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Abstract

We show that using the denominators of the terms of ζ(n)−1 = zn

as decimal bases gives all rational numbers in (0,1) as single decimals.

We also show the partial sums of zn are not given by such single digits
using the partial sum’s terms. These two properties yield a proof that
zn is irrational. As partials require denominators exceeding the de-

nominators of their terms, possible single decimal convergence points
are, using properties of decimal expansions, systematically eliminated.

1 Introduction

Apery’s ζ(3) is irrational proof [1] and its simplifications [3, 8] are the only
proofs that a specific odd argument for ζ(n) is irrational. The irrationality
of even arguments of zeta are a natural consequence of Euler’s formula [2]:

ζ(2n) =

∞∑

k=1

1

k2n
= (−1)n−1

22n−1

(2n!)
B2nπ2n. (1)

Apery also showed ζ(2) is irrational, and Beukers, based on the work
(tangentially) of Apery, simplified both proofs. He replaced Apery’s mys-
terious recursive relationships with multiple integrals. See Poorten [10] for
the history of Apery’s proof; Havil [5] gives an overview of Apery’s ideas
and attempts to demystify them. Also of interest is Huylebrouck’s [6] paper
giving an historical context for the main technique used by Beukers.
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Attempts to generalize the techniques of the one odd success seem to be
hopelessly elusive. Apery’s and other ideas can be seen in the work of Rivoal
and Zudilin [11, 12]. Their results, that there are an infinite number of odd
n such that ζ(n) is irrational and at least one of the cases 5,7,9, 11 likewise
irrational do suggest a radically different approach is necessary.

Let

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

We show that every rational number in (0, 1) can be written as a single
decimal using the denominators of a term in zn as a number basis. But
the partial sums can’t be expressed with such a single decimal using the
denominators of its terms as number bases. These two properties yield a
proof that all zn are irrational.

Properties of zn

We define a decimal set.

Definition 1. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in

base jn. The decimal set for jn is

Djn = djn \

j−1⋃

k=2

dkn .

The set subtraction removes duplicate values.

Definition 2.
k⋃

j=2

Djn = Ξn
k

The union of decimal sets gives all rational numbers in (0, 1).

Lemma 1.
∞⋃

j=2

Djn = Q(0, 1)
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Proof. Every rational a/b ∈ (0, 1) is included in a dbn and hence in some Drn

with r ≤ b. This follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1),
abn−1 < bn and so a/b ∈ dbn .

Next we show sn
k /∈ Ξn

k ; that is: we show that partial sums of zn can’t be
expressed as a single decimal using number bases given by the denominators
of the partial’s terms.

Lemma 2. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (2)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (2) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 3. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.
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The reasoning is much the same as in Lemma 2; cf. Chapter 2, Problem
21 in [2], solution in [7]. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (3)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 4. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate [4].

Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 4, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 4, we have assurance of the
existence of a p that satisfies Lemma 3. Using Lemmas 2 and 3, we have 2npn

divides the denominator of r/s and as 2npn > kn, the proof is completed.

Corollary 1.

sn
k /∈ Ξn

k

Proof. This is a restatement of Theorem 1.

Corollary 2. For sufficiently large k decimal representations of sn
k in any

base bn must be of the mixed or pure repeating variety.

Proof. As the prime factors in the denominators of sn
k grow without bound

with increasing k (per Lemma 4), for a fixed base b it must be that only
some, possible no prime factors of b are shared with the reduced fraction
denominators of sn

k . If some are shared the resulting decimal expressions is
mixed; if none are shared then the resulting decimal is pure repeating [4].

Definition 3. A mixed decimal .h1 . . . hdt1 . . . tl is said to have a head length

of d and a period of l. A pure repeating decimal .p1 . . . pm is said to have a

period of m.
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Corollary 3. The expressions of sn
k in base bn have lengths and periods that

increase without bound.

Proof. As the reduced denominators of sn
k have changing prime factors, given

the uniqueness of representations of such fractions, if lengths and periods were
fixed, they would be exhausted given the infinity of prime factors.

Corollary 4. In any base bn, for sufficiently large k the representation of sn
k

can’t be of the form .(a − 1)(b − 1).

Proof. The decimals making up mixed and pure decimals expansions in a
given base do not have repeating parts consisting of all nines – referencing
base 10 numbers. This follows from Fermat’s theorem that gives the periods
of pure repeating and mixed decimals in base b [4]: the ν in

bν ≡ 1 mod d, (4)

where c/d is the fraction represented. The digits are given by the x that (4)
implies exist. There must be an x such that

bν − 1 = xd. (5)

But (5) implies that
x

bν − 1
=

1

d
.

As bν − 1 is a string of ν (b − 1)s, x can’t be such a string.

Example 1. Consider 1/7 in base 10. For this number 106 ≡ 1 mod 7
(Fermat’s theorem) and there must exist an x such that

106 − 1 = x7 or
x

106 − 1
=

1

7
.

In this case x is 142857 and .142857 = 1/7. We see that x can never equal ν
nines, as the resulting fraction is 1, not a fraction. Note: the base of interest
here is 106 and for this base the equivalent of 9 in base 10 is 999999 = 106−1,
ν nines.

Example 2. Note: The number .099 is really .(099)103, that is a repeating
single digit, a repeating symbol within the 999 symbols of base 1000; the
symbol for the equivalent of 9 in this base is 999.
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Example 3. For mixed decimals, consider 1/6 base 10. We have

10
1

2 · 3
=

5

3
= 1 +

2

3
= 1 + .6.

Notice that now we have a whole number on the far right side plus a reduced
fraction with a denominator that is relatively prime to 10. This pattern will
always occur in fractions with denominators that share some but not all the
prime divisors with the given base. Now we can divide by 10 and arrive at

1

6
=

1

10
+

.6

10
= .16,

as expected. All mixed fractions will have a pure repeating part possessed
of a period of finite length. We use this property in our main proof.

zn is irrational

Theorem 2. zn is irrational.

Proof. Without loss of generality, per Lemma 1, assume that zn = .x in base
10. This implies that zn = .(x − 1)9, but per Corollaries 2, 3, and 4 this is
impossible.

Conclusion

Finally, this result surviving public scrutiny, there is the possibility of its rele-
vance to the premier number theory open problem: the Riemann hypotheses.
I have some hope that the equivalent of number bases (plural) in the com-
plex number system might allow the same exclusions used here (irrational
not rational) to carry over to a zero versus not a zero. There are Gaussian
integers and Gaussian primes; might there be forms of number bases that
inform us of the location of zeros for the ever wonderful and mysterious zeta
function.
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