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Abstract In this paper, an addition tensor, or A-tensor is going to be presented. This is done by analogy to the recently

introduced multiplication tensor or M-tensor. By comparing sub-tensors of A-tensor and M-tensor it is going to be proved

that (strong) Goldbach's conjecture can not hold. 

1 Introduction

In elementary mathematics, a number line is a picture of the graduated straight line that serves as an

abstraction to real numbers.  Idea of number line was first introduced by John Napier [1], and later,

John Wallis [2] used this graphical representation to explain operations of addition and subtraction in

terms of moving backward and forward under the metaphor of a person walking. However, that type of

graphical  interpretation is  not  particularly suitable in  other  contexts of  interest.  In  order to  obtain

another  useful  representation  of  natural  numbers,  a  multiplication  tensor  or  M
N
-tensor  has  been

recently introduced [3]. Idea came from the fundamental theorem of arithmetic [4]. 

In this paper, an addition tensor or  A
N
-tensor is going to be introduced. The addition tensor is going to

be  created  from  M
N
-tensor  by  using  analogy  and  replacing  the  operation  of  multiplication  with

addition. In order to show usefulness of this presentation of natural numbers it is going to be shown, in

an elementary way, that famous (strong) Goldbach's conjecture [5] can not hold.



2 Multiplication tensor

The  fundamental  theorem  of  arithmetic  states  that  every  integer  greater  than  1  can  be  uniquely

represented by a product of powers of prime numbers, up to the order of the factors [4].   Having that

in mind, an infinite dimensional tensor M
N
 that contains all natural numbers only once, is going to be

constructed [3]. In order to do that we are going to mark vector that contains all prime numbers with p.

So,  p(1) = 2,  p(2) = 3,  p(3) = 5, and so on. Tensor  M
N
 with elements m

i1  i2  i3   ...
  is defined by the

following equation (i
1
, i

2
, i

3
, … are natural numbers):

mi1 i2 i3 ...= p(1)i1− 1 p (2)i2− 1 p(3)i3− 1... .

The alternative definition is also possible. Now, the following notation is going to be assumed for some

infinite size vectors

2 = [20 21 22 23 …], 3 = [30 31 32 33 …],  5 = [50 51 52 53 …] … 

It is simple to be seen that every vector is marked by bold number that is equal to some prime number

and that components of the vector are defined as powers of that prime number, including power zero (it

can be seen that every vector represents infinite cyclic semi group defined by a primitive that is one of

the prime numbers). Now, the M
N
-tensor can be defined as

M
N
 = 2 ○ 3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product.

The tensor M
N
 is of infinite dimension (equal to number of prime numbers) and size, and contains all

natural numbers exactly ones. It is easy to understand why it is so, having in mind  the fundamental

theorem of arithmetic.  This type of infinite tensor is called a half infinite tensor [3].

The tensor that represents all odd numbers, M
NO

, contains elements defined as 



mi1 i2 ...= p(2)i1− 1 p(3)i2− 1 ... ,

or 

M
NO

 =  3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product. 

3 Introduction of A
N
-tensor

Now, the tensor  A
N
 is going to be defined. The tensor  A

N
 with elements a

i1  i2  i3   ...
  is defined by the

following equation (i
1
, i

2
, i

3
, … are natural numbers):

a i1 i2 i3 ...=(i1− 1) p(1)+(i2− 1) p (2)+(i3− 1) p(3)+... .

The edges of that tensor will contain the following vectors 

2a = [0 2 4 6 …], 3a = [0 3 6 9 …],  5a = [0 5 10 15 …] … 

It is simple to be seen that every vector is defined by some prime number and that components of the

vector represent all non-negative integer multiples of that prime number. Now, the  A
N
-tensor can be

defined as

A
N
 = 2a ○+ 3a ○+ 5a ○+ 7a ○+..., 

where  ○+ stands for outer sum, which is  analogous to outer product where operation of interest  is

addition..

It  is interesting to notice that the tensor  M
N
 does not contain number 0 that is neutral element for

addition, while, on the other hand, the tensor A
N
 does not contain number 1 that is neutral number for



multiplication. 

Here we will present an additional addition tensor A
NO

 that is created by odd prime numbers,  where

elements of that tensor are defined as 

a i1 i2 i3 ...=(i1− 1) p(2)+(i 2− 1) p(3)+(i3− 1) p(4)+... .

or 

A
NO

 =  3a ○+  5a ○+  7a ○+ ..., 

where ○+  stands for outer sum.

4  A proof that (strong) Goldbach's conjecture cannot hold

Goldbach's conjecture (strong version) states that every even natural number bigger than 4 can be

expressed as a sum of two odd prime numbers [5]. Here we will show in an elementary way that this

conjecture cannot hold. In order to do that we will analyze tensors  A
NO

 and  M
NO

. More precisely

speaking, sub-tensors  A
NO

(1:2, 1:2, 1:2, …)  and  M
NO

(1:2, 1:2, 1:2, …)  are going to be compared.

Those  subtensors contain all  sums and all  products  that  are  produced by two different  odd  prime

numbers, respectively. They also contain some additional elements that are composed by three different

primes, but this does not affect the final conclusion. The additional numbers that are composed of two

prime numbers are on the positions (3 1 1 1 …) (1 3 1 1 1…), (1 1 3 1 1 1…) and so on, and their

number is  equal in both tensors -  in the case of M-tensor those numbers represent squares of odd

primes and in the case of A-tensor they represent doubles of odd primes. Since we know that tensor

M
NO

 contains all odd numbers exactly once, we know that the number of numbers in the tensor is equal

to the number of even numbers. Since the subtensor  M
NO

(1:2, 1:2, 1:2, …)  together with additional

elements that represent squares of odd prime numbers obvioulsy contains smaller number of numbers



than the tensor M
NO

, we can clearly see that the number of sums created by two odd prime numbers is

smaller than the number of even numbers, which means that (strong) Goldbach's conjecture can not

hold. That completes the proof.
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