A Rotating Frame Paradox in Quantum Mechanics

Karl De Paepe*

Abstract

We consider a one particle quantum rotating system. We expect the probability densities at a point to be the same for a stationary and rotating frames of reference. We show this is not the case.

1 Introduction

Consider a frame of reference \mathcal{F}^{\prime} with coordinates $\mathbf{r}^{\prime}, t^{\prime}$ rotating with constant angular velocity ω about the z axis of a frame of reference \mathcal{F} with coordinates \mathbf{r}, t. The coordinates are related by

$$
\begin{equation*}
\rho^{\prime}=\rho \quad \varphi^{\prime}=\varphi-\omega t \quad z^{\prime}=z \quad t^{\prime}=t \tag{1}
\end{equation*}
$$

With respect to \mathcal{F} let there be a quantum system of a particle with mass m in a potential $V(\mathbf{r})$. For the wave function $\psi(\mathbf{r}, t)$ with respect to \mathcal{F} let $\psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)$ be the corresponding wave function with respect to \mathcal{F}^{\prime}. We expect the probability densities in the two frames are equal hence [1]

$$
\begin{equation*}
\left|\psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right|^{2}=|\psi(\mathbf{r}, t)|^{2} \tag{2}
\end{equation*}
$$

Consequently there is a real valued function $\beta(\mathbf{r}, t)$ such that

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)=e^{-\frac{i}{\hbar} \beta(\mathbf{r}, t)} \psi(\mathbf{r}, t) \tag{3}
\end{equation*}
$$

2 Schrödinger Equations

With respect to \mathcal{F} the wave function $\psi(\mathbf{r}, t)$ satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\mathbf{r}, t)+V(\mathbf{r}) \psi(\mathbf{r}, t)=i \hbar \frac{\partial}{\partial t} \psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right) \tag{4}
\end{equation*}
$$

The Lagrangian with respect to \mathcal{F}^{\prime} is

$$
\begin{equation*}
L^{\prime}=\frac{1}{2} m \mathbf{v}^{\prime 2}+m \mathbf{v}^{\prime} \cdot \boldsymbol{\omega} \times \mathbf{r}^{\prime}+\frac{m}{2}\left(\boldsymbol{\omega} \times \mathbf{r}^{\prime}\right)^{2}-V^{\prime}\left(\mathbf{r}^{\prime}\right) \tag{5}
\end{equation*}
$$

Construct the Hamiltonian from L^{\prime}. The wave function $\psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)$ then satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{\prime 2} \psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)-\frac{1}{2} m \omega^{2} \rho^{\prime 2} \psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)+V^{\prime}\left(\mathbf{r}^{\prime}\right) \psi^{\prime}\left(\mathbf{r}^{\prime}, t^{\prime}\right)=i \hbar \frac{\partial \psi^{\prime}}{\partial t^{\prime}}\left(\mathbf{r}^{\prime}, t^{\prime}\right) \tag{6}
\end{equation*}
$$

Now

$$
\begin{equation*}
V^{\prime}\left(\mathbf{r}^{\prime}\right)=V(\mathbf{r}) \quad \nabla^{\prime}=\nabla \quad \frac{\partial}{\partial \varphi^{\prime}}=\frac{\partial}{\partial \varphi} \quad \frac{\partial}{\partial t^{\prime}}=\frac{\partial}{\partial t}+\omega \frac{\partial}{\partial \varphi} \tag{7}
\end{equation*}
$$

[^0]On substituting (3) in (6) and using (1), (4), and (7) we have

$$
\begin{equation*}
\left[\frac{i \hbar}{2 m} \nabla^{2} \beta+\frac{1}{2 m}(\nabla \beta)^{2}-\omega \frac{\partial \beta}{\partial \varphi}-\frac{1}{2} m \omega^{2} \rho^{2}-\frac{\partial \beta}{\partial t}\right] \psi-i \hbar \omega \frac{\partial \psi}{\partial \varphi}+\frac{i \hbar}{m} \nabla \beta \cdot \nabla \psi=0 \tag{8}
\end{equation*}
$$

Adding and subtracting (8), multiplied by ψ^{*}, and its complex conjugate gives the two equations

$$
\begin{align*}
2\left[\frac{1}{2 m}(\nabla \beta)^{2}-\omega \frac{\partial \beta}{\partial \varphi}-\frac{1}{2} m \omega^{2} \rho^{2}-\frac{\partial \beta}{\partial t}\right] \psi \psi^{*} & +\frac{i \hbar}{m} \nabla \beta \cdot\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \\
& -i \hbar \omega\left(\psi^{*} \frac{\partial \psi}{\partial \varphi}-\psi \frac{\partial \psi^{*}}{\partial \varphi}\right)=0 \tag{9}\\
\nabla \cdot\left(\psi \psi^{*} \nabla \beta\right) & =m \omega \frac{\partial\left(\psi \psi^{*}\right)}{\partial \varphi} \tag{10}
\end{align*}
$$

3 No Solution to Equations

Choose V and ψ so that ψ has form $\psi(\rho, z, t)$ and at z and t if $\psi(\rho, z, t)$ is zero it is zero at a decrete set of ρ. Assume there is a point $p_{0}=\left(\rho_{0}, z_{0}, t_{0}\right)$ such that $\nabla \beta\left(p_{0}\right) \neq 0$. We can also choose p_{0} so that also $\psi\left(p_{0}\right) \neq 0$. We then have $\psi\left(p_{0}\right) \psi^{*}\left(p_{0}\right) \nabla \beta\left(p_{0}\right) \neq 0$. There is a curve with tangent vector $\nabla \beta$ and containing p_{0}. Since the system is symmetric about the z axis following this curve from p_{0} along the direction of $\nabla \beta$ or in the opposite direction we will reach a point p_{1} such that $\nabla \beta\left(p_{1}\right)=0$.

From (10) and $\partial \psi / \partial \varphi=0$ we have

$$
\begin{equation*}
\nabla \cdot\left(\psi \psi^{*} \nabla \beta\right)=0 \tag{11}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{\partial}{\partial s}\left[\psi(s) \psi^{*}(s) \frac{\partial \beta}{\partial s}(s)\right]=0 \tag{12}
\end{equation*}
$$

where s is the coordinate along $\nabla \beta$. This implies

$$
\begin{equation*}
\psi\left(p_{0}\right) \psi^{*}\left(p_{0}\right) \nabla \beta\left(p_{0}\right)=\psi\left(p_{1}\right) \psi\left(p_{1}\right) \nabla \beta\left(p_{1}\right)=0 \tag{13}
\end{equation*}
$$

This is a contradiction hence $\nabla \beta=0$. There is then a function $f(t)$ such that $\beta(\mathbf{r}, t)=f(t)$. By (9) and form of ψ

$$
\begin{equation*}
-\frac{1}{2} m \omega^{2} \rho^{2}-\dot{f}=0 \tag{14}
\end{equation*}
$$

which does not hold. This ψ has then no solution for β.

4 Conclusion

No solution implies that (2) does not hold. Consequently measuring position of the mass can give the mass is at a point in the stationary frame but is not at that point in the rotating frame of reference.

References

[1] Physics Essays, September 2008

[^0]: *k.depaepe@alumni.utoronto.ca

