On critical line of nontrivial zeros of Riemann zeta function $\zeta(s)$

José Alcauza *

March 14, 2022

Abstract

In this paper, we find a curious and simple possible solution to the critical line of nontrivial zeros in the strip $\{s \in \mathbb{C}: 0<\Re(s)<1\}$ of Riemann zeta function $\zeta(s)$. We show that exists $s_{\sigma} \in \mathbb{C}$ where $\left\{s_{\sigma}=\sigma+i t:(\sigma \in \mathbb{R}, 0<\sigma<1) ; \forall t \in \mathbb{R}\right\}$ with i as the imaginary unit, such that satisfy: $$
\lim _{s \rightarrow s_{\sigma}} \zeta(s)=\zeta\left(s_{\sigma}\right)=0 \Rightarrow s_{\sigma}=\frac{1}{2}+i t
$$

1 Introduction.

There is a large and extensive bibliography on the Riemann zeta function and its zeros. Basically, Riemann zeta function is defined for $s \in \mathbb{C}$ with $\Re(s)>1$ by the absolutely convergent infinite series:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

Leonhard Euler already considered this series for real values of s. He also proved that it equals the Euler product:

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

where the infinite product extends over all prime numbers p. However, we can also define the Riemann zeta function Eq.(1) as:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}+\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}} \quad \Rightarrow \quad \zeta(s)=\frac{1}{2^{s}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}+\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{s}}\right)
$$

Which can also be expressed as:

$$
\begin{equation*}
\zeta(s)=\frac{1}{2^{s}}[\zeta(s)+B(s)] \Longleftrightarrow B(s)=\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{s}} \tag{2}
\end{equation*}
$$

Thus, by Eq.(2) we can definitely express the Riemann zeta function as:

$$
\begin{equation*}
\zeta(s)=\left(2^{s}-1\right)^{-1} B(s) \tag{3}
\end{equation*}
$$

As is well known, the Riemann zeta function $\zeta(s)$ and the Dirichlet eta function $\eta(s)$ satisfy the relation:

$$
\begin{equation*}
\eta(s)=\left(1-2^{1-s}\right) \zeta(s) \tag{4}
\end{equation*}
$$

*alcauza.jose@gmail.com

Thus, by Eq.(3) we can now express the Dirichlet eta function as:

$$
\begin{equation*}
\eta(s)=\left(\frac{1-2^{1-s}}{2^{s}-1}\right) B(s) \tag{5}
\end{equation*}
$$

2 Proof.

By Eq.(2), Eq.(4) and Eq.(5) we can obtain:

$$
2^{1-s}=1-\frac{\eta(s)}{\zeta(s)}=2^{s} \cdot \frac{\zeta(s)-\eta(s)}{\zeta(s)+B(s)} \quad \Rightarrow \quad 2^{1-2 s}=\frac{\zeta(s)+\left(\frac{2^{1-s}-1}{2^{s}-1}\right) B(s)}{\zeta(s)+B(s)}
$$

Which can also be expressed as:

$$
\begin{equation*}
2^{1-2 s}=\left(\frac{2^{1-s}-1}{2^{s}-1}\right) A(s) \quad \Longleftrightarrow \quad A(s)=\frac{\left(\frac{2^{s}-1}{2^{1-s}-1}\right) \zeta(s)+B(s)}{\zeta(s)+B(s)} \tag{6}
\end{equation*}
$$

However, exists $s_{\sigma} \in \mathbb{C}$ where $\left\{s_{\sigma}=\sigma+i t:(\sigma \in \mathbb{R}, 0<\sigma<1) ; \forall t \in \mathbb{R}\right\}$ with i as the imaginary unit, such that satisfy:

$$
\lim _{s \rightarrow s_{\sigma}} \zeta(s)=\zeta\left(s_{\sigma}\right)=0
$$

Therefore, calculating $\left(\lim _{s \rightarrow s_{\sigma}}\right)$ in Eq.(6), we have:

$$
\lim _{s \rightarrow s_{\sigma}}\left[2^{1-2 s} \cdot\left(\frac{2^{s}-1}{2^{1-s}-1}\right)\right]=\lim _{s \rightarrow s_{\sigma}} A(s) \Rightarrow 2^{1-2 s_{\sigma}} \cdot\left(\frac{2^{s_{\sigma}}-1}{2^{1-s_{\sigma}}-1}\right)=A\left(s_{\sigma}\right)
$$

However, by Eq.(3) we have that:

$$
\zeta\left(s_{\sigma}\right)=0 \Longleftrightarrow B\left(s_{\sigma}\right)=0
$$

Then by Eq.(6) we obtain for $A\left(s_{\sigma}\right)$ an indeterminacy of the type $\frac{0}{0}$. Thus, by successive applications of the L'hôpital rule until any nth and m th derivatives for $\zeta(s)$ and $B(s)$ respectively, by which $A\left(s_{\sigma}\right)$ is not an indeterminacy, that is:

$$
\left[\zeta^{(n)}\left(s_{\sigma}\right) \neq 0 \vee B^{(m)}\left(s_{\sigma}\right) \neq 0\right] \Longleftrightarrow\left[\left(\forall j<n: \zeta^{(j)}\left(s_{\sigma}\right)=0\right) \wedge\left(\forall k<m: B^{(k)}\left(s_{\sigma}\right)=0\right)\right]
$$

we obtain definitively:

$$
\begin{equation*}
2^{1-2 s_{\sigma}}=\left(\frac{2^{1-s_{\sigma}}-1}{2^{s_{\sigma}}-1}\right) A\left(s_{\sigma}\right) \tag{7}
\end{equation*}
$$

where $A\left(s_{\sigma}\right) \neq 0$ since we would obtain: $2^{1-2 s_{\sigma}}=0$ and would not be defined for s_{σ}.
However, since $s_{\sigma}=\sigma+i t$ then obtaining common factor $2^{-i t}$ in numerator and $2^{i t}$ in denominator of the fraction, we can express:

$$
2^{1-2 s_{\sigma}}=2^{-2 i t} \cdot \frac{2^{1-\sigma}-2^{i t}}{2^{\sigma}-2^{-i t}} A\left(s_{\sigma}\right)
$$

Now, defining $s_{0} \in \mathbb{C}$ such that $s_{0}=\frac{1}{2}+i t$, we can express previous equation as:

$$
\begin{equation*}
2^{2\left(s_{\sigma}-s_{0}\right)}=\frac{2^{\sigma}-2^{-i t}}{2^{1-\sigma}-2^{i t}} \cdot \frac{1}{A\left(s_{\sigma}\right)} \tag{8}
\end{equation*}
$$

By definition $s_{\sigma}=\sigma+i t$ and $s_{0}=\frac{1}{2}+i t$ then: $2\left(s_{\sigma}-s_{0}\right)=2 \sigma-1$. Thus, developing in trigonometric form $2^{i t}=e^{i t \ln 2}$ and $2^{-i t}=e^{-i t \ln 2}$ and since $\cos (-x)=\cos (x)$ as we know, we obtain:

$$
\begin{equation*}
A\left(s_{\sigma}\right) \cdot 2^{(2 \sigma-1)}=\frac{2^{\sigma}-\cos (t \ln 2)+i \operatorname{sen}(t \ln 2)}{2^{1-\sigma}-\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)} \tag{9}
\end{equation*}
$$

and thus:

$$
A\left(s_{\sigma}\right) \cdot 2^{(2 \sigma-1)}[\cos (t \ln 2)+i \operatorname{sen}(t \ln 2)]=\left[A\left(s_{\sigma}\right)-1\right] 2^{\sigma}+[\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)]
$$

As we know: $\{|x|=x: \forall x \geq 0 ; \forall x \in \mathbb{R}\}$ and $\{|z+w| \leq|z|+|w|: \forall(z, w) \in \mathbb{C}\}$, then by application of modulus and denoting $A\left(s_{\sigma}\right)=A$ by simplicity, we obtain:

$$
|A| \cdot 2^{(2 \sigma-1)} \leq|A-1| \cdot 2^{\sigma}+1
$$

Now, denoting $x=2^{\left(\sigma-\frac{1}{2}\right)}$ by simplicity and since $\left(2^{\frac{1}{2}}<2\right)$ as we know, we can also express the previous equation as:

$$
\begin{equation*}
|A| \cdot 2^{2\left(\sigma-\frac{1}{2}\right)} \leq|A-1| \cdot 2^{\frac{1}{2}} \cdot 2^{\left(\sigma-\frac{1}{2}\right)}+1 \quad \Rightarrow \quad|A| x^{2}<2|A-1| x+1 \tag{10}
\end{equation*}
$$

However, by Eq.(9) we have: $\{A \in \mathbb{C}\}$, which can be expressed in binomial form as:

$$
\begin{aligned}
A= & \frac{\left[2^{\sigma}-\cos (t \ln 2)\right] \cdot\left[2^{\sigma}-2^{(2 \sigma-1)} \cos (\operatorname{tln} 2)\right]-2^{(2 \sigma-1)} \operatorname{sen}^{2}(t \ln 2)}{\left[2^{\sigma}-2^{(2 \sigma-1)} \cos (t \ln 2)\right]^{2}+\left[2^{(2 \sigma-1)} \operatorname{sen}(t \ln 2)\right]^{2}}+ \\
& i \cdot \frac{\left[2^{\sigma}-\cos (t \ln 2)\right] \cdot 2^{(2 \sigma-1)} \operatorname{sen}(t \ln 2)+\left[2^{\sigma}-2^{(2 \sigma-1)} \cos (t \ln 2)\right] \operatorname{sen}(t \ln 2)}{\left[2^{\sigma}-2^{(2 \sigma-1)} \cos (t \ln 2)\right]^{2}+\left[2^{(2 \sigma-1)} \operatorname{sen}(t \ln 2)\right]^{2}}
\end{aligned}
$$

Thus, we verify that: $\{|A|>0:(\sigma \in \mathbb{R}, 0<\sigma<1) ; \forall t \in \mathbb{R}\}$. By simplicity, denoting $\{A=b+i d\}$ in previous equation, we know that:

$$
\left.\begin{array}{rl}
|A| & =\sqrt{b^{2}+d^{2}} \tag{11}\\
|A-1| & =\sqrt{(b-1)^{2}+d^{2}}=\sqrt{1-2 b+|A|^{2}}
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
&|A-1| \leq|A| \Longleftrightarrow \\
& b \geq \frac{1}{2} \\
&|A-1| \geq|A| \Longleftrightarrow \\
& b \leq \frac{1}{2}
\end{aligned}\right.
$$

Where obviously $\left(1-2 b+|A|^{2} \geq 0\right)$. Thus, by Eq.(11) the two possible options in Eq.(10) are:
2.1 Case: $|A-1| \leq|A|$.

Then Eq.(10) can be expressed now as:

$$
|A| x^{2}<2|A-1| x+1 \quad \Rightarrow \quad|A| x^{2} \leq 2|A| x+1 \quad \Rightarrow \quad x^{2} \leq 2 x+\frac{1}{|A|}
$$

with $|A|>0$ and then for any $\{(r, \beta) \in \mathbb{R}: r>0\}$ we obtain:

$$
\begin{equation*}
x^{2}+r=2 x+\frac{1}{|A|} \quad \Rightarrow \quad x^{2}-2 x+\beta=0 \Longleftrightarrow \beta=r-\frac{1}{|A|} \tag{12}
\end{equation*}
$$

2.2 Case: $|A-1| \geq|A|$.

Then, Eq.(10) can be expressed now for any $\{k \in \mathbb{R}: k>0\}$ as:

$$
|A| x^{2}<2|A-1| x+1 \quad \Rightarrow \quad|A| x^{2}+k=2|A-1| x+1 \quad \Rightarrow \quad|A| x^{2}+k \geq 2|A| x+1
$$

and then again for any $\{(\alpha, \beta) \in \mathbb{R}: \alpha>0\}$ where $|A|>0$ we obtain:

$$
\begin{equation*}
|A| x^{2}+k=2|A| x+1+\alpha \quad \Rightarrow \quad x^{2}-2 x+\beta=0 \Longleftrightarrow \beta=\frac{k-1-\alpha}{|A|} \tag{13}
\end{equation*}
$$

2.3 Final solution.

As we can see we have found the same equation in both options, but obviously β have different parameters in Eq.(12) and Eq.(13). Thus solving for $x=2^{\left(\sigma-\frac{1}{2}\right)}$ for any option, we obtain:

$$
\begin{equation*}
x^{2}-2 x+\beta=0 \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}=1 \pm \sqrt{1-\beta} \tag{14}
\end{equation*}
$$

However, obviously $(\beta \leq 1)$ since $\left\{2^{\left(\sigma-\frac{1}{2}\right)} \in \mathbb{R}:(0<\sigma<1)\right\}$, thus:

$$
\beta=2 x-x^{2} \leq 1 \quad \Rightarrow \quad x^{2}-2 x+1 \geq 0
$$

and solving for $x=2^{\left(\sigma-\frac{1}{2}\right)}$:

$$
\begin{equation*}
2^{\left(\sigma-\frac{1}{2}\right)} \geq 1 \quad \Rightarrow \quad \sigma \geq \frac{1}{2} \tag{15}
\end{equation*}
$$

Now, according to Eq. (14) and since ($\beta \leq 1$), the three options with their two solutions (\pm) are:

2.3.1 $\beta=0$

1. Positive solution

$$
2^{\left(\sigma-\frac{1}{2}\right)}=1+\sqrt{1-\beta} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}=2 \quad \Rightarrow \quad \sigma=\frac{3}{2}
$$

which is outside the strip for nontrivial zeros: $(0<\sigma<1)$.
2. Negative solution

$$
2^{\left(\sigma-\frac{1}{2}\right)}=1-\sqrt{1-\beta} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}=0
$$

Obviously is not defined.

2.3.2 $\beta<0$

Then $\{\exists \lambda \in \mathbb{R}: \lambda>0 ; \beta=-\lambda\}$. Therefore:

1. Positive solution

$$
2^{\left(\sigma-\frac{1}{2}\right)}=1+\sqrt{1+\lambda} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}>2 \quad \Rightarrow \quad \sigma>\frac{3}{2}
$$

which is outside the strip for nontrivial zeros: $(0<\sigma<1)$.
2. Negative solution

$$
2^{\left(\sigma-\frac{1}{2}\right)}=1-\sqrt{1+\lambda} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}=-\alpha \quad \Rightarrow \quad \sigma \in \mathbb{C}
$$

Where $\{\alpha \in \mathbb{R}: \alpha>0\}$ and therefore is not correct, since $\{\sigma \in \mathbb{R}\}$.
2.3.3 $\beta \in(0,1]$

1. Negative solution

$$
\begin{equation*}
2^{\left(\sigma-\frac{1}{2}\right)}=1-\sqrt{1-\beta} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)} \leq 1 \quad \Rightarrow \quad \sigma \leq \frac{1}{2} \tag{16}
\end{equation*}
$$

2. Positive solution

$$
2^{\left(\sigma-\frac{1}{2}\right)}=1+\sqrt{1-\beta} \quad \Rightarrow \quad 2^{\left(\sigma-\frac{1}{2}\right)}<2 \quad \Rightarrow \quad \sigma<\frac{3}{2}
$$

which is less restrictive that Eq.(16) and furthermore $(\sigma<1)$ as we know for nontrivial zeros.

Definitively, according to Eq.(15) and Eq.(16) we have then that if:

$$
\left(\sigma \leq \frac{1}{2}\right) \wedge\left(\sigma \geq \frac{1}{2}\right) \quad \Rightarrow \quad \sigma=\frac{1}{2}
$$

by which we can also verify by Eq.(9) that:

$$
\sigma=\frac{1}{2} \quad \Rightarrow \quad|A|=\left|A\left(s_{\sigma}\right)\right|=1
$$

Therefore we obtain definitely:

$$
s_{\sigma}=\sigma+i t \quad \Rightarrow \quad s_{\sigma}=\frac{1}{2}+i t
$$

Thus, all the nontrivial zeros lie on the critical line $\left\{s \in \mathbb{C}: \Re(s)=\frac{1}{2}\right\}$ consisting of the set complex numbers $\frac{1}{2}+i t$, thus confirming Riemann's hypothesis.

