A Method to Prove a Prime Number between $3 N$ and $4 N$

Wing K. Yu

Abstract

In this paper, we will prove that when an integer $n>1$, there exists a prime number between $3 n$ and $4 n$. This is another step in the expansion of the Bertrand's postulate - Chebyshev's theorem after the proof of a prime number between $2 n$ and $3 n$.

Introduction

The Bertrand's postulate - Chebyshev's theorem States that for any positive integer n, there is always a prime number p such that $n<p \leq 2 n$. It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer n, there is a prime number p such that $2 n<p \leq 3 n$. In 2011, Andy Loo [3] expanded the theorem to that when $n \geq 2$, there exists a prime number in the interval ($3 n, 4 n$). Recently, the author used a different method [4] to prove that a prime number exists between $2 n$ and $3 n$ by analyzing the binomial coefficient $\binom{3 n}{n}$. In this paper, we will use the similar way to prove that a prime number exists between $3 n$ and $4 n$ by analyzing the binomial coefficient $\binom{4 n}{n}$.
Definition: $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}$ denotes the prime factorization operator of $\binom{4 n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{4 n}{n}$ in the range of $a \geq p>b$. In this operator, p is a prime number, a and b are real numbers, and $4 n \geq a \geq p>b \geq 1$.
It has some properties:
It is always true that $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\} \geq 1$
If there is no prime number in $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}$, then $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}=1$, or vice versa, if $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}=1$, then there is no prime number in $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}$.
For example, $\Gamma_{12 \geq p>8}\left\{\binom{16}{4}\right\}=11^{0}=1$. No prime number is in $\binom{16}{4}$ in the range of $12 \geq p>8$. If there is at least one prime number in $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}$, then $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}>1$, or vice versa, if $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}>1$, then there is at least one prime number in $\Gamma_{a \geq p>b}\left\{\binom{4 n}{n}\right\}$. For example, $\Gamma_{8 \geq p>4}\left\{\binom{16}{4}\right\}=5>1$. Prime number 5 is in $\binom{16}{4}$ in the range of $8 \geq p>4$.

Let $v_{p}(n)$ be the p-adic valuation of n, the exponent of the highest power of p that divides n. We define $R(p)$ by the inequalities $p^{R(p)} \leq 4 n<p^{R(p)+1}$, and determine the p-adic valuation of $\binom{4 n}{n}$.
$v_{p}\left(\binom{4 n}{n}\right)=v_{p}((4 n)!)-v_{p}((3 n)!)-v_{p}(n!)=\sum_{i=1}^{R(p)}\left(\left\lfloor\frac{4 n}{p^{i}}\right\rfloor-\left\lfloor\frac{3 n}{p^{i}}\right\rfloor-\left\lfloor\frac{n}{p^{i}}\right\rfloor\right) \leq R(p)$
because for any real numbers a and b, the expression of $\lfloor a+b\rfloor-\lfloor a\rfloor-\lfloor b\rfloor$ is 0 or 1 .
Thus, if p divides $\binom{4 n}{n}$, then $v_{p}\left(\binom{4 n}{n}\right) \leq R(p) \leq \log _{p}(4 n)$, or $p^{v_{p}\left(\binom{3 n}{n}\right)} \leq p^{R(p)} \leq 4 n$
And if $4 n \geq p>\lfloor 2 \sqrt{n}]$, then $0 \leq v_{p}\left(\binom{4 n}{n}\right) \leq R(p) \leq 1$.
From the prime number decomposition, when $n>\lfloor 2 \sqrt{n}]$,
$\binom{4 n}{n}=\frac{(4 n)!}{n!\cdot(3 n)!}=\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \cdot \Gamma_{n \geq p>[2 \sqrt{n}]}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \cdot \Gamma_{[2 \sqrt{n}] \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}$.
When $n \leq\lfloor 2 \sqrt{n}\rfloor,\binom{4 n}{n} \leq \Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \cdot \Gamma_{[2 \sqrt{n}\rfloor \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}$.
Thus, $\binom{4 n}{n} \leq \Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \cdot \Gamma_{n \geq p>\lfloor 2 \sqrt{n}]}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \cdot \Gamma_{[2 \sqrt{n}] \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}$.
Since all prime numbers in $n!$ are not in the range of $4 n \geq p>n$,
$\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}=\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}$.
Referring to (5), $\Gamma_{n \geq p>[2 \sqrt{n}\rfloor}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\} \leq \prod_{n \geq p} p$.
It has been proved [5] that $\prod_{n \geq p} p<2^{2 n-3}$ when $n \geq 3$.
Thus for $n \geq 3,\binom{4 n}{n}<\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot 2^{2 n-3} \cdot \Gamma_{[2 \sqrt{n}] \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}$

Proposition

For every integer $n>1$, there exists at least a prime number p such that $3 n<p \leq 4 n$.

Proof:

By induction on n, for $n=2,\binom{4 n}{n}=\binom{8}{2}=28>\frac{4^{4 n-3}}{n \cdot 3^{3 n-3}}=\frac{512}{27} \approx 18.96$
If $\binom{4 n}{n}>\frac{4^{4 n-3}}{n \cdot 3^{3 n-3}}$ for n stands, then for $n+1$,
$\binom{4(n+1)}{(n+1)}=\frac{(4 n+4)(4 n+3)(4 n+2)(4 n+1)}{(n+1)(3 n+3)(3 n+2)(3 n+1)} \cdot\binom{4 n}{n}$
$>\frac{(4 n+4)(4 n+3)(4 n+2)(4 n+1)}{(n+1)(3 n+3)(3 n+2)(3 n+1)} \cdot \frac{4^{4 n-3}}{n \cdot 3^{3 n-3}}=\frac{4}{3} \cdot \frac{4 n+3}{3 n+2} \cdot \frac{4 n+2}{3 n+1} \cdot \frac{4 n+1}{n} \cdot \frac{4^{4 n-3}}{(n+1) \cdot 3^{3 n-3}}$

$$
\begin{equation*}
>\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{1} \cdot \frac{4^{4 n-3}}{(n+1) \cdot 3^{3 n-3}}=\frac{4^{4(n+1)-3}}{(n+1) \cdot 3^{3(n+1)-3}} \tag{7}
\end{equation*}
$$

Thus for $n \geq 2, \quad\binom{4 n}{n}>\frac{4^{4 n-3}}{n \cdot 3^{3 n-3}}$
Applying (7) into (6):
For $n \geq 3, \frac{4^{4 n-3}}{n \cdot 3^{3 n-3}}<\binom{4 n}{n}<\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot 2^{2 n-3} \cdot \Gamma_{[2 \sqrt{n}] \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}$

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2,3 and 5 . Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1$ (MOD 6) and $p \equiv 5$ (MOD 6). Thus, $\pi(n) \leq\left\lfloor\frac{n}{3}\right\rfloor+2 \leq \frac{n}{3}+2$.

Referring to (4) and (9),
$\Gamma_{[2 \sqrt{n}] \geq p}\left\{\frac{(4 n)!}{n!\cdot(3 n)!}\right\}=\Gamma_{[2 \sqrt{n}] \geq p}\left\{\binom{4 n}{n}\right\} \leq(4 n)^{\pi(2 \sqrt{n})} \leq(4 n)^{\frac{2 \sqrt{n}}{3}+2}$
Applying (10) into (8): $\frac{4^{4 n-3}}{n\left(3^{3 n-3}\right)}<\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot 2^{2 n-3} \cdot(4 n)^{\frac{2 \sqrt{n}}{3}+2}$
Since for $n \geq 3$, both $2^{2 n-3}>0$ and $(4 n)^{\frac{2 \sqrt{n}}{3}+2}>0$
$\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>\frac{4^{4 n-3}}{n\left(3^{3 n-3}\right)\left(2^{2 n-3}\right)(4 n)^{\frac{2 \sqrt{n}}{3}+2}}=\frac{27 \cdot\left(\frac{4}{3}\right)^{3 n}}{2 \cdot(4 n)^{\frac{2 \sqrt{n}}{3}+3}}=\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{3 n}}{(4 n)^{\frac{2 \sqrt{n}+9}{3}}}$
Let $f(x)=\frac{u}{w}$ where x, u, w are real numbers and $x \geq 42, u=\frac{27}{2} \cdot\left(\frac{4}{3}\right)^{3 x}, w=(4 x)^{\frac{2 \sqrt{x}+9}{3}}$
$\frac{d u}{d x}=\left(\frac{27}{2} \cdot\left(\frac{4}{3}\right)^{3 x}\right)^{\prime}=\frac{27}{2} \cdot\left(\frac{4}{3}\right)^{3 x} \cdot 3 \cdot \ln \left(\frac{4}{3}\right)=u \cdot 3 \cdot \ln \left(\frac{4}{3}\right)$
$\frac{d w}{d x}=\left((4 x)^{\frac{2 \sqrt{x}+9}{3}}\right)^{\prime}=\left((4 x)^{\frac{2 \sqrt{x}+9}{3}}\right)\left(\frac{\ln (4 x)}{3 \sqrt{x}}+\frac{2 \sqrt{x}+9}{3 x}\right)=w\left(\frac{\ln (x)+\ln (4)+2}{3 \sqrt{x}}+\frac{3}{x}\right)$
$f^{\prime}(x)=\left(\frac{u}{w}\right)^{\prime}=\frac{w(u)^{\prime}-u(w)^{\prime}}{w^{2}}=\frac{u}{w}\left(3 \cdot \ln \left(\frac{4}{3}\right)-\frac{\ln (x)+\ln (4)+2}{3 \sqrt{x}}-\frac{3}{x}\right)$
Let $f_{1}(x)=3 \cdot \ln \left(\frac{4}{3}\right)-\frac{\ln (x)+\ln (4)+2}{3 \sqrt{x}}-\frac{3}{x}$
Since $f_{1}{ }^{\prime}(x)=\frac{\ln (x)+\ln (4)}{6 x \sqrt{x}}+\frac{3}{x^{2}}>0$, when $x>1, f_{1}(x)$ is a strictly increasing function.
When $x=42, f_{1}(x)=3 \cdot \ln \left(\frac{4}{3}\right)-\frac{\ln (x)+\ln (4)+2}{3 \sqrt{x}}-\frac{3}{x} \approx 0.863-0.367-0.071=0.425>0$.
Thus, when $x \geq 42, f_{1}(x)>0$.
Since when $x \geq 42, u, w$, and $f_{1}(x)$ are greater than zero, $f^{\prime}(x)=\frac{u}{w} \cdot f_{1}(x)>0$.
Thus $f(x)$ is a strictly increasing function for $x \geq 42$. Then when $x \geq 42, f(x+1)>f(x)$.
Let $x=n \geq 42$, then $f(n+1)>f(n)=\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{3 n}}{(4 n)^{\frac{2 \sqrt{n}+9}{3}}}$
Since for $n=42, f(n)=\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{3 n}}{(4 n)^{\frac{2 \sqrt{n}+9}{3}}}=\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{126}}{(168)^{\frac{2 \sqrt{42}+9}{3}}} \approx \frac{7.457 E+16}{1.952 E+16}>1$, and since
$f(n+1)>f(n)$, by induction on n, when $n \geq 42, f(n)=\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{3 n}}{(4 n)^{\frac{2 \sqrt{n}+9}{3}}}>1$.

Applying (12) to (11): When $n \geq 42, \Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>\frac{27}{2} \cdot \frac{\left(\frac{4}{3}\right)^{3 n}}{(4 n)^{\frac{2 \sqrt{n}+9}{3}}}>1$.
Thus when $n \geq 42$,
$\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}$
$=\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{3 n \geq p>2 n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{\frac{3 n}{2} \geq p>\frac{4 n}{3}}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{\frac{4 n}{3} \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$.
If there is any prime number p such that $3 n \geq p>2 n$, then ($4 n$)! has a factor of p in this range, and $(3 n)$! also has the same factor of p. Thus, they cancel to each other in $\frac{(4 n)!}{(3 n)!}$ with no prime number in this range. Referring to (2), $\Gamma_{3 n \geq p>2 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}=1$.
If there is any prime number p such that $\frac{3 n}{2} \geq p>\frac{4 n}{3}$, then ($4 n$)! has the product of $p \cdot 2 p$, and $(3 n)$! also has the same product of $p \cdot 2 p$. Thus, they cancel to each other in $\frac{(4 n)!}{(3 n)!}$ with no prime number in this range. Referring to (2), $\Gamma_{\frac{3 n}{2} \geq p>\frac{4 n}{3}}\left\{\frac{(4 n)!}{(3 n)!}\right\}=1$.
Thus, when $n \geq 42$,
$\Gamma_{4 n \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}=\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(4 n)!}{(3 n)!}\right\} \cdot \Gamma_{\frac{4 n}{3} \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$.
Referring to (1), $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \geq 1, \Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(4 n)!}{(3 n)!}\right\} \geq 1$, and $\Gamma_{\frac{4 n}{3} \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\} \geq 1$.
If $\Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(4 n)!}{(3 n)!}\right\}=1$ or $\Gamma_{\frac{4 n}{3} \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}=1$, it will drop out from (13).
If $n \geq 42$ and $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, then referring to (3), there exists at least a prime number p such that $3 n<p \leq 4 n$.
$\Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(4 n)!}{(3 n)!}\right\}=\Gamma_{4 \cdot\left(\frac{n}{2}\right) \geq p>3 \cdot\left(\frac{n}{2}\right)}\left\{\frac{(4 n)!}{(3 n)!}\right\}$.
If $\frac{n}{2} \geq 21$ and, $\Gamma_{4 \cdot\left(\frac{n}{2}\right) \geq p>3 \cdot\left(\frac{n}{2}\right)}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, let $m_{1}=\frac{n}{2}$, then when $m_{1} \geq 21$, there exists at least a prime number p such that $3 m_{1}<p \leq 4 m_{1}$. Since $n \geq 42>m_{1} \geq 21$, the statement is also valid for n. Thus, when $n \geq 42$, if $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, then $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, there exists at least a prime number p such that $3 n<p \leq 4 n$.
$\Gamma_{\frac{4 n}{3} \geq p>n}\left\{\frac{(4 n)!}{(3 n)!}\right\}=\Gamma_{4 \cdot\left(\frac{n}{3}\right) \geq p>3 \cdot\left(\frac{n}{3}\right)}\left\{\frac{(4 n)!}{(3 n)!}\right\}$.

If $\frac{n}{3} \geq 14$ and, $\Gamma_{4 \cdot\left(\frac{n}{3}\right) \geq p>3 \cdot\left(\frac{n}{3}\right)}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, let $m_{2}=\frac{n}{3}$, then when $m_{2} \geq 14$, there exists at least a prime number p such that $3 m_{2}<p \leq 4 m_{2}$. Since $n \geq 42>m_{2} \geq 14$, the statement is also valid for n. Thus, when $n \geq 42$, if $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, then $\Gamma_{4 n \geq p>3 n}\left\{\frac{(4 n)!}{(3 n)!}\right\}>1$, there exists at least a prime number p such that $3 n<p \leq 4 n$.

From the right side of (13), at least one of these 3 factors is greater than one when $n \geq 42$. From (14), (15), and (16), when $n \geq 42$ and any one of these 3 factors is greater than one, there exists at least a prime number p such that $3 n<p \leq 4 n$.
Table 1 shows that when $2 \leq n \leq 42$, there is a prime number p such that $3 n<p \leq 4 n$.
Thus, the proposition is proven by combining (17) and (18): For every integer $n>1$, there exists at least a prime number p such that $3 n<p \leq 4 n$.

Table 1: For $2 \leq n \leq 42$, there is a prime number p such that $3 n<p \leq 4 n$.

$3 n$	6	9	12	15	18	21	24	27	30	33	36	39	42	45
p	7	11	13	17	19	23	29	31	37	41	43	47	53	59
$4 n$	8	12	16	20	24	28	32	36	40	44	48	52	56	60
$3 n$	48	51	54	57	60	63	66	69	72	75	78	81	84	87
p	61	67	71	73	79	83	83	89	89	97	97	101	101	103
$4 n$	64	68	72	76	80	84	88	92	96	100	104	108	112	116
$3 n$	90	93	96	99	102	105	108	111	114	117	120	123	126	
p	103	107	107	109	109	113	113	127	127	131	131	137	139	
$4 n$	120	124	128	132	136	140	144	148	152	156	160	164	168	

References

[1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
[2] M. El Bachraoui, Prime in the Interval [$2 n, 3 n$], International Journal of Contemporary Mathematical Sciences, Vol. 1 (2006), no. 13, 617-621.
[3] Andy Loo, On the Prime in the Interval [3n, 4n], https://arxiv.org/abs/1110.2377
[4] Wing K. Yu, A Different Way to Prove a Prime Number between $2 N$ and 3N, https://vixra.org/abs/2202.0147
[5] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand\'s_postulate, Lemma 4.

