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Abstract

In this paper, we find a curious and simple possible solution to the critical line of nontrivial zeros
in the strip {s € C: 0 < R(s) < 1} of Riemann zeta function {(s). We show that exists s € C where
{s¢ =0 +it:(c € R,0< 0 <1);Vt € R} with ¢ as the imaginary unit, such that satisfy:

lim ((s) =C((s6) =0 = s5= l—|—it

§—Sq 2

1 Introduction.

There is a large and extensive bibliography on the Riemann zeta function and its zeros. Basically,

Riemann zeta function is defined for s € C with R(s) > 1 by the absolutely convergent infinite series:
— 1
) =) — (1)
n=1 n

Leonhard Euler already considered this series for real values of s. He also proved that it equals the Euler

product: .
)= TI

1 —_ mn—S
p prime p

where the infinite product extends over all prime numbers p. However, we can also define the Riemann
zeta function Eq.(1) as:

“-Sor Say O 5 (Se )

n=1

Which can also be expressed as:

1

(o) = 5 Ko + B = Bl =3 2)

Thus, by Eq.(2) we can definitely express the Riemann zeta function as:

¢(s) = (2° = 1)7'B(s) (3)

As is well known, the Riemann zeta function ((s) and the Dirichlet eta function 7(s) satisfy the relation:

n(s) = (1-2"7°)¢(s) (4)
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Thus, by Eq.(3) we can now express the Dirichlet eta function as:

0o = () B 5)

25 — 1
2 Proof.
By Eq.(2), Eq.(4) and Eq.(5) we can obtain:
1-s _ 9 _ @ _ 95, ¢(s) —n(s) 1-2s _ <o)+ (2;:1) B(s)
T T o B T Y T T e+ Be)

Which can also be expressed as:
517) C(s) + B(s)
((s) + B(s)

However, exists s, € C where {s, =0 +it: (c € R,0 <o < 1);Vt € R} with ¢ as the imaginary unit,
such that satisfy:

gl—2s _ (2157_1> A(s) <=  A(s) = (

25 — 1 (6)

lim ¢(s) = () = 0

§— 8o

Therefore, calculating (lims_,s,) in Eq.(6), we have:

lim [2125- (27_11” = lim A(s) = 2'7%%. (i) = A(s,)

5—S4 21—s _ 5—So 2l=s, 1

However, by Eq.(3) we have that:
((s5) =0 <= B(s,)=0

Then by Eq.(6) we obtain for A(s,) an indeterminacy of the type 3. Thus, by successive applications of
the L’hopital rule until any nth and mth derivatives for {(s) and B(s) respectively, by which A(s,) is
not an indeterminacy, that is:

[C(")(sg) £0V B™(s,) # 0] = [(VJ <n:(W(s,) = 0) A (Vk <m:B®(s,) = 0)}

91250 _ (217‘1> Als,) (1)

we obtain definitively:

250 — 1

where A(s,) # 0 since we would obtain: 2!72% =0 and would not be defined for s,.

However, since s, = o + it then obtaining common factor 27 in numerator and 2 in denominator

of the fraction, we can express:

) 21*0 _ 2it
2l R = 9B S S Alsy)

Now, defining sg € C such that sy = % + it, we can express previous equation as:

22(55750) _ 20 _ 271'15 . 1
210 —2il " A(s,)

(8)

By definition s, = o + it and sy = % + it then: 2(s, — s9) = 20 — 1. Thus, developing in trigonometric
form 2% = ¢in2 and 2% = ¢~"2 and since cos(—x) = cos(r) as we know, we obtain:

29 — cos(tin2) + isen(tin2)

A o) 2(2071) _
(s5) 21— — cos(tin2) — isen(tin2)

9)



and thus:
A(sg) - 277D [cos(tin2) + isen(tin2)] = [A(se) — 1] 27 + [cos(tin2) — isen(tin2)]

As we know: {|z| =z :Vz > 0;Vz € R} and {|z + w| < |2| + |w| : V(2,w) € C}, then by application of
modulus and denoting A(s,) = A by simplicity, we obtain:

|A]- 277D < |A—1]-27 +1

Now, denoting x = 2(0—3%) by simplicity and since (2% < 2) as we know, we can also express the previous
equation as: ) ) )
|A]- 22073 <jA—1].22 20720 411 = |4z <2/A-1|z+1 (10)

However, by Eq.(9) we have: {A € C}, which can be expressed in binomial form as:
[27 — cos(tin2)] - [27 — 229 Deos(tin2)] — 227~V sen?(tn2)
[20 — 220D cos(tin2)]2 + [2(29 =D sen(tin2)]?

[27 — cos(tin2)] - 227~ Dsen (tin2) + [27 — 227~ Dcos(tIn2))sen(tin2)
[20 — 229D cos(tin2)]2 + [229-Dsen(tin2)]2

A

7-

Thus, we verify that: {|A] > 0: (¢ € R,0 < 0 < 1);Vt € R}. By simplicity, denoting {A = b+ id} in
previous equation, we know that:

1
A = VPEE } L [rmuskl e a2y
A—1] = J/(b—-12+d2=+/1-2b+|A]2 A—1>[4] < b<l]
Where obviously (1 —2b+ |AJ? > 0). Thus, by Eq.(11) the two possible options in Eq.(10) are:
2.1 Case: |[A—1] <|A]|.
Then Eq.(10) can be expressed now as:
1
|[Alz? < 2/A -1z +1 = |A2®* <2JAlz+1 = 2*<2z+ T
with |A| > 0 and then for any {(r,3) € R: 7 > 0} we obtain:
x2—i-1"*2x—i-L = x2—2x—i-6*0<:>5*7"—L (12)
A A
2.2 Case: |[A—1] > |A]
Then, Eq.(10) can be expressed now for any {k € R: k > 0} as:
|Alz? <2/A =1z +1 = |Al2?+Ek=2A-1z+1 = |Al2®+k>2/Az+1
and then again for any {(«, 8) € R: a > 0} where |A| > 0 we obtain:
9 9 k—1—-«
|Alz® + k =2|Alz+ 1+« = x —2x+6:0<:>6:T (13)



2.3 Final solution.

As we can see we have found the same equation in both options, but obviously 3 have different parameters
in Eq.(12) and Eq.(13). Thus solving for # = 2(°~2) for any option, we obtain:

2 -2r+8=0 = 202 =1+,/1-7 (14)
However, obviously (3 < 1) since {20°72) € R: (0 < o < 1)}, thus:
B=22-2"<1 = 2°-224+1>0

and solving for z = 2(0—3%).

20-3) >1 = 5> % (15)
Now, according to Eq.(14) and since (8 < 1), the three options with their two solutions (£) are:
231 3=0
1. Positive solution
2073 —14+1-8 = 2073 =2 = a:g
which is outside the strip for nontrivial zeros: (0 < o < 1).
2. Negative solution
olo—3) — 1 _ m — 900=%) _
Obviously is not defined.
232 8<0
Then {3 € R: A > 0; 3= —A}. Therefore:
1. Positive solution
2073 =141+ N = 207252 = 5>°
which is outside the strip for nontrivial zeros: (0 < o < 1).
2. Negative solution
2072 — 1 VIt AN = 2079 = _4 = 5€C
Where {a € R: a > 0} and therefore is not correct, since {o € R}.
2.3.3 [€(0,1]
1. Negative solution
20°D =1-\/1-5 = 200D<1 = US% (16)

2. Positive solution

200 =14/1-8 = 2079 <2 = a<g

which is less restrictive that Eq.(16) and furthermore (o < 1) as we know for nontrivial zeros.



Definitively, according to Eq.(15) and Eq.(16) we have then that if:

Y

(US%)/\(O’ %) = o=

by which we can also verify by Eq.(9) that:
1
o=5 = |A] = |A(ss)] =1

Therefore we obtain definitely:

1
Se =0 +it = sg:§—|—it

Thus, all the nontrivial zeros lie on the critical line {s € C : R(s) = 3} consisting of the set complex
numbers % + it, thus confirming Riemann’s hypothesis.



