Primality's Unwinding Nature: Drawing upon the Identity Tweak

By Arthur V. Shevenyonov

Abstract

${ }^{1}$ It can and has been shown copiously that the nature of prime numbers could be viewed as recursive, Diophantine, self-spawned. Incidentally, it proves even simpler than that: Per any number prime, so likewise is either the sum or the difference of its 'tweak' characteristics.

10-11 March 2022

Introduction as Reminder

Dub it "digital roots" at liberty, I have long developed its extensions and applications independently as an apparatus I refer to as "\#-scoring" or "alethe-calculus." Shevenyonov (2022) suggests how primes could be rationalized somewhat as a Fibonacci-like sequence based on the \#-scores alone.

At this point, I deploy both the "tweak characteristics," namely \# and \mathbf{X}, in arriving at a remarkable meta-regularity, or indeed a pattern elucidating the nature of primality. Just to remind you, in line with orduale principles (notably the identity-based approach, fudge calibration, or what is known elsewhere as 'tweaking'), any natural number can be reconsidered as follows:

$$
\forall A \in N \exists X \in N: A \equiv \#+9 X \equiv \#^{X} A+9 X \equiv(\#, X), \quad \#=\overline{0,8} \text { iff } X \equiv X_{\max }
$$

In a sense, then, the natural axis could thereby be compactified toward a cyclic manifold whereby indefinitely many numbers end up having the same \#-scores, their X-metric set aside. However, the latter taken into account, each number can be represented uniquely. I leave this without proof for future research that may be shared shortly, while for now focusing on the core implication for primes as a subset of [prime] interest.

Somewhat informally, \# fares as the 'numerological' sum under 9, with X thus accounting for a maximum applicable fudge-value unless interim scoring applies. (Strictly speaking, as a complete residuale, X amounts to the 'floor' function of $\mathrm{A} / 9$.)

[^0]
Experimental Demonstration

Consider how the first primes spanning 11 through 103 are rethought via their conjugate characteristics. E.g. $11=2+9^{*} 1=(2,1), 13=(4,1), 19=(1,2), 23=(5,2), 29=(2,3), 31=(4,3), 37=(1,4)$, $41=(5,4), 43=(7,4), 47=(2,5), 53=(8,5), 59=(5,6), 67=(4,7), 71=(8,7), 73=(1,8), 79=(7,8)$, $83=(2,9), 89=(8,9), 97=(7,10), 101=(2,11), 103=(4,11)$, etc. A conjecture is proposed:

Conjecture: For any prime number, [the absolute value of] either a sum ($X+\#$) or a difference (X-\#) of its tweak characteristics proves to be prime (or 1), or both. The latter (i.e. difference) applies/befits whenever the former option proves 0 mod 3^{k}, unless such is X alone.

Please check for yourselves if the above 'fork' holds. To demonstrate the latter scenario, consider candidate primes as diverse as, $71=(8,7), 73=(1,8), 79=(7,8), 103=(4,11), 119=(2,13)$, $127=(1,14)$, etc. All of these instances feature either 3 or $9=3^{2}$ dividing the respective sums $(\mathrm{X}+\#)$. In contrast, the differences (or their absolute values) showcase primality (unitarian included).

In fact, one may want to tap into values as large as, $613=(1,68)$ (obviously $68+1=69$ is divisible by $3,68-1=67$ being prime) or $2887=(7,320)$ (with $320+7$ all too evidently 0 modulo 3, at odds with $320-7=313$ boasting primality). Values such as $4057=(7,450)$ stand out on the strength of their X being divisible by 3 and 9 in its own right, albeit without disabling either the sum criterion or the difference cut-off: $\mathrm{X}-\#=450-7=443, \mathrm{X}+\#=450+7=457$ (both standing primality). Notably, $137=(2,15)$ is one other case in point allowing both.

By contrast, it may appear that composites fail the test in showing a recurringly composite nature even in their resultant metrics, oftentimes 0 modulo $3^{\mathrm{k}}(3 \mathrm{k})$ or $5^{\mathrm{k}}(5 \mathrm{k})$. (Not necessarily so!) For instance, $161=7 * 23=(8,17)$, such that $X+\#=25$, $X-\#=9$. Likewise, $169=13^{2}=(7,18)$. While the difference criterion formally works in the latter case, it does so not due to the sum being disabled by 3 -divisibility, even though 5 -division applies above and beyond 9 -divisibility of X.

It remains to be seen, however, and could alone be posed as a conjecture, whether the instance of \#=7 has inflicted the bulk of the extra verification burden throughout. For example, $2851=(7,316)$ denies validity to the difference yet not the sum. Whichever is the easier to check may be reasonable to start off with.

Qualifying

On second thought, composites such as $221=13^{*} 17=(5,24)$ remain a dire challenge as they pass both the characteristic-primality tests other than X [not] 0 modulo 3. In this respect, 'holes' like this are substantively indifferent from strong primes, notably the selfsame 137. It may be worth the effort attempting a weaker joint characteristic, e.g. (\#, \#X). Alternatively, the 'gray
area' in between [primes versus composites] might point to an onto/if (sufficiency) nature of the above conjecture but not one-to-one/only-if (necessity). Otherwise, given that similar bifocality applies to $129=3 * 43=(3,14)$ but not power composites like $361=19^{2}=(1,40)$ may suggest singular composition acting as if to deny equipotence (i.e. 'both' as opposed to '[n]either' scenario).

References

Shevenyonov, Arthur V. (2022). Unconventional ifff] Convenient: Effective Structures to Construct Alternate Primes Experimentally. viXra: 2202.0047

[^0]: ${ }^{1}$ To those taking the liberty of staying responsible rather than power-maximizing

