Multiplying the minus by the plus and Definition Analysis

March 20, 2022 Yuji Masuda
y_masuda0208@yahoo.co.jp

Abstract

The purpose of this short paper is to prove that multiplying by a minus signifies a reverse rotation.

\section*{General comments} $\pm \infty$ is constant at any observation point (position). $$
R \times(\pm \infty)= \pm \infty, R+(\pm \infty)= \pm \infty)(-1) \times(\pm \infty) \neq \mp \infty
$$ $$
\text { (1) } \log \left(-\frac{\pi}{2}\right)=\log e=1
$$ $$
\text { (2) } \log 1=0
$$ $$
\text { (3) } \log 0=\log \left(\frac{1}{ \pm \infty}\right)=\log \left(e^{-1}\right)=\log (-e)=\log \left(\frac{\pi}{2}\right)=-1
$$ $$
\text { (4) } \log (-1)=i \pi=-2
$$ $$
\text { (1) } \log (-2)=\log \left(-\frac{\pi}{2}\right)=\log e=1
$$ $$
(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1) \Rightarrow \cdots
$$ $\begin{array}{llll}-2 & -1 & 0=2 & 1\end{array}$ $$
\pm \infty=-2\left(\because \pm \infty=\frac{1}{0}=\frac{1}{2}=3=-2\right)
$$

Proof

(1) $2^{0}=1$ (2) $2^{1}=2=0$ (3) $2^{2}=4=-1$
(4) $2^{3}=8=-2$
(1) $2^{4}=16=1$

$$
\text { (1) } 3^{0}=(-2)^{0}=1
$$

$$
\text { (4) } 3^{1}=(-2)^{1}=-2
$$

$$
\text { (3) } 3^{2}=(-2)^{2}=4=-1
$$

$$
(2) 3^{3}=(-2)^{3}=2=0
$$

$$
\text { (1) } 3^{4}=(-2)^{4}=1
$$

At the end

Multiplying by minus means not only a change of sign but also a "reversal of rotation.

