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1 INTRODUCTION

The importance of the polar representation of complex numbers and quaternions is widely known. Here we endeavor to extend
this approach to the higher dimensional associative Clifford geometric algebra Cl(2, 1), which plays an important role in geome-
try, physics and computer science3,4,14,31,20,38. Namely, it is the physical algrebra of 2+1 space-time, and the conformal geometric
algebra Cl(1 + 1, 1) of one-dimensional Euclidean space ℝ1. Our results may therefore be of special interest in the special the-
ory of relativity, and for the conformal geometry of a Euclidean line. Moreover, this algebraic study will also help to further
elucidate the structure of Clifford algebras.
Exponentials of hyper complex elements and blades also appear as kernels in complex, quaternionic and Clifford Fourier and

wavelet transforms21,29. Important related questions are the computation of logarithms ofmultivectors8,5, square roots8,17,19,22,32,
inverses6,1,23,36, transformation rotors15,30,7,2,37,35, and polar decompositions8,34, etc. Concrete applications may therefore be to
forward and reverse kinematic motions of robot arms, where such factorizations could be useful, or in drone controls.2
In earlier work the question of factorization into exponential factors, blades and idempotents for Clifford algebras Cl(p, q),

n = p + q = 1, 226 has been studied, as well as for Cl(3, 0), Cl(1, 2), and Cl(0, 3) in27. This motivates us to progress by
extending26 and27 to the relatively more involved case Cl(2, 1).
Because subalgebras isomorphic to the algebra of hyperbolic numbers appear frequently, we include the description of hyper-

bolic planes of26 again, also in order to introduce important notation. Furthermore, the subalgebra structure, in particular that of
even subalgebras, is seen to play an essential role, therefore we also study the even subalgebra ofCl(2, 1), isomorphic toCl(2, 0),
i.e. split-quaternions or coquaternions. As far as possible we aim at explicit, step by step verifiable proofs. An introduction to
Clifford geometric algebras is contained in18, a concise mathematical definition in10, and a comprehensive study relevant for
mathematics and physics in14.

1The use of this paper is subject to the Creative Peace License 16. We dedicate this paper to the truth (Jesus: I am the way and the truth and the life. No one comes to
the Father except through me, see John 14:6, NIV). Soli Deo Gloria.

2Private communcation with R. Abłamowicz.
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Because Cl(2, 1) is not a division algebra, we necessarily have non-invertible multivectors and their factorizations are found
to include non-invertible idempotents as factors or even their linear combinations. Note that we also include the representation
(2.11) for elements of a hyperbolic plane in our wider notion of exponential factors.
The paper is structured as follows. Section 2 reviews26 hyperbolic numbers and their factorization in terms of exponentials

and idempotents, and invertibility. Section 3 studies the important even subalgebra of Cl(2, 1), providing essential results for the
full blown study of Cl(2, 1) following later. The elaborate direct factorization in Cl(2, 1) of Section 4 has results summarized
in Section 5, which in some sense also shows the limitations of our approach, and the emerging complexity, mainly due to the
intricate idempotent structure. The paper concludes with Section 6, followed by acknowledgments and references.

2 HYPERBOLIC PLANES

Since subalgebras isomorphic to the algebra of a hyperbolic plane3 will occur repeatedly in our analysis, and to establish notation
for later use in this paper, we reproduce this short study of hyperbolic planes from26. An element u ≠ 1 that squares to u2 = +1
generates a hyperbolic plane {b + au}, a, b ∈ ℝ with basis {1, u}. A relevant alternative basis {id−, id+} is given by two not
invertible idempotents

id+ =
1 + u
2

, id− =
1 − u
2

, id+ + id− = 1, id+ − id− = u,

id2+ = id+, id2− = id−, id+id− = id−id+ = 0. (2.1)

Adopting the definitions

x0 = 1, 0! = 1, ex =
∞
∑

k=0

xk

k!
, (2.2)

for powers of a general element x and its exponential4, we obtain for a ∈ ℝ

ea id± = 1 + (ea − 1)id±, eau = cosh a + u sinh a. (2.3)

General nonzero elements m = b + au of the hyperbolic plane can be classified by whether |a| = |b| (m is not invertible), or
|a| ≠ |b| (m is invertible). For |a| = |b| we have the four subcases

b = a > 0, m = 2b id+,
b = a < 0, m = 2b id+ = −2|b| id+,
b = −a > 0, m = 2b id−,
b = −a < 0, m = 2b id− = −2|b| id−.

(2.4)

Examples are for each line of (2.4): 1 + u = 2(1 + u)∕2 = 2id+,−2 − 2u = −4(1 + u)∕2 = 4(−id+), 3 − 3u = 6(1 − u)∕2 =
6id−,−4 + 4u = −8(1 − u)∕2 = 8(−id−). Thus according to (2.4) for |a| = |b| ≠ 0 we can always represent m as5

m = 2|b|ℎid(u), with ℎid(u) ∈ {±id+,±id−}, (2.5)

and therefore as
m = e�0ℎid(u), �0 = ln(2|b|). (2.6)

Note that ℎid(u)2 = id±. Geometrically, the four values of ℎid(u) specify four bisector directions, one in each quadrant of the
hyperbolic plane. Because idempotents id± are not invertible, all hyperbolic numbers with |a| = |b| cannot be inverted.
For general (evidently nonzero) elements m = b + au with |a| ≠ |b| we can distinguish four subcases

b > |a| ≥ 0, m = b + au,
a > |b| ≥ 0, m = (a + bu)u,
b < −|a| ≤ 0, m = −(−b − au),
a < −|b| ≤ 0, m = −(−a − bu)u.

(2.7)

3The Clifford algebra Cl(1, 0) and the even subalgebra Cl2(1, 1) (itself a subalgebra of Cl(2, 1)) of the two-dimensional space-time algebra are both isomorphic to
the hyperbolic plane. Invertible elements of Cl2(1, 1) represent boosts (changes of velocity), of elementary importance in special relativity.

4In this paper we do not make further use of ea id± . But we note that even though id± is not invertible, ea id± has inverse e−a id± , similar to null-vectors not being
invertible, but their exponential functions have a multiplicative inverse.

5Note that (2.5) together with (2.4) provides a unique specification for the assignment of ℎid (u) from the set {±id+,±id−}, thus effectively defining the four-valued
function ℎid (u). Similarly (2.8) together with (2.7) effectively defines ℎ(u) uniquely.
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TABLE 1 Multiplication table of Cl2(2, 1).

1 e12 e23 e31
1 1 e12 e23 e31
e12 e12 −1 −e31 e23
e23 e23 e31 +1 e12
e31 e31 −e23 −e12 +1

Examples for (2.7) are line by line: 4 ± u,±1+ 4u = (4 ± u)u,−4∓ u = −(4 ± u),∓1− 4u = −(4 ± u)u. Thus according to (2.7)
for |a| ≠ |b| we can always represent any m as

m = (� + �u)ℎ(u), with ℎ(u) ∈ {±1,±u}, (2.8)

such that � > |�| ≥ 0, and therefore m can be factored as

m = e�0m′ = e�0e�uuℎ(u), �0 =
1
2
ln(�2 − �2), �u = atanh(�∕�). (2.9)

In the examples for (2.7) we have � = ±1, � = 4, �0 ≈ 1.35, �u ≈ ±0.255. Note that ℎ(u)2 = 1 and therefore ℎ(u)−1 = ℎ(u).
Geometrically, the four possible values of ℎ(u) uniquely specify the four quadrants in the hyperbolic plane, delimited by two
straight lines (bisectors) with directions id±. The inverse of hyperbolic numbers with |a| ≠ |b| can always be easily computed as

m−1 = e−�0e−�uuℎ(u). (2.10)

In summary, any m = b + au ≠ 0 in the hyperbolic plane can be factorized as

m = E(m) = E(a, b, u) = e�0
{

ℎid(u) for |a| = |b|,
e�uuℎ(u) for |a| ≠ |b|.

(2.11)

Equation (2.11) provides a first example of what we mean by exponential factorization. Note that we introduce the new notation
E(m) = E(a, b, u) to indicate the factorization (2.11) in terms of one or two exponential functions and eight possible values.
The computation of the factorization (2.11) is based on (2.4) to (2.6) for the first four cases involving idempotents, i.e. ℎid(u) ∈
{+id+,−id+,+id−,−idi}, and on (2.7) to (2.9) for the remaining four cases involving the hyperbolic exponential factor and
ℎ(u) ∈ {+1,−1,+u,−u}. The hyperbolic number m is invertible if and only if |a| ≠ |b|.

3 THE EVEN SUBALGEBRA OF CL(2, 1)

3.1 Isomorphism of even subalgebra of Cl(2, 1)
We can expect that the even subalgebra Cl2(2, 1) with basis {1, e12, e23, e31} of Cl(2, 1) might be of high relevance for
factorization. It has the following multiplication table: Table 1 .
Furthermore, the table is isomorphic to Cl(2, 0) by identifying e1 = e′23, e2 = e′31, e12 = e′12, where {e1, e2, e12} ⊂ Cl(2, 0)

and {e′12, e
′
23, e

′
31} ⊂ Cl2(2, 1).

The isomorphism with Cl(2, 0) does allow to utilize the factorization of Cl(2, 0) derived in Section 5 of26. We recapitulate
the result here6

m = m1e1 + m2e2 + m0 + m12e12

=

⎧

⎪

⎨

⎪

⎩

e�0e�2e12 , �0 = ln(b), �2 = atan2(m12, m0) for m1 = m2 = 0,
e�′0u′, �′0 = ln(a), for m0 = m12 = 0,
(b + au) e�2e12 = E(a, b, u) e�2e12 , otherwise,

(3.1)

where

a =
√

(m1e1 + m2e2)2 =
√

m21 + m
2
2, b =

√

m20 + m
2
12,

u′ = (m1e1 + m2e2)∕a, u = e�2e12 u′, (3.2)

6Note that the meaning of atan2(y, x) is the mathematically positive angle of the vector xe1 + ye2 with the x-axis in the Euclidean plane, if the vector is attached to
the origin.
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and E(a, b, u) has been defined in (2.11). Because a and b are positive, the eight possible values of E(a, b, u) reduce to only
three, i.e. only the first line of (2.4) and the first two lines of (2.7) are relevant. We further observe about (3.1) that the third line
subsumes the first for a = 0, and the third line subsumes the second for b = �2 = 0. This means that m ∈ Cl(2, 0), can always
be factored in the form

m = (b + au)e�2e12 , (3.3)
with a ≥ 0 and b ≥ 0. And m is always invertible, except when a = b. In (3.3) u is a vector with positive unit square and e12 is
a bivector with negative unit square. In the next Section 3.2, we discuss an interesting alternative factorization which aims at a
single exponential factor with bivector exponent, and explain why we still prefer (3.3) in the rest of this paper.

3.2 Alternative factorization of Cl2(2, 1)
An alternative factorization of Cl2(2, 1) can be obtained in the following way.

m = m0 + m23e23 + m31e31 + m12e12. (3.4)

We distinguish five cases. First m0 ≠ 0, ⟨m⟩2 = m23e23 + m31e31 + m12e12 = 0 :

m = m0 =
m0
|m0|

e�0 = ± e�0 , �0 = ln(|m0|). (3.5)

Second, ⟨m⟩22 < 0 :

m = m0 + |⟨m⟩2|
⟨m⟩2
|⟨m⟩2|

= ame�2i2 = e�0e�2i2 , |⟨m⟩2| =
√

−⟨m⟩22,

i2 =
⟨m⟩2
|⟨m⟩2|

, i22 = −1, �2 = atan2(|⟨m⟩2|, m0),

am =
√

m20 + |⟨m⟩2|2 =
√

m20 − ⟨m⟩22, �0 = ln(am). (3.6)

We observe that the second case subsumes the first case for �2 ∈ {0, �}. Third, m0 = 0, m = ⟨m⟩2 ≠ 0, m2 = ⟨m⟩22 = 0 :

m = ⟨m⟩2 = e�0 i2, �0 = ln(
√

2|m12|), i2 =
⟨m⟩2

√

2|m12|
, m2 = i22 = 0. (3.7)

We observe that in the third case m is a not invertible null-bivector. As an example7 for the third case we consider the following
example.

Example.

m = ⟨m⟩2 = 3e12 + 3e23 ≈ e1.45
e12 + e23
√

2
, m12 = |m12| = m23 = 3,

�0 = ln(
√

2 3) ≈ 1.45, i2 =
e12 + e23
√

2
. (3.8)

Fourth, m0 ≠ 0, ⟨m⟩2 ≠ 0, ⟨m⟩22 = 0 :

m = m0 + ⟨m⟩2 = m0(1 +
1
m0

⟨m⟩2) =
m0
|m0|

e�0(1 + �2i2) = ±e�0e�2i2 ,

�0 = ln(|m0|), i2 =
⟨m⟩2

√

2|m12|
, �2 =

√

2|m12|
m0

, (3.9)

where the sign factor is determined by m0
|m0|

= ±1. Fifth, ⟨m⟩22 > 0 :

m = m0 + ⟨m⟩2 = m0 + |⟨m⟩2|i2 = E(|⟨m⟩2|, m0, i2),

|⟨m⟩2| =
√

⟨m⟩22, i2 =
⟨m⟩2
|⟨m⟩2|

, i22 = +1, (3.10)

7In conformal geometric algebra Cl(4, 1) two null-vectors are defined for the origin and for infinity. Conventionally they are e0 = (e5 − e4)∕2, e∞ = e5 + e4, such that
e0 ⋅ e∞ = −1. In certain contexts it has proven to be of advantage to instead choose a symmetric definition e0 = (e5 − e4)∕

√

2, e∞ = (e5 + e4)∕
√

2, see e.g. 25. By analogy,
this motivates our introduction of

√

2 in the denominator of the null bivector i2 above.



5

where E(|⟨m⟩2|, m0, i2) is determined by (2.11), with a = |⟨m⟩2|, b = m0, u = i2. In the fifth case m is not invertible for
|m0| = |⟨m⟩2|. We finally summarize all five cases8

m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

±e�0 for ⟨m⟩2 = 0,
e�0e�2i2 for ⟨m⟩22 < 0,
e�0 i2 for m0 = 0, ⟨m⟩2 ≠ 0, ⟨m⟩22 = 0,
±e�0e�2i2 for m0 ≠ 0, ⟨m⟩2 ≠ 0, ⟨m⟩22 = 0,
E(|⟨m⟩2|, m0, i2) for ⟨m⟩22 > 0.

(3.11)

Let us compare the factorizations (3.3) and (3.11): (3.11) always has only one bivector exponential (except for the third line
e�0 i2), but it is more complicated (more case distinctions) than (3.3). Because following (3.3) all cases can be accommodated in
the single expression m = (b + au)e�2e12 , with a ≥ 0 and b ≥ 0, which is always invertible except when a = b (presence of an
idempotent factor for a = b ≠ 0). The inverse is given by

m−1 = e−�2e12(b + au)−1 = e−�2e12 b − au
b2 − a2

, (3.12)

whenever a ≠ b, compare (3.2). By these reasons, we prefer to use (3.3) in the rest of the paper.

4 DIRECT FACTORIZATION OF CL(2, 1)

Because the unit pseudoscalar i in Cl(2, 1) squares to i2 = +1 the idempotent structure becomes even more complex than e.g.
in Cl(1, 2)27.

4.1 The product mm
In Cl(2, 1) the central pseudoscalar squares to i2 = +1 and

e21 = e
2
2 = −e

2
3 = −e

2
12 = e

2
31 = e

2
23 = 1,

e1 = ie23, e2 = ie31, e3 = −ie12. (4.1)

This allows us to rewrite a general multivector as

m = m0 + m1e1 + m2e2 + m3e3 + m12e12 + m31e31 + m23e23 + m123i
= m0 + m23e23 + m12e12 + m31e31 + i(m123 + m1e23 + m2e31 − m3e12)
= p0 + p12e12 + p23e23 + p31e31 + i(q0 + q12e12 + q23e23 + q31e31)
= p + iq (4.2)

with suitable identifications of the eight coefficients of m with four coefficients of p and four coefficients of q, where both
p, q ∈ Cl2(2, 1) ≅ Cl(2, 0). We can therefore represent both p and q as

p = (bp + apup)e�2pe12 , bp =
√

p20 + p
2
12, ap =

√

p223 + p
2
31, u2p = 1,

q = (bq + aquq)e�2qe12 , bq =
√

q20 + q
2
12, aq =

√

q223 + q
2
31, u2q = 1, (4.3)

following (3.1). The unit bivectors up, uq , with positive square, are linear combinations of e23 and e31. We now give an example.

Example. Note that in this example we always round after the fourth nonzero digit. Assume a multivectorm ∈ Cl(2, 1), i = e123,
with value

m = 6 e1 + 38 e2 + 28 e3 + 24 e123 = i (24 − 28 e12 + 6 e23 + 38 e31)
= i (36.88 + 38.47 uq) e−0.8622 e12 , (4.4)

8Note that in lines two to five of (3.11) the bivectors i2 are specific to each line, as defined in (3.6), (3.7), (3.9), and (3.10), respectively.
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with aq = 38.47, bq = 36.88, �2q = −0.8622, and

u′q =
6 e23 + 38 e31

38.47
= 0.1560 e23 + 0.9878 e31,

uq = e−0.8622e12u′q = (cos 0.8622 − e12 sin 0.8622)(0.1560 e23 + 0.9878 e31)

= (0.6508 − e12 0.7593)(0.1560 e23 + 0.9878 e31)
= 0.1015 e23 + 0.6429 e31 − 0.1185 e12e23 − 0.7500 e12e31
= (0.1015 − 0.7500) e23 + (0.6429 + 0.1185) e31 = −0.6485 e23 + 0.7614 e31,

u2q = 0.6485
2 + 0.76142 = 1.000. (4.5)

The factorization of bq + aquq = 36.88+ 38.47(−0.6485 e23 +0.7614 e31) = E(aq , bq , uq), which has aq > bq , hence ℎ(uq) = uq ,
gives by (2.9)

E(aq , bq , uq) = bq + aquq = (aq + bquq) uq ,= (38.47 + 36.88uq) uq = e2.393e1.930 uq uq . (4.6)
So the full factorization of m = 6 e1 + 38 e2 + 28 e3 + 24 e123 becomes

m = e2.393 e1.930 uq uq e−0.8622 e12 i, (4.7)

where uq is defined in (4.5). This ends the example.

If ap = bp = 0 (compare e.g. the above example) or aq = bq = 0, then the final factorization is given by

m = iq = i(bq + aquq)e�2qe12 (4.8)

or by
m = p = (bp + apup)e�2pe12 , (4.9)

respectively. In the rest of this section we can therefore assume that both p ≠ 0 and q ≠ 0.
p is proportional to an idempotent (1+ up)∕2 and not invertible for ap = bp, and likewise q is is proportional to an idempotent

(1 + uq)∕2 and not invertible for aq = bq . For later use we compute

pp = b2p − a
2
p, qq = b2q − a

2
q ,

1
2
(qp + pq) = p0q0 + p12q12 − (p23q23 + p31q31). (4.10)

Let us also compute

mm = (p + iq)(p + iq) = pp + i2qq + i(qp + pq) = pp + qq + i(qp + pq). (4.11)

4.2 Discussion for non-invertible mm
mm is zero if (1) the following sum is zero

pp + qq = b2p − a
2
p + (b

2
q − a

2
q) = b

2
p + b

2
q − (a

2
p + a

2
q) = 0, (4.12)

and (2) a sort of four-dimensional hyperbolic orthogonality condition is met
1
2
(qp + pq) = p0q0 + p12q12 − (p23q23 + p31q31) = 0. (4.13)

In our context (i2 = +1), a non-zero mm is also not invertible when the scalar part equals the trivector part in magnitude, i.e. if

|pp + qq| = |qp + pq| ⇔ pp + qq = (qp + pq) or pp + qq = −(qp + pq), (4.14)

because according to Section 6 of23, (mm)(mm)∼ = (pp+qq)2−(qp+pq)2 = 0, iffm is not invertible. This leads to the following
proposition.

Proposition 4.1. A non-zero multivector m = p + iq ∈ Cl(2, 1), p, q ∈ Cl2(2, 1), i = e1e2e3, is not invertible, iff its two even
subalgebra components p, q fulfill

(p − q)(p − q) = 0 or (p + q)(p + q) = 0. (4.15)
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Proof. We assume m = p + iq ∈ Cl(2, 1), p, q ∈ Cl2(2, 1), i = e1e2e3, and compute

(p ± q)(p ± q) = (p0 ± q0)2 + (p23 ± q23)2 − (p12 ± q12)2 − (p31 ± q31)2

= p20 + p
2
23 + q

2
0 + q

2
23 − p

2
12 − q

2
12 − p

2
31 − q

2
31

± 2(p0q0 + p23q23 − p12q12 − p31q31)
= pp + qq ± (pq + qp). (4.16)

This means (p ± q)(p ± q) = 0, iff

pp + qq = ∓(pq + qp)
⇔ |pp + qq| = |pq + qp|
⇔ (pp + qq)2 = (pq + qp)2

⇔ (pp + qq)2 − (pq + qp)2 = 0
⇔ (mm)(mm)∼ = 0. (4.17)

If m = 0, and therefore p = q = 0, the argument is trivial. If m ≠ 0 then we have shown

(p ± q)(p ± q) = 0 ⇔ (mm)(mm)∼ = 0. (4.18)

Every element of the even subalgebra x ∈ Cl2(2, 1) ≅ Cl(2, 0) can be represented as (ax, bx ∈ ℝ, unit bivector ux: u2x = +1,
0 ≤ �2x < 2�)

x = (bx + axux)e�2xe12 , (4.19)
and iff x is not invertible, then xx = 0 (see Section 5 of23), which means that bx = ax. If m is not invertible, we can therefore
represent p + q or p − q as

p + q = 2ax
1 + ux
2

e�2xe12 or p − q = 2ay
1 + uy
2

e�2ye12 . (4.20)
This means a non-invertible m can be written as

m = p + iq = p + i(p + q) − ip = 2p 1−i
2
+ i2ax

1+ux
2
e�2xe12 , (4.21)

or as
m = p + iq = p − q + q + iq = 2q 1+i

2
+ 2ay

1+uy
2
e�2ye12 , (4.22)

with central idempotent 1±i
2
, and idempotents 1+ux

2
or 1+uy

2
. Easy special cases are, e.g., q = ±p, then m = 2p 1±i

2
is not invertible

because of the central idempotent factor 1±i
2
.

4.2.1 Case of non-invertible components p, q of m = p + iq
If p is not invertible it can be written as

p = 2ap
1 + up
2

e�2pe12 , (4.23)

where 1+up
2

is an idempotent. Similarly, if q is not invertible it can be written as

q = 2aq
1 + uq
2

e�2qe12 , (4.24)

where 1+uq
2

is an idempotent.
Therefore if both p and q are not invertible, then m takes the form

m = 2ap
1 + up
2

e�2pe12 + i2aq
1 + uq
2

e�2qe12 . (4.25)

In this case we can compute

mm = 0 + i20 + i(qp + pq)
= iapaq[(1 + up)e�2pe12e−�2qe12(1 − uq)

+ (1 + uq)e�2qe12e−�2pe12(1 − up)], (4.26)
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with Δ = �2p − �2q and e±Δe12 = cosΔ ± e12 sinΔ, this becomes

mm = iapaq{(1 + up) cosΔ(1 − uq) + (1 + uq) cosΔ(1 − up)
+ sinΔ[(1 + up)e12(1 − uq) − (1 + uq)e12(1 − up)]}

= iapaq{cosΔ[(1 + up)(1 − uq) + (1 + uq)(1 − up)]
+ sinΔe12[(1 − up)(1 − uq) − (1 − uq)(1 − up)]}

= iapaq{cosΔ[2 − upuq − uqup] + sinΔe12[upuq − uqup]}. (4.27)

Now the product of the unit bivectors equals the product of the two positive definite vectors u⃗p, u⃗q in the e12-plane with mutual
angle #

upuq = e3u⃗pe3u⃗q = u⃗pu⃗q . (4.28)
Therefore

upuq + uqup = 2u⃗p ⋅ u⃗q = 2 cos #,
upuq − uqup = 2u⃗p ∧ u⃗q = 2e12 sin #. (4.29)

Hence

mm = iapaq{cosΔ[2 − 2 cos #] + 2 sinΔ sin #(e212)}
= 2iapaq{cosΔ − cosΔ cos # − sinΔ sin#}
= 2iapaq{cosΔ − cos(Δ − #)} (4.30)

So the product mm = 0 for the following combinations of Δ and #
# = 0, any 0 ≤ Δ < 2�,
# = �, Δ = �

2
, 3�
2
,

0 ≤ # < 2�, Δ = � + #
2
.

(4.31)

Note that the second line is a special case of the third line for # = ±�. In all other cases mm ≠ 0 and m will be invertible, even
under the assumption that p and q are not invertible. This means that for mm = 0 the non-invertible multivector m will take one
of these three forms

m =

⎧

⎪

⎨

⎪

⎩

(1 + up)[apeΔe23 + iaq]
[

ap(1 + up)(±e23) + iaq(1 − up)
]

[

ap(1 + up)e(�+#∕2)e23 + iaq(1 + uq)
]

⎫

⎪

⎬

⎪

⎭

e�2qe23 . (4.32)

Note that in the third line the angle # is the angle between up and uq , as determined above by (4.29).
A potentially useful factorization of the non-zero mm of (4.30) when both p and q are not invertible, can be given by

mm = ±ie2�0 , �0 =
1
2
ln(|2apaq{cosΔ − cos(Δ − #)}|), (4.33)

and the leading sign would be identical to that of 2apaq{cosΔ − cos(Δ − #)}.

4.2.2 Case of invertible component p of m = p + iq
We now first assume that p is invertible, i.e. ap ≠ bp, without assuming q to be invertible. After discussing this case, we will
discuss the analogous case for which q is assumed to be invertible, but not p. We can therefore compute the product

s = p−1q = (bs + asus)e�2se12 , (4.34)

which must also be an element of the subalgebra Cl2(2, 1) and can therefore be represented in this form, where as, bs are real
non-negative numbers, bivector us has square u2s = +1, and 0 ≤ �2s < 2�. This allows us to rewrite m as

m = p(1 + ip−1q) = p(1 + is). (4.35)
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For this form of m we compute

mm = p(1 + is)(1 − is)p = p[1 + i2ss + i(s + s)]p
= p[1 + i2(b2s − a

2
s) + i(2bs cos �2s + as sin �2suse12 + as sin �2se12us)]p

= pp[1 + i2(b2s − a
2
s) + i2bs cos �2s]

= (b2p − a
2
p)[1 + (b

2
s − a

2
s) + i2bs cos �2s], (4.36)

where we have used for the fourth equality that use12 = −e12us. By assumption the factor (b2p − a
2
p) ≠ 0, so for mm to be zero we

must have
b2s − a

2
s = −1⇔ a2s − b

2
s = 1, (4.37)

and we must have
bs cos �2s = 0, (4.38)

i.e. bs = 0 or �2s =
�
2
, 3�
2
. If bs = 0, then a2s = 1, i.e. as = ±1 but without restriction on �2s. If bs ≠ 0, then �2s =

�
2
, 3�
2
, i.e.

e�2se12 = ±e12 and a2s − b
2
s = 1. The relationship a

2
s − b

2
s = 1 is that of hyperbolic cosine and sine for some angle 's. Hence mm

will be zero for either this form of quotient s

s = (bs + asus)e�2se12 = (sinh's + cosh'sus)(±e12) = ±e'sususe12, (4.39)

or for
s = ±use�2se12 . (4.40)

Therefore
q = ps = ±p e'sususe12 or q = ±p use�2se12 . (4.41)

and
m = p + iq = 2p1 + is

2
. (4.42)

We compute the square of s as either

s2 = (±e'sususe12)2 = e'sususe12e'sususe12 = e'sususe−'suse12use12
= use'suse−'sus(−us)e12e12 = −u2se

2
12 = (−1)

2 = 1, (4.43)

or as
s2 = (±use�2se12)2 = use�2se12use�2se12 = u2se

−�2se12e�2se12 = 1, (4.44)
where we used repeatedly that e12us = −e12us. This means that for both forms of s

(is)2 = i2s2 = +1, (4.45)

and the factor 1+is
2

is therefore an idempotent. So assuming that p is invertible and m is not invertible we obtain the factorization
of m as

m = 2p1 + is
2

= 2(bp + apup)e�2pe12
1 + is
2

, (4.46)

where the factor 2(bp+apup) can further be put into exponential form using E(2ap, 2bp, up) in (2.11). The idempotent factor 1+is
2

means that m is manifestly (obviously) not invertible.
Furthermore, mm will also not be invertible for

|1 + (b2s − a
2
s)| = |2bs cos �2s|, (4.47)

which is a special case of the above analysis that followed immediately after Proposition 4.1.

4.2.3 Case of invertible component q of m = p + iq
Now let us instead assume, that q is invertible. We can multiply m with i

m′ = im = ip + iiq = q + ip = p′ + iq′,
p′ = q, q′ = p. (4.48)

We can now apply the above analysis of m with p invertible to m′ with p′ invertible, and in the end multiply the result again with
i to get the expression for m = im′ = iim. We also notice that

m′m′ = i2mm = mm, (4.49)
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which means that m′m′ = 0, iff mm = 0, and if we factorize m′m′ ≠ 0 and compute its square root
√

m′m′, then also
√

mm =
√

m′m′.
Doing this we get that

s′ = p′−1q′ = q−1p. (4.50)
Following the analogous steps above we obtain, if we assume that p′ is invertible and m′ (and therefore m) is not invertible, then
the factorization of m′ (and m) will be

m′ = 2p′ 1 + is
′

2
= 2(bp′ + ap′up′)e�2p′ e12

1 + is′
2

p′=q
= 2q 1 + is

′

2
= 2(bq + aquq)e�2qe12

1 + is′
2

m = im′ = i2(bq + aquq)e�2qe12
1 + is′
2

, (4.51)

where the factor 2(bq + aquq) can further be put into exponential form using E(2aq , 2bq , uq) in (2.11). The idempotent factor
1+is′

2
means that m′ (and therefore m) is again manifestly not invertible.

4.3 Case of invertible mm and factorization of normed M with MM = ℎ(i)
If the central value mm ≠ 0 and not proportional to an idempotent, then m is invertible (compare Section 6 of23) as

m−1 = m
mm

. (4.52)

Because mm = r0 + ir3 is then given as a non-zero sum of scalar and trivector, and i2 = +1, we can always represent it as

mm = e2�0e2�3iℎ(i), (4.53)

and we define the invertible central root-like multivector as

mr = e�0e�3i such that m2rℎ(i) = mm, (4.54)

and we can divide m by this mr to get a new normed multivector

M = mm−1r = me−�0e−�3i, MM = ℎ(i). (4.55)

We representM again as a sum of two elements from the even subalgebra Cl2(1, 2)

M = P + iQ, P = ⟨M⟩even = (bP + aP )e�2P e23 ,
Q = ⟨M⟩oddi

−1 = (bQ + aQ)e�2Qe23 . (4.56)

and compute
MM = (P + iQ)(P + iQ) = PP + i2QQ + i(QP + PQ) = ℎ(i). (4.57)

4.3.1 Case of ℎ(i) = ±1 in MM = ℎ(i)
Hence for ℎ(i) = ±1 we must have

QP + PQ = 0⇔ QP = −PQ. (4.58)
If P is not invertible, then we have bP = aP , and if Q is not invertible we have bQ = aQ. If we assume both P and Q not
invertible then we have PP = QQ = 0 and consequently

MM = PP + i2QQ = 0 + i20 = 0 ≠ ±1, (4.59)

which is a contradiction. Therefore either P or Q or both must be invertible.
We first assume P to be invertible, which allows us to compute

QP + PQ = 0⇔ P (P −1Q +QP
−1
)P = 0⇔ P −1Q +QP

−1
= 0. (4.60)
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ThenM can be rewritten as

M = P + iQ = P (1 + iP −1Q) = P (1 + i(P −1Q − 0))

= P (1 + i(P −1Q − 1
2
P −1Q − 1

2
QP

−1
)

= P (1 + i1
2
(P −1Q −QP

−1
)), (4.61)

where
1
2
(P −1Q −QP

−1
) = ⟨P −1Q⟩2 (4.62)

is a pure bivector and therefore
i⟨P −1Q⟩2 = !⃗ (4.63)

a vector. Therefore

M = P (1 + !⃗),

MM = P (1 + !⃗)(1 − !⃗)P = P (1 − !⃗2)P = PP − PP !⃗2

= PP + i2QQ. (4.64)

Hence
−PP !⃗2 = +i2QQ, (4.65)

that is

!⃗2 = −i2QQ
PP

= −QQ
PP

⎧

⎪

⎨

⎪

⎩

< 0 for QQ
PP

> 0,
= 0 for QQ = 0,
> 0 for QQ

PP
< 0.

(4.66)

This leads to the following factorization ofM

M = (bP + aP uP )e�2P e23
⎧

⎪

⎨

⎪

⎩

e�
′
0e�1

!⃗
! , ! =

√

−!⃗2,
1 + !⃗ = e!⃗, !⃗2 = 0,
E(!, 1, !⃗

!
), ! =

√

!⃗2,
(4.67)

with
�1 = atan2(!, 1), �′0 = ln(

√

1 + !2). (4.68)
Now let us instead assume that Q is invertible (and therefore Q as well), without specifying the invertibility of P .

QP + PQ = 0⇔ Q(P Q
−1
+Q−1P )Q⇔ P Q

−1
+Q−1P = 0. (4.69)

We can therefore express

M = P + iQ = (P Q
−1
+ i)Q = (P Q

−1
− 0 + i)Q

= (P Q
−1
− 1

2
P Q

−1
− 1

2
Q−1P + i)Q

= ( 1
2
P Q

−1
− 1

2
Q−1P + i)Q (4.70)

with pure bivector
B = 1

2
P Q

−1
− 1

2
Q−1P = − 1

2
⟨Q−1P ⟩2 =

1
2
⟨P Q

−1
⟩2 =

1
2
⟨Q−1P ⟩2. (4.71)

So we get
M = (i + B)Q, (4.72)

and hence
M = Q(i + B) = iQ(1 + i−1B) = iQ(1 + �⃗), �⃗ = i−1B. (4.73)

We further compute

MM = iQ(1 + �⃗)i(1 − �⃗)Q = i2Q(1 − �⃗2)Q = i2QQ − i2�⃗2QQ

= PP + i2QQ (4.74)
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which implies that for i2 = −1

PP = −i2�⃗2QQ⇔ �⃗2 = −i2 PP
QQ

= −PP
QQ

⎧

⎪

⎨

⎪

⎩

> 0 for PP
QQ

< 0.

= 0 for PP = 0,
< 0 for PP

QQ
> 0.

(4.75)

This leads to the following factorization ofM

M = i(bQ + aQuQ)e�2Qe23

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E(�, 1, �⃗
�
), � =

√

�⃗2,
1 + �⃗ = e�⃗, �⃗2 = 0,

e�
′′
0 e�1

�⃗
� , � =

√

−�⃗2,

(4.76)

with
�1 = atan2(�, 1), �′′0 = ln(

√

1 + �2). (4.77)
We note that the two factorizations (4.67) or (4.76) have a nearly identical form. We obtain (4.76) by exchanging P and Q in
(4.67) and by multiplying with i.
Finally, for either P invertible or Q invertible we obtain

m = mrM = e�0e�3iM, (4.78)

assuming the factorized forms (4.67) or (4.76) forM .

4.3.2 Case of ℎ(i) = ±i in MM = ℎ(i)
Now let us assume, that ℎ(i) = ±i inMM . Then we have PP + i2QQ = PP +QQ = 0, and QP + PQ = ±1, respectively.
Additionally assuming P invertible (PP = b2P − a

2
P ≠ 0), then by PP +QQ = 0, we have QQ = −PP , and therefore Q will

also be invertible. Obviously, if we assume instead first Q invertible (QQ ≠ 0), then by the same argument PP = −QQ, and P
will also be invertible. Similar to (4.36) we first define S = P −1Q = (bS + aSuS)e�2Se12 and obtain the condition

MM = (b2P − a
2
P )[1 + (b

2
S − a

2
S) + i2bS cos �2S] = ±i. (4.79)

We must therefore have zero scalar part, i.e.

1 + (b2S − a
2
S) = 0 ⇔ a2S − b

2
S = 1, (4.80)

and can therefore represent with some angle �S
aS = cosh �S , bS = sinh �S . (4.81)

The condition for the trivector part gives
2(b2P − a

2
P ) bS cos �2S = ±1, (4.82)

which means that bS ≠ 0, and therefore �S ≠ 0. Then we can compute �2S dependent on PP and �S as:

cos �2S =
±1

2(b2P − a
2
P )bS

= ±1
2(b2P − a

2
P ) sinh �S

. (4.83)

Since the range of the cosine function is [−1,+1], the equation for cos �2S imposes further restrictions on the product 2(b2P −
a2P ) sinh �S , i.e. |2(b

2
P−a

2
P ) sinh �S | ≥ 1. So only if a

2
S−b

2
S = 1, bS = sinh �S ≠ 0, and |2(b2P−a

2
P )bS | = |2(b2P−a

2
P ) sinh �S | ≥ 1,

leads the combination of P and Q inM to the resultMM = ±i.
Would it be possible to obtainMM = ±i for both P and Q non-zero but not invertible, i.e. PP = QQ = 0? This would be

possible, and the analysis would work similar to (4.23) to (4.30) and the result would then be

MM = 2iaP aQ{cosΔ − cos(Δ − #)} = ±i, (4.84)

where Δ = �2P − �2Q, # the dihedral angle between the unit bivectors uP and uQ, when we parametrize

P = 2aP
1 + uP
2

e�2P , Q = 2aQ
1 + uQ
2

e�2Q . (4.85)
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So the parameters of P , Q would need to satisfy

aP aQ =
±1

2{cosΔ − cos(Δ − #)}
, (4.86)

with necessary non-zero condition for {cosΔ − cos(Δ − #)}, otherwiseMM = 0 and not ±i.
But whether P and Q are both invertible or both not invertible, the equations obtained seem not to suggest a meaningful

factorization forM ifMM = ±i. We therefore do not pursue the factorization question forM in the case ofMM = ±i any
further in this work, but it certainly remains an interesting open question for further research.

5 RESULTS FOR DIRECT FACTORIZATION IN CL(2, 1)

Summarizing the results obtained in Section 4, we find the following.
If only one of the two even subalgebra (isomorphic to Cl(2, 0)) components p, q of m = p + iq ∈ Cl(2, 1) is non-zero, then

the final factorizations are directly given by the factorization of iq in (4.8) or p in (4.9).
Proposition 4.1 states a necessary and sufficient condition for the even subalgebra components p, q of m = p + iq so that the

central multivector mm will not be invertible. Equations (4.21) and (4.22) give the explicit forms obtained for m in this situation
in terms of the components p or q, idempotents and exponentials with e12 in the exponent.
An explicit form of m is given when both components p and q are not invertible in (4.25). Even in this case mm has in general

a non-zero trivector component (4.30), which vanishes only if special conditions for the relative parameters of p and q are
met as specified in (4.31). Explicit simplified forms of m for non-invertible p and q with vanishing mm are given in (4.32). A
factorization of non-vanishing mm for non-invertible p and q is given in (4.33).
For invertible component p a factorization of non-invertible multivectors m is given in (4.46). For invertible component q a

factorization of non-invertible multivectors m is given in (4.51).
Factorizations of m with normed multivector factorsM = P + iQ, P ,Q ∈ Cl2(2, 1), whenMM = ±1 are given in (4.78),

based on the factorizations ofM in (4.67) for invertible component P ofM , and in (4.76) for invertible component Q ofM .
The case ofMM = ±i is discussed in Section 4.3.2, but seems not to lead to meaningful factorizations ofM , which therefore

currently poses some restriction to factorization in Cl(2, 1) not encountered in this way in the other three algebras Cl(3, 0),
Cl(0, 3) and Cl(1, 2) that have already been studied in27. It may therefore be an interesting case for further research.

6 CONCLUSION

In this paper we have considered general elements of the Clifford algebra Cl(2, 1), and studied multivector factorization into
products of exponentials, idempotents and blades, where the exponents are frequently blades of grades zero (scalar) to n (pseu-
doscalar). We used methods of direct computation or applied several isomorphisms, to simplify the computation at hand or
make use of known results in isomorphic representations. Our approach turned out to become relatively complex in the case of
Cl(2, 1), compared to the three algebras Cl(3, 0), Cl(0, 3) and Cl(1, 2) that have already been studied in27. As indicated further
research could be done in the special caseMM = ±i. Furthermore, all results of this work could be implemented in Clifford
algebra software like33.
It may be possible in the future to extend this approach to even higher dimensional Clifford algebras, but simple products of

exponentials and idempotents may, due to the dimensionality of the k-vector spaces, have to include multiple non-commuting
exponential factors with k-vectors of the same grade in the exponents. Of particular interest would be to apply our methods to
conformal geometric algebra Cl(4, 1) widely used in computer graphics and robotics20,9. Furthermore a complete factorization
study of Cl(1, 3) and Cl(3, 1) that are both of great importance in special relativity and relativistic physics14,15,7,24 may be of
considerable interest. The present work can e.g. be applied in the study of Lipschitz versors, see e.g. E.4.2 in38, pinor and
spinor groups, and in the development of Clifford Fourier and wavelet transformations21,24, compare also the motivation for this
research in the introduction Section 1.
It might also be of interest to represent the Clifford algebra Cl(2, 1) in terms of tensor products of quaternions and their

subalgebras, and reexpress the results we have obtained above, or even further develop them, compare12,13. Finally, in recent
work it appears that, different from all other Clifford algebras over real quadratic three-dimensional vector spaces, a minimal
embedding of octonions in Cl(2, 1) may possibly not exist28. One wonders, if this could be related to the higher complexity
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of the factorizations studied in the current paper, compared to the case of all other Clifford algebras over real quadratic three-
dimensional vector spaces27.
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