
Băhēm
A Provably Secure Symmetric Cipher

M. Rajululkahf 1

April 13, 2022

Overview

This paper proposes Băhēm; a symmetric cipher that,
when used with a pre-shared secret key k, no crypt-
analysis can degrade its security below H(k) bits of
entropy, even under Grover’s algorithm [1] or even if
it turned out that P = NP.

Băhēm’s security is very similar to that of the one-
time pad (OTP), except that it does not require the
communicating parties the inconvenient constraint of
generating a large random pad in advance of their
communication. Instead, Băhēm allows the parties
to agree on a small pre-shared secret key, such as
|k| = 128 bits, and then generate their random pads
in the future as they go.

For any operation, be it encryption or decryption,
Băhēm performs only 4 bitwise exclusive-or opera-
tions (XORs) per cleartext bit including its 2 over-
head bits. If it takes a CPU 1 cycle to perform an
XOR between a pair of 64 bit variables, then a Băhēm
operation takes 4÷ 8 = 0.5 cycles per byte. Further,
all Băhēm’s operations are independent, therefore a
system with n many CPU cores can perform 0.5÷ n
cpu cycles per byte per wall-clock time.

While Băhēm has an overhead of 2 extra bits
per every encrypted cleartext bit, its early single-
threaded prototype implementation achieves a faster
decryption than OpenSSL’s ChaCha20’s, despite the
fact that Băhēm’s ciphertext is 3 times larger than
ChaCha20’s. This support that the 2 bit overhead is
practically negligible for most applications.

Băhēm’s early prototype has a slower encryption
time than OpenSSL’s ChaCha20 due to its use of a
true random number generator (TRNG). However,
this can be trivially optimised by gathering the true
random bits in advance, so Băhēm gets the entropy
conveniently when it runs.

Aside from Băhēm’s usage as a provably-secure
general-purpose symmetric cipher, it can also be
used, in some applications such as password verifi-
cation, to enhance existing hashing functions to be-
come provably one-way, by using Băhēm to encrypt a
predefined string using the hash as the key. A pass-
word is then verified if its hash decrypts the Băhēm
ciphertext to retrieve the predefined string.

1Author’s e-mail address: {last name}@pm.me

Notation

H(x) Shannon’s entropy of random variable x.

|x| Number of bits in tuple x = (x0, x1, . . . , x|x|−1).

x⊕ y Bitwise exclusive-or operation between two
variables. If one variable is shorter than the
other, then the shorter will repeat itself follow-
ing modular arithmetics. For example, if |x| = 5
and |y| = 2, then the lacking bits y2, y3, y4 will
be assumed to be y0, y1, y2.

random(n) = (r0, r1, . . . , rn) A sequence of n many
random bits generated by a TRNG.

k = (k0, k1, . . . , k|k|−1) A pre-shared secret key with
enough H(k) for use case. Ideally k =
random(|k|). Size |k| can be chosen arbitrar-
ily to offer adequate security for the use case, as
there is no block structure in Băhēm.

m = (m0,m1, . . . ,m|m|−1) An arbitrarily long clear-
text message.

p = random(|m|),q = random(|m|) A pair of uni-
formly distributed random one-time pads. This
is generated dynamically by the implementation,
transparently from the user, for every new com-
munication session.

p̂, q̂, m̂ Encrypted forms of p,q,m, respectively.

Contents

1 Background 2

2 Proposed Algorithm: Băhēm 2

3 Security Proof 3

4 Implementation Example 3
4.1 C Functions 3
4.2 An Early Prototype: Alyal 4

4.2.1 Installation and Usage 4
4.2.2 Benchmark 4

5 Conclusion 4

1

https://orcid.org/0000-0001-9061-2921
@pm.me

1 Background

When Alice and Bob privately met last time, they
used a TRNG to generate enough random bits to use
for encrypting their future communications over in-
secure channels.

Ideally, Alice and Bob wanted to use the TRNG
to generate terabytes worth of truly random bits, for
the purpose of using the OTP as their encryption
technique in the future. They liked that the OTP
is proven to be secure. However, they realised that
trying to discretely carry terabytes worth of data, and
maintaining their health, entails a needless overhead
and risk.

As a result, Alice and Bob agreed to use the TRNG
to generate only 28 bits of truly random data, k =
[k0, k1, . . . , k127], as their pre-shared secret key.

Alice’s and Bob’ reasoning is that, securely main-
taining small amounts of data, such as 128 bits, is
much easier than that of larger data, such as ter-
abytes, and yet 128 bits of entropy is enough to ren-
der Eva’s brute-forcing attempts impractical.

However, they found that today’s state-of-art sym-
metric ciphers, such as ChaCha20 [2] and AES [3],
are not provably secure, but rather simply that no
one could fully break them yet [4]. Further, one-way
functions may not even exist, as the P versus NP is
still one of the unsolved Millennium problems2.

Băhēm solves the problems above by offering the
proven security of the OTP, without the inconve-
nience of having to exchange large one-time pads in
advance, for a negligible expense of accompanying
each ciphertext with 2 extra bits, only.

2 Proposed Algorithm: Băhēm

Algorithms 1 and 2 show Băhēm’s encryption and de-
cryption in batch mode. The batched mode is gener-
ally not very practical for most applications, as data
often comes in streams. However, the batch mode
looks simpler, and this simplicity can aid explaining
Băhēm’s concept more efficiently.

Algorithms 3 and 4 show the same, except that
the inputs and the outputs are interleaved on bit-by-
bit basis. This interleaved version is identical to the
batched one, except for re-ordering its output bits.

An implementation may choose a different data for-
mat where interleaving happens on the basis of other
data structures than bits. The bit-by-bit interleav-
ing algorithms are only shown to demonstrate that
Băhēm is practically useful when dealing with data
streams.

2http://claymath.org/millennium-problems

Algorithm 1: Batched Băhēm encryption

input : k,m
output: p̂, q̂, m̂

p← random(|m|)
q← random(|m|)
p̂← p⊕ k
q̂← q⊕ k
m̂ ←m⊕ p⊕ q
return p̂, q̂, m̂

Algorithm 2: Batched Băhēm decryption

input : k, p̂, q̂, m̂
output: m

p← p̂⊕ k
q← q̂⊕ k
m ← m̂⊕ p⊕ q
return m

Algorithm 3: Interleaved Băhēm encryption

input : k,m0‖m1 . . .
output: p̂0‖q̂0‖m̂0‖p̂1‖q̂1‖m̂1 . . .

while mi ← read(1) do
pi ← random(1)
qi ← random(1)
j ← i mod |k|
p̂i ← pi ⊕ kj
q̂i ← qi ⊕ kj
m̂i ← mi ⊕ pi ⊕ qi
write(p̂i‖q̂i‖m̂i)

Algorithm 4: Interleaved Băhēm decryption

input : k, p̂0‖q̂0‖m̂0‖p̂1‖q̂1‖m̂1 . . .
output: m0,m1, . . .

while p̂i, q̂i,mi ← read(3) do
j ← i mod |k|
pi ← p̂i ⊕ kj
qi ← q̂i ⊕ kj
mi ← m̂i ⊕ pi ⊕ qi
write(mi)

2

http://claymath.org/millennium-problems

3 Security Proof

Băhēm can be thought as multiple OTPs, one of
which recurses into itself for once. Therefore, the
proving strategy that is adopted in this paper is to
show that Băhēm is made of recursion of OTPs, and
that this recursion is also an OTP.

Theorem 3.1 (Shannon’s perfect secrecy for OTP).
For any pair of bit tuples x and y, the cryptosystem
x ⊕ y = z is said to have perfect secrecy when, for
any ith bit, Pr(xi = 0|zi) = Pr(xi = 0), which is true
if and only if Pr(yi = 0) = 0.5.

Proof. Algorithm 1 shows that Băhēm’s encryption
outputs p̂, q̂ and m̂, each of which can be viewed
as the ciphertext output of an OTP cryptosystem as
shown below:

k⊕ p = p̂. Since p ← random(|m|) by definition,
it is implied that, for any i ∈ {0, 1, . . . , |m|},
Pr(pi = 0) = 0.5. Therefore, it follows by the-
orem 3.1 that this cryptosystem has perfect se-
crecy; that is, reveals no information about the
pre-shared secret key k.

k⊕ q = q̂. Since q ← random(|m|) by definition,
this is identical to the previous cryptosystem,
and therefore has perfect secrecy as well.

p⊕ q⊕m = m̂. This can be viewed as two OTP
cryptosystems one recursing into the other:

p⊕ q = z. For any i ∈ {0, 1, . . . , |m|}, Pr(qi =
0) = 0.5 is implied by definition as stated
earlier, therefore this is cryptosystem has
perfect secrecy; that is, it reveals no infor-
mation about p should an adversary get z.

Likewise, since Pr(pi = 0) = 0.5 is also true
as stated earlier as well, it also follows that
no information is revealed about q either
should an adversary get z.

Since no information can be revealed about
p and q, in the case the adversary obtains
bits of z, it has to follow that no information
can be revealed about the pre-shared secret
key k.

m⊕ z = m̂. Since z is the ciphertext of a cryp-
tosystem with perfect secrecy, and since
Băhēm does not share it, it has to follow
that, for any i ∈ {0, 1, . . . , |m|}, Pr(zi =
0) = 0.5. Therefore, it follows by the-
orem 3.1 that this cryptosystem has per-
fect secrecy; that is, reveals no information
about the cleartext message m.

Since algorithm 3 is identical to algorithm 1, except
for only adopting a different data storage format, it

has to follow that, both, algorithms 1 and 3 offer
perfect secrecy in that no information about k or m
can be revealed from p̂, q̂, m̂.

Theorem 3.2 (Băhēm’s perfect secrecy). An adver-
sary that obtains p̂, q̂ and m̂, cannot gain informa-
tion about the pre-shared secret key k or the cleartext
message m.

Since no information can be revealed about k or m
from Băhēm’s encrypted output, it has to follow that,
asymptotically, no cryptanalysis can reduce Băhēm’s
key brute-forcing space below 2H(k).

Theorem 3.3 (Băhēm’s security). No cryptanalysis
can reduce Băhēm’s security below H(k) bits.

�

4 Implementation Example

4.1 C Functions

In this example, the caller is expected to initialise a
128 bits key k, a pair of random pads, p and q, each
of which is len × 64 bits long, in order to encrypt a
len× 64 bits long cleartext message m. The encryp-
tion happens in-place, so the caller does not have to
allocate separate memory for the ciphertext.

void baheem_enc(

uint64_t *k, /* 128bit pre-shared key */

uint64_t *p, /* random pad 1 */

uint64_t *q, /* random pad 2 */

uint64_t *m, /* message */

size_t len /* length of m = p = q */

) {

size_t i;

for (i = 0; i < len; i++) {

m[i] ^= p[i] ^ q[i];

p[i] ^= k[0];

q[i] ^= k[1];

}

}

Likewise, the following is an example implementing
the corresponding in-place decryption function.

void baheem_dec(... same input ...) {

size_t i;

for (i = 0; i < len; i++) {

p[i] ^= k[0];

q[i] ^= k[1];

m[i] ^= p[i] ^ q[i];

}

}

3

4.2 An Early Prototype: Alyal

Alyal is an early single-threaded prototype imple-
mentation that uses Băhēm to encrypt and decrypt
files, mainly to demonstrate Băhēm’s practical util-
ity with real-world scenarios. Internally, Alyal uses
the baheem enc and baheem dec functions that were
presented earlier in this section.

4.2.1 Installation and Usage

> git clone \

https://codeberg.org/rajululkahf/alyal

> cd alyal

> make

> dd bs=1MB count=500 \

if=/dev/zero of=test.txt

> ./alyal enc test.txt test.enc

> ./alyal dec test.enc test.enc.txt

> shasum *

4.2.2 Benchmark

Table 1 shows an early benchmark that was per-
formed on a machine with Intel(R) Core(TM) i5-
3570K CPU @ 3.40GHz.

OpenSSL Alyal
ChaCha20 Băhēm

Encrypt 500MB 1.07 secs 4.25 secs
1.03 secs 4.28 secs
1.05 secs 4.30 secs

Decrypt 500MB 1.07 secs 0.85 secs
1.09 secs 0.91 secs
1.15 secs 0.84 secs

Table 1: Wall-clock run-time comparison between
OpenSSL’s ChaCha20, and Alyal’s Băhēm implemen-
tation.

The encryption and decryption functions of Băhēm
are identical in their number of instructions and the
amount of IO operations, except that the encryption
one pulls bits from a TRNG, while the decryption
gets the random bits by decrypting them from the
input file.

This early benchmark servers is an evidence that
the 2 bits overhead is practically negligible, and that
preparing the random bits in advance, to avoid calling
a TRNG on demand, will ensure a faster Băhēm even
during its encryption (since calling the TRNG is the
only aspect that makes the encryption differ from the
decryption).

5 Conclusion

This paper proposed Băhēm with the following prop-
erties:

Secure. Băhēm is proven that no cryptanalysis can
degrade its security below H(k) bits.

Fast. Requires only 4 XORs per encryption or de-
cryption alike. Highly parallelisable as the en-
cryption, or decryption, of any bit is independent
of other bits.

A single-threaded early prototype (Alyal) out-
performed OpenSSL’s ChaCha20 when decrypt-
ing files, despite Băhēm’s 2 bits overhead, which
proves that such overhead is negligible in prac-
tice.

While Alyal underperformed during the encryp-
tion for its use of a TRNG, optimising it is triv-
ial by preparing the TRNG in advance. This is
confirmed by the currently fast decryption speed,
which only differs from the encryption by the fact
that it does not pull bits from the TRNG.

Simple. Băhēm’s simplicity implies fewer expected
number of implementation bugs, and therefore
higher practical security.

Future work may include developing a multi-
threaded implementation with TRNG optimisations.

References

[1] Lov K. Grover. A fast quantum mechanical algo-
rithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, STOC ’96, page 212–219, New
York, NY, USA, 1996. Association for Computing
Machinery.

[2] Daniel Bernstein. Chacha, a variant of salsa20.
01 2008.

[3] Joan Daemen and Vincent Rijmen. AES Pro-
posal: Rijndael, 1999.

[4] Jean-Philippe Aumasson, Simon Fischer,
Shahram Khazaei, Willi Meier, and Christian
Rechberger. New features of latin dances:
Analysis of salsa, chacha, and rumba. Cryp-
tology ePrint Archive, Report 2007/472, 2007.
https://ia.cr/2007/472.

4

https://ia.cr/2007/472

	Background
	Proposed Algorithm: Băhēm
	Security Proof
	Implementation Example
	C Functions
	An Early Prototype: Alyal
	Installation and Usage
	Benchmark

	Conclusion

