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A Method to Prove a Prime Number between 3N and 4N 

 Wing K. Yu  

 

Abstract 

In this paper, we will prove that when an integer 𝑛 ˃1, there exists a prime number between 3𝑛 

and 4𝑛. This is another step in the expansion of the Bertrand’s postulate / Chebyshev’s theorem 

after the proof of a prime number between 2𝑛 and 3𝑛.  

Introduction 

The Bertrand’s postulate / Chebyshev’s theorem States that for any positive integer 𝑛, there is 

always a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛. It was proved by Pafnuty Chebyshev in 1850 [1]. 

In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer 𝑛, 

there is a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛. In 2011, Andy Loo [3] expanded the theorem 

to that when 𝑛 ≥ 2, there exists a prime number in the interval (3𝑛, 4𝑛). Recently, the author 

used a different method to prove that a prime number exists between 2𝑛 and 3𝑛 by analyzing 

the binomial coefficient (3𝑛
𝑛

). In this paper, we will use the similar way to prove that a prime 

number exists between 3𝑛 and 4𝑛  by analyzing the binomial coefficient (4𝑛
𝑛

). We will cite some 

important concepts from the previous paper [4].  

Definition:  Γ𝑎≥𝑝≥𝑏{𝑛} denotes the prime number decomposition operator. It is the 

product of the prime numbers in the decomposition of a positive integer 𝑛 or a positive 

integer expression.  In this operator, 𝑝 is a prime number, 𝑎 and 𝑏 are real numbers, 

and 𝑛 ≥ 𝑎 ≥ 𝑝 ˃ 𝑏 ≥ 1. 

It has some properties: It is always true that Γ𝑎≥𝑝≥𝑏{𝑛} ≥ 1       — (1) 

If no prime number in Γ𝑎≥𝑝≥𝑏{𝑛}, then Γ𝑎≥𝑝≥𝑏{𝑛} = 1, or vice versa, if Γ𝑎≥𝑝≥𝑏{𝑛} = 1, 

then no prime number in Γ𝑎≥𝑝≥𝑏{𝑛} as in Γ12≥𝑝≥4{12} = 110·70· 50 = 1.       — (2) 

If there is at least one prime number in Γ𝑎≥𝑝≥𝑏{𝑛}, then Γ𝑎≥𝑝≥𝑏{𝑛} ˃ 1, or vice versa, if 

Γ𝑎≥𝑝≥𝑏{𝑛} ˃ 1, then there is at least one prime number in Γ𝑎≥𝑝≥𝑏{𝑛}.    — (3) 

We define R(𝑝) by the inequalities  𝑝𝑅(𝑝) ≤ 4𝑛 ˂  𝑝𝑅(𝑝)+1, and determine the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 

of (4𝑛
𝑛

).  𝑣𝑝 ((4𝑛
𝑛

)) = 𝑣𝑝((4𝑛)!) − 𝑣𝑝((3𝑛)!) − 𝑣𝑝(𝑛!) = ∑ (⌊
4𝑛

𝑝𝑖
⌋ − ⌊

3𝑛

𝑝𝑖
⌋ − ⌊

𝑛

𝑝𝑖
⌋)

𝑅(𝑝)
𝑖=1  ≤ R(𝑝)  

because for any real numbers 𝑎 and b, the expression of ⌊𝑎 + b⌋ − ⌊𝑎⌋ − ⌊ b⌋ is 0 or 1. 
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Thus, if 𝑝 divides (4𝑛
𝑛

), then 𝑣𝑝 ((4𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(4𝑛), or 𝑝𝑣𝑝((3𝑛
𝑛 )) ≤ 𝑝𝑅(𝑝) ≤ 4𝑛    — (4) 

And if 4𝑛 ≥ 𝑝 ˃ ⌊2√𝑛⌋, then 0 ≤ 𝑣𝑝 ((4𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1.         — (5) 

From the prime number decomposition, 

(4𝑛
𝑛

) = 
(4𝑛)!

𝑛!·(3𝑛)!
 =  Γ4𝑛≥𝑝˃𝑛{

(4𝑛)!

𝑛!·(3𝑛)!
} · Γ𝑛≥𝑝˃⌊2√𝑛⌋ { 

(4𝑛)!

𝑛!·(3𝑛)! 
} · Γ⌊2√𝑛⌋≥𝑝 { 

(4𝑛)!

𝑛!·(3𝑛)! 
}.  

Since all prime numbers in 𝑛! are not in the range of 4𝑛 ≥ 𝑝 ˃ 𝑛,  

Γ4𝑛≥𝑝˃𝑛{
(4𝑛)!

𝑛!·(3𝑛)!
} = Γ4𝑛≥𝑝˃𝑛{ 

(4𝑛)!

(3𝑛)!
 }. 

Referring to (5), Γn≥𝑝˃⌊2√𝑛⌋ { 
(4𝑛)!

𝑛!·(3𝑛)! 
} ≤ ∏  𝑝𝑛≥𝑝 .  

It has been proved [5] that ∏  𝑝𝑛≥𝑝  ˂ 22𝑛−3 when 𝑛 ≥ 3.  

Thus for 𝑛 ≥ 3,  (4𝑛
𝑛

) ˂ Γ4𝑛≥𝑝˃𝑛{ 
(4𝑛)!

(3𝑛)!
 } · 22𝑛−3 · Γ⌊2√𝑛⌋≥𝑝 { 

(4𝑛)!

𝑛!·(3𝑛)! 
}     — (6) 

 

Proposition 

For every integer 𝒏 ˃ 1, there exists at least a prime number 𝒑 such that 3𝒏 ˂ 𝒑 ≤ 4𝒏. 

Proof: 

By induction on 𝑛,  for 𝑛=2,  (4𝑛
𝑛

)= (8
2
) = 28 ˃ 

44𝑛−3

𝑛·33𝑛−3
 = 

512

27
 ≈ 18.96  

If (4𝑛
𝑛

) ˃ 
44𝑛−3

𝑛·33𝑛−3
  for 𝑛 stands, then for 𝑛+1, 

(4(𝑛+1)

(𝑛+1)
) = 

(4𝑛+4)(4𝑛+3)(4𝑛+2)(4𝑛+1)

(𝑛+1)(3𝑛+3)(3𝑛+2)(3𝑛+1)
 · (4𝑛

𝑛
)  

˃ 
(4𝑛+4)(4𝑛+3)(4𝑛+2)(4𝑛+1)

(𝑛+1)(3𝑛+3)(3𝑛+2)(3𝑛+1)
 · 

44𝑛−3

𝑛·33𝑛−3
 = 

4

3
 ·

4𝑛+3

3𝑛+2
 · 

4𝑛+2

3𝑛+1
 ·

4𝑛+1

𝑛
 ·   

44𝑛−3

(𝑛+1)·33𝑛−3
 

 ˃ 
4

3
 · 

4

3
 · 

4

3
 · 

4

1
 · 

44𝑛−3

(𝑛+1)·33𝑛−3
 = 

44(𝑛+1)−3

(𝑛+1)·33(𝑛+1)−3
 

Thus for 𝑛 ≥ 2,  (4𝑛
𝑛

) ˃ 
44𝑛−3

𝑛·33𝑛−3
            — (7) 

Applying (7) into (6):  

For 𝑛 ≥ 3,  
44𝑛−3

𝑛·33𝑛−3
 ˂ (4𝑛

𝑛
) ˂ Γ4𝑛≥𝑝˃𝑛{ 

(4𝑛)!

(3𝑛)!
 } · 22𝑛−3 · Γ⌊2√𝑛⌋≥𝑝 { 

(4𝑛)!

𝑛!·(3𝑛)! 
}    — (8) 

Let π(x) be the number of prime numbers less than or equal to 𝑥, where 𝑥 is a positive real 

number. For the first six sequential natural numbers, there are three prime numbers 2, 3, and 5. 

For adding any successive set of six sequential natural numbers, there are at most two prime 

numbers added, 𝑝 ≡ 1 (MOD 6) and 𝑝 ≡ 5 (MOD 6). Thus, π(𝑥) ≤ ⌊
𝑥

3
⌋+2 ≤  

𝑥

3
 +2.     — (9)        

Referring to (4) and (9), 
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Γ⌊2√𝑛⌋≥𝑝 { 
(4𝑛)!

𝑛!·(3𝑛)! 
} = Γ⌊2√𝑛⌋≥𝑝 {(4𝑛

𝑛
)} ≤ (4𝑛)π(2√𝑛 ) ≤ (4𝑛)

2√𝑛

3
+2     — (10) 

Applying (10) into (8):  
44𝑛−3

𝑛(33𝑛−3)
 ˂ Γ4𝑛≥𝑝˃𝑛{ 

(4𝑛)!

(3𝑛)!
 } · 22𝑛−3 · (4𝑛)

2√𝑛

3
+2    

Since both 22𝑛−3 ˃ 0 and (4𝑛)
2√𝑛

3
+2 ˃ 0 for 𝑛 ≥ 3,   

Γ4𝑛≥𝑝˃𝑛{ 
(4𝑛)!

(3𝑛)!
 } ˃ 

44𝑛−3

𝑛(33𝑛−3)(22𝑛−3)(4𝑛)
2√𝑛

3
+2

  = 
27·(

4

3
)

3𝑛

2·(4𝑛)
2√𝑛

3
 +3

 = 
27

2
 · 

(
4

3
)

3𝑛

(4𝑛)
2√𝑛+9

3
 

     — (11) 

Let 𝑓(𝑥) = 
𝑢

𝑤
  where 𝑥, 𝑢 , 𝑤 are real numbers and 𝑥 ≥ 42, 𝑢 = 

27

2
· (

4

3
)

3𝑥

,  𝑤 = (4𝑥)
2√𝑥+9

3  

𝑑𝑢

𝑑𝑥
 = (

27

2
· (

4

3
)

3𝑥

)
′

= 
27

2
· (

4

3
)

3𝑥

· 3 · 𝑙𝑛 (
4

3
) =  𝑢 · 3 · 𝑙𝑛 (

4

3
)  

𝑑𝑤

𝑑𝑥
 = ((4𝑥)

2√𝑥+9

3 )

′

 = ((4𝑥)
2√𝑥+9

3 ) (
𝑙𝑛(4𝑥) 

3√𝑥
+

2√𝑥+9 

3𝑥
) = 𝑤 (

𝑙𝑛(𝑥)+𝑙𝑛(4)+2

3√𝑥
+

3 

𝑥
) 

𝑓′(𝑥) = (
𝑢

𝑤
)

′

= 
𝑤(𝑢)′− 𝑢(𝑤)′

𝑤2  = 
𝑢

𝑤
 ( 3 · 𝑙𝑛 (

4

3
) −

𝑙𝑛(𝑥)+𝑙𝑛(4)+2

3√𝑥
−  

3 

𝑥
) 

Let 𝑓1(𝑥)  = 3·𝑙𝑛 (
4

3
) −

𝑙𝑛(𝑥)+𝑙𝑛(4)+2

3√𝑥
−  

3 

𝑥
  

Since  𝑓1
′(𝑥) = 

𝑙𝑛(𝑥)+𝑙𝑛(4)

6𝑥√𝑥
 + 

3 

𝑥2 ˃ 0, when 𝑥 ˃ 1, 𝑓1(𝑥) is a strictly increasing function. 

When 𝑥 = 42,  𝑓1(𝑥) = 3·𝑙𝑛 (
4

3
) −

𝑙𝑛(𝑥)+𝑙𝑛(4)+2

3√𝑥
−

3 

𝑥
 ≈ 0.863 – 0.367 – 0.071 = 0.425 ˃ 0. 

Thus, when 𝑥 ≥ 42,  𝑓1(𝑥) ˃ 0.  

Since when 𝑥 ≥ 42,  𝑢 , 𝑤 , and 𝑓1(𝑥) are greater than zero, 𝑓′(𝑥) = 
𝑢

𝑤
 · 𝑓1(𝑥) ˃ 0.  

Thus 𝑓(𝑥) is a strictly increasing function for 𝑥 ≥ 42. Then when 𝑥 ≥ 42, 𝑓(𝑥 + 1) ˃ 𝑓(𝑥). 

Let 𝑛 = ⌊𝑥⌋ ≥ 42, then  𝑓(𝑛 + 1) ˃ 𝑓(𝑛) = 27

2
 · 

(
4

3
)

3𝑛

(4𝑛)
2√𝑛+9

3
 

 

Since for 𝑛 = 42, 𝑓(𝑛) = 
27

2
 · 

(
4

3
)

3𝑛

(4𝑛)
2√𝑛+9

3
 

 = 
27

2
 · 

(
4

3
)

126

(168)
2√42+9

3
 

 ≈ 
7.457𝐸+16

1.952𝐸+16
  ˃ 1, and since  

𝑓(𝑛 + 1) ˃ 𝑓(𝑛),  by induction on 𝑛, when 𝑛 ≥ 42, 𝑓(𝑛) = 
27

2
 · 

(
4

3
)

3𝑛

(4𝑛)
2√𝑛+9

3
 

 ˃ 1.    — (12) 

Applying (12) to (11):  When 𝑛 ≥ 42,  Γ4𝑛≥𝑝˃𝑛{ 
(4𝑛)!

(3𝑛)!
 } ˃ 

27

2
 · 

(
4

3
)

3𝑛

(4𝑛)
2√𝑛+9

3
 

 ˃ 1. 
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Thus when 𝑛 ≥ 42,  

Γ4𝑛≥𝑝˃𝑛{ 
(4𝑛)!

(3𝑛)!
 }  

= Γ4𝑛≥𝑝˃3𝑛{ 
(4𝑛)!

(3𝑛)!
 } · Γ3𝑛≥𝑝˃2𝑛{ 

(4𝑛)!

(3𝑛)!
 } · Γ

2𝑛≥𝑝˃
3𝑛

2

{ 
(4𝑛)!

(3𝑛)!
 } · Γ3𝑛

2
≥𝑝˃

4𝑛

3

{ 
(4𝑛)!

(3𝑛)!
 }  · Γ4𝑛

3
≥𝑝˃𝑛

{ 
(4𝑛)!

(3𝑛)!
 } ˃ 1. 

When 3𝑛 ≥ 𝑝 ˃2𝑛  in (
(4𝑛)!

(3𝑛)!
) , if 𝑣𝑝((4𝑛)!) has a factor of 𝑝 then 𝑣𝑝((3𝑛)!) also has a factor of 𝑝. 

Thus, when 3𝑛 ≥ 𝑝 ˃2𝑛,  𝑣𝑝 (
(4𝑛)!

(3𝑛)!
) = 𝑣𝑝((4𝑛)!) − 𝑣𝑝((3𝑛)!) = 1 − 1 = 0. 

Since 𝑝0=1, referring to (2),  Γ3𝑛≥𝑝˃2𝑛{ 
(4𝑛)!

(3𝑛)!
 } = 1. 

When 
3𝑛

2
 ≥ 𝑝 ˃

4𝑛

3
  in (

(4𝑛)!

(3𝑛)!
) , if 𝑣𝑝((4𝑛)!) has a factor of 𝑝, it is 𝑝2 in 𝑝 · 2𝑝, then 𝑣𝑝((3𝑛)!) also 

has a factor of 𝑝2 in 𝑝 · 2𝑝. Thus,  𝑣𝑝 (
(4𝑛)!

(3𝑛)!
) = 𝑣𝑝((4𝑛)!) − 𝑣𝑝((3𝑛)!) = 2 − 2 = 0. 

Since 𝑝0=1, referring to (2),  Γ3𝑛
2

≥𝑝˃
4𝑛
3

{ 
(4𝑛)!

(3𝑛)!
 } = 1.  

Thus, Γ4𝑛≥𝑝˃𝑛{ 
(4𝑛)!

(3𝑛)!
 } = Γ4𝑛≥𝑝˃3𝑛{ 

(4𝑛)!

(3𝑛)!
 } · Γ

2𝑛≥𝑝˃
3𝑛
2

{ 
(4𝑛)!

(3𝑛)!
 } · Γ4𝑛

3
≥𝑝˃𝑛

{ 
(4𝑛)!

(3𝑛)!
 } ˃ 1    — (13) 

Referring to (1),  Γ4𝑛≥𝑝˃3𝑛{ 
(4𝑛)!

(3𝑛)!
 } ≥ 1, Γ

2𝑛≥𝑝˃
3𝑛

2

{ 
(4𝑛)!

(3𝑛)!
 } ≥ 1, and Γ4𝑛

3
≥𝑝˃𝑛

{ 
(4𝑛)!

(3𝑛)!
 } ≥ 1. 

If 𝑛 ≥ 42 and Γ4𝑛≥𝑝˃3𝑛{ 
(4𝑛)!

(3𝑛)!
 } ˃ 1, then referring to (3), there exists at least a prime number 𝑝 

such that 3𝑛 < 𝑝 ≤ 4𝑛.            — (14) 

Γ
2𝑛≥𝑝˃

3𝑛

2

{ 
(4𝑛)!

(3𝑛)!
 } = Γ4·( 

𝑛

2
 )≥𝑝˃3·( 

𝑛

2 
){ 

(4𝑛)!

(3𝑛)!
 } .  

If  
𝑛

2
 ≥ 21 and, Γ4·( 

𝑛

2
 )≥𝑝˃3·( 

𝑛

2 
){ 

(4𝑛)!

(3𝑛)!
 } ˃ 1, let 𝑚1=  

𝑛

2
 , then when 𝑚1 ≥ 21, there exists at least a 

prime number 𝑝 such that 3𝑚1 < 𝑝 ≤ 4𝑚1. Since 𝑛 ≥ 42 ˃ 𝑚1 ≥ 21, the statement is also valid 

for 𝑛. Thus, when 𝑛 ≥ 42, then Γ4𝑛≥𝑝˃3𝑛{ 
(4𝑛)!

(3𝑛)!
 } ˃ 1       — (15) 

Γ4𝑛

3
≥𝑝˃𝑛

{ 
(4𝑛)!

(3𝑛)!
 } = Γ4·( 

𝑛

3
 )≥𝑝˃3·( 

𝑛

3 
){ 

(4𝑛)!

(3𝑛)!
 } .  

If  
𝑛

3
 ≥ 14 and, Γ4·( 

𝑛

3
 )≥𝑝˃3·( 

𝑛

3 
){ 

(4𝑛)!

(3𝑛)!
 } ˃ 1, let 𝑚2=  

𝑛

3
 , then when 𝑚2 ≥ 14, there exists at least a 

prime number 𝑝 such that 3𝑚2 < 𝑝 ≤ 4𝑚2. Since 𝑛 ≥ 42 ˃ 𝑚2 ≥ 14, the statement is also valid 

for 𝑛. Thus, when 𝑛 ≥ 42, then Γ4𝑛≥𝑝˃3𝑛{ 
(4𝑛)!

(3𝑛)!
 } ˃ 1       — (16) 

From the right side of (13), at least one of these 3 factors is greater than one when 𝑛 ≥ 42. From 

(14), (15), and (16), when 𝑛 ≥ 42 and any one of these 3 factors is greater than one, there exists 

at least a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛.         — (17) 
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Table 1 shows that when 2 ≤ 𝑛 ≤ 42, there is a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛.        — (18) 

Thus, the proposition is proven by combining (17) and (18): For every integer 𝑛˃1, there exists 

at least a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛.        — (19) 

 

Table 1: For 2 ≤ 𝑛 ≤ 42, there is a prime number 𝑝 such that 3𝑛 < 𝑝 ≤ 4𝑛.  

3𝑛 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

𝑝 7 11 13 17 19 23 29 31 37 41 43 47 53 59 

4𝑛 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

 

 3𝑛 48 51 54 57 60 63 66 69 72 75 78 81 84 87 

𝑝 61 67 71 73 79 83 83 89 89 97 97 101 101 103 

4𝑛 64 68 72 76 80 84 88 92 96 100 104 108 112 116 

 

 3𝑛 90 93 96 99 102 105 108 111 114 117 120 123 126  

𝑝 103 107 107 109 109 113 113 127 127 131 131 137 139  

4𝑛 120 124 128 132 136 140 144 148 152 156 160 164 168  
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