−iyk
j =

√
pje

2πi(yk/2π) ln pj ,

we see ln p pop-out ... What are these polar angles, we don’t know (may be an analog
/ related to Gauss periods and Weyl zeros that we understand in connection with
finite fields and Weyl conjectures: see my articles on this subject, as well as [4]).

3.2.2. The Prime-Zeros Duality. There is an Fourier-like transform (Dirichlet trans-
form as a discrete Melin transform) that relates prime powers and zeros: a series
on prime powers localizes at R-zeros and a series on R-zeros that localizes at prime
powers, in the sense of distributions (generalized functions, like Dirac delta function).

See [5] for details and the easy books [6, 7].

3.3. Behind Riemann Zeros: shadows of ... what?

5



Akman and Ionescu Arithmetic Galois Theory

3.3.1. Finite fields and primes. Numbers are shadows of Abelian groups (f. gen.):

Z/6 = Z/2× Z/3, 6 = 2 · 3.

Prime powers are shadows of finite fields Fpk and of primary abelian groups Z/pk:

|F7| = 7, |F ∗
7
∼= Z2 × Z3| = 6 = 2 · 3.

The later are truncations of p-adic numbers!

Categorically speaking, integration on f. gen. Abelian groups is a multiplicative
functor: Fundamental Theorems for Abelian groups / natural numbers.

Note also that the multiplicative group of a finite field F ∗
p is Aut(Z/p,+) is a torsor

(“loop group” / algebraic fundamental group), and the POSet’s nodes are obtained
by repeatedly applying Aut().

3.3.2. Riemann zeros and ... what? Since primes and zeros are in duality, what is
the mathematical object analog to a finite field Fp, via this duality?
Note that the finite field is really the tautological representation:

F ∗
p
∼= Aut(Z/p,+)

ρ→ Aut(Z/p,+).

If p = |Fp| is thought of as a “discrete period” (cardinal as a measure) then what
corresponds to a Riemann zero, or better as a pole of the inverse of RZF?

So, the “primes-zeros game” is played in the category Abf.g. with some Fourier
Transform (group rings and arithmetic functions?) ...

Indeed ...

3.3.3. ... and Fundamental Theorem of Discrete Calculus. Recall that Mobius func-
tion µ and the constant function 1 are inverse to one another with respect to convo-
lution and that Dirichlet Transform D is a homomorphism:

1(n) ⋆ µ(n) = δ(n) and D(1) = RZF ⇒ D(µ) = 1/RZF.

Now convolution with 1 is summation (discrete integration) and convolution with µ
is finite difference operator (differentiation).

These two operators
∫
(f) = 1 ⋆ f and d(f) = µ ⋆ f are “inverse” to one another,

satisfying the Fundamental Theorem of Discrete Calculus for arithmetic functions.
... so, what else!?
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3.3.4. ... and Weyl Zeros. Finite fields allow to consider algebraic curves (group ring
and polynomials) and the theory of Weyl zeros at a prime.

Riemann zeros should be related to Weyl zeros in some way; finite fields are “Spec”
(irred. / tangent spaces in the sense of Deformation Theory) of Ab, so we expect R-
Spec to be in some sense global periods of collections of Weyl zeros ...

These is just food for thought, of course, with a millenium price for understanding
this RH “puzzle” (with so many math pieces interconnected).
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