Natural ways of mapping subsets to subsets

Pierre-Yves Gaillard

If X is a set, M its monoid of self-maps and P its power set, then P can be viewed as a left M-set $_MP$ or as a right M-set P_M . We compute the monoids End $_MP$ and End P_M .

Let X be a set, $M = X^X$ its monoid of self-maps (that is, $M = \{f : X \to X\}$) and P its power set (that is, $P = \{A \mid A \subset X\}$). Then P has a left M-set structure given by

$$fA = f_*A = \{fa \mid a \in A\}$$

and a right M-set structure given by

$$Af = f^*A = f^{-1}A = \{x \in X \mid fx \in A\}.$$

We denote these two *M*-sets by $_MP$ and *M*-set P_M respectively. Our purpose is to compute the monoids End $_MP$ and End P_M . In the sequel we denote fA and Af by f_*A and f^*A respectively.

Define the maps $\alpha, \beta, \gamma, \delta: P \to P$ by the formulas

$$\alpha A = A, \quad \beta A = \varnothing, \quad \gamma A = X \setminus A, \quad \delta A = A.$$

(Here \emptyset is the empty set and $X \setminus A$ the complement of A in X.)

Theorem 1. We have End $_MP = \{\alpha, \beta\}$ and End $P_M = \{\alpha, \beta, \gamma, \delta\}$.

It suffices to show $\operatorname{End}_M P \subset \{\alpha, \beta\}$ and $\operatorname{End} P_M \subset \{\alpha, \beta, \gamma, \delta\}$. Indeed, the converse inclusions are clear. Moreover, to prove Theorem 1 we can, and do, assume that X has at least two elements.

1 The monoid $\operatorname{End}_M P$

The M-sets considered in this section are left M-sets.

Lemma 2. If $\varepsilon : P \to P$ is a morphism of M-sets, then $\varepsilon \in \{\alpha, \beta\}$.

Proof. This will follow immediately from the four steps below.

Step 1: We have $\varepsilon \emptyset = \emptyset$. Proof: The equalities $\varepsilon \emptyset = \varepsilon f_* \emptyset = f_* \varepsilon \emptyset$ hold for all f in M. This implies $\varepsilon \emptyset = \emptyset$.

Note: In view of Step 1 it suffices to show that we have either $\varepsilon A = \emptyset$ for all A in P, $A \neq \emptyset$, or $\varepsilon A = A$ for all A in P, $A \neq \emptyset$.

Step 2: We have $\varepsilon X \in \{\emptyset, X\}$. Proof: Since $\varepsilon f_*X = f_*\varepsilon X$ for all f in M, we get $\varepsilon X = f_*\varepsilon X$ for all surjection $f: X \twoheadrightarrow X$, and thus $\varepsilon X \in \{\emptyset, X\}$.

Step 3: If $\varepsilon X = \emptyset$, then $\varepsilon = \beta$. Proof: We have $\varepsilon f_*X = f_*\emptyset = \emptyset$ for all f in M. This entails $\varepsilon A = \emptyset$ for all A in $P, A \neq \emptyset$, hence $\varepsilon = \beta$ by the Note.

Step 4: If $\varepsilon X = X$, then $\varepsilon = \alpha$. Proof: We have $\varepsilon f_*X = f_*X$ for all f in M. This implies $\varepsilon A = A$ for all A in $P, A \neq \emptyset$, hence $\varepsilon = \alpha$ by the Note.

2 The monoid $\operatorname{End} P_M$

The M-sets considered in this section are **right** M-sets.

Let $\varepsilon: P \to P$ be a morphism of *M*-sets. We must show:

Lemma 3. If $\varepsilon : P \to P$ is a morphism of *M*-sets, then $\varepsilon \in \{\alpha, \beta, \gamma, \delta\}$.

Proof. We generalize slightly the notation used so far. Set $2 := \{0, 1\}$. For all set Y write Y^* for the set of subsets of Y and identify Y^* to the set 2^Y of all maps $Y \to 2$ by attaching to $A \subset X$ the map f defined by fx = 1 if and only if $x \in A$. Moreover we associate with a map $g : Z \to Y$ the map $g^* : Y^* \to Z^*$ defined by $g^*A = g^{-1}(A)$. Note that, if $f : Y \to 2$ is the map attached to A described above, then the map $Z \to 2$ attached to g^*A is $f \circ g$, so that it is natural to denote this map by g^*f .

Claim: If A is a nonempty proper subset of X, then $\varepsilon A \in \{\emptyset, A, X \setminus A, X\}$.

Proof of the claim. Let A be as above and $f: X \to 2$ the map attached to A. Since for any $B \subset 2$ we have $f^*B \in \{\emptyset, A, X \setminus A, X\}$, it suffices to show that εA is of the form f^*B with $B \subset 2$. Pick x_0 in $X \setminus A$ and x_1 in A, and define $g: 2 \to X$ by $g(i) = x_i$. Then $f \circ g$ is the identity of 2, and we get

$$\varepsilon A = \varepsilon f = \varepsilon (f \circ g \circ f) = \varepsilon ((g \circ f)^*(f)) = (g \circ f)^*(\varepsilon f) = f^*(g^* \varepsilon f).$$

This proves the claim.

Recall that A is a nonempty proper subset of X. Let C be any subset of X, define $h \in M$ by $hx = x_1$ if $x \in C$ and $hx = x_0$ if $x \in X \setminus C$, and observe the equalities $h^*A = C$ and $\varepsilon C = \varepsilon h^*A = h^*\varepsilon A$. The claim implies $\varepsilon A \in \{\emptyset, A, X \setminus A, X\}$. If $\varepsilon A = \emptyset$ then $\varepsilon C = h^*\emptyset = \emptyset$. If $\varepsilon A = A$ then $\varepsilon C = h^*A = C$. The cases $\varepsilon A = X \setminus A$ and $\varepsilon A = X$ are similar. This shows $\varepsilon \in \{\alpha, \beta, \gamma, \delta\}$, as desired.

Now Theorem 1 follows from Lemmas 2 and 3.