The Symmetry of N-domain and Hibert's Eighth Problem

Liu Yajun

(South China University of Technology, Guangzhou P.R. China 510640)
E-mail: yajun@scut.edu.cn
Abstract In this paper, we discuss the symmetry of N -domain and we find that using the symmetry characters of Natural Numbers we can give proofs of the Prime Conjectures: Twins Prime Conjecture, Goldbach Conjecture and Reimann Hypothesis.

Keywords N domain Prime Conjectures

1. The proof of Twin Primes Conjecture and Goldbach conjecture

We have
$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers
$\mathrm{n} \sim(1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers excepted 0
$P \sim(2,3,5,7, \ldots \ldots \ldots)$ all the prime numbers
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers
We notice that

$$
\begin{aligned}
& N \sim(0, n) \\
& P \sim(2, p)
\end{aligned}
$$

(a)

(b)

(c)

Fig.1. The Symmetry of N-domain
We can define a N domain as $2 \mathrm{n} \times 2$ We have a square with the vertexes are

$$
0,2 n, p n, 2
$$

with the center point of this square is n
And we can constructure a N, P coordinate system show as on figure. 1 (a)
The Horizontal axis has 3 points: $0 \quad 1 \quad 2$
The N number axis have 2 points :

$$
0 \quad 2 n
$$

The n number axis have 5 points :

$$
1, n-1, n, \mathrm{n}+1 \mathrm{n}+2
$$

The P number axis have 5 points: $2 \mathrm{p} 1 \mathrm{p} 0 \mathrm{p} 2 p n \quad p 0, p 1, p 2, p n \in p$ we can also get

$$
\begin{gathered}
p 1 \rightarrow n-1 \\
p 0 \rightarrow n \\
p 2 \rightarrow n+1 \\
p n \rightarrow n+2
\end{gathered}
$$

And extend this domain to $(0,1,2,3,4)$ and $(-2 n, 2 n)$ as as show on figure. 1 (b)

$$
\begin{gathered}
-p 1 \rightarrow-(n-1) \\
-p 0 \rightarrow-n \\
-p 2 \rightarrow-(n+1)
\end{gathered}
$$

And we can get a pyramid structure of all natural numbers as show on figure.1(c) So we have

$$
p 2-p 1 \rightarrow n+1-(-(n-1))=2 n
$$

This is the proof of Polignac's conjecture. And when $n=1$

$$
p 2-p 1=2
$$

This is the proof of Twin Primes Conjecture.
And

$$
2 n=n+1+n-1 \rightarrow p 2+p 1
$$

And $n-1>2 \quad n>3 \quad$ So $2 n>6$
This mean that every even number bigger than six can be divided into two odd prime numbers in N domain. This is the proof of Goldbach conjecture.

2. The Proof of Riemann Hypothesis.

Fig.2.1 The pyramid structure of all natural numbers with a $1 / 2$ line The $1 / 2$ number axis have 5 points :

$$
1 / 2, z p 1, z p 2, z p 3, z p 4
$$

Riemann Zeta-Function is

$$
\xi(s)=\sum_{n=1} \frac{1}{n^{s}}=\prod \frac{1}{1-p^{s}} \quad(s=a+b i)
$$

Riemann Hypothesis: all the Non-trivial zero-point of Zeta-Function $\operatorname{Re}(s)=1 / 2$.
We have

$$
\begin{aligned}
& 0=1 / 2-1 / 2 \\
& 1=1 / 2+1 / 2 \\
& \mathrm{i}^{2}=-1 \\
& 1 / 2=1 / 2^{*}(1 / 2+1 / 2 \mathrm{i})(1 / 2-1 / 2 \mathrm{i})
\end{aligned}
$$

$$
1+\left[\begin{array}{ccc}
1 & i & 0 \\
0 & \frac{1}{2} & 1 \\
1 & -i & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 1-i & \cdots \cdots \cdots 1 / n-n i \\
1+i & 1 / 2 & \cdots \cdots \cdots \cdots \cdots \cdot \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdot 1 / 2 & \cdots \cdots \cdots \cdots \cdot \cdot \\
1 / n+n i & \cdots \cdots \cdots \cdots \cdots \cdots \cdot 1 / 2
\end{array}\right]=0
$$

The $\operatorname{tr}(\mathrm{A})=1 / 2 * \mathrm{~N}$
This is mean that all the non-trivial Zero points of Riemann zeta-function are on the $\mathbf{1 / 2}$ axis just show as Fig.2.2 This is the proof of Riemann Hypothesis

Figure.2.2 all the non-trivial Zero points of Riemann zeta-function are on the $1 / 2$ axis In fact, we should notice to :

$$
1+\frac{e^{i p \pi}-e^{i 2 n \pi}}{\sum \frac{1}{2^{N}}=2}=0
$$

$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers.
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers.

$$
\begin{aligned}
& \mathrm{e}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& \frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

this equation gives a structure of all N and P and a $1 / 2$ fixed point.

Fig.2.3. The symmetry structure of all N and P and a $\mathbf{1 / 2}$ fixed point.

