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Abstract

We show that using the denominators of the terms of ζ(n)−1 = zn

as decimal bases gives all rational numbers in (0,1) as single decimals.
We also show the partial sums of zn are not given by such single digits

using the partial sum’s terms. These two properties yield a proof that
zn is irrational.

1 Introduction

Apery’s ζ(3) is irrational proof [1] and its simplifications [3, 8] are the only
proofs that a specific odd argument for ζ(n) is irrational. The irrationality
of even arguments of zeta are a natural consequence of Euler’s formula [2]:

ζ(2n) =

∞∑

k=1

1

k2n
= (−1)n−1

22n−1

(2n!)
B2nπ2n. (1)

Apery also showed ζ(2) is irrational, and Beukers, based on the work
(tangentially) of Apery, simplified both proofs. He replaced Apery’s myste-
rious recursive relationships with multiple integrals. See Poorten [9] for the
history of Apery’s proof; Havil [5] gives an overview of Apery’s ideas and at-
tempts to demystify them. Also of interest is Huylebrouck’s [6] paper giving
an historical context for the main technique used by Beukers.

Attempts to generalize the techniques of the one odd success seem to be
hopelessly elusive. Apery’s and other ideas can be seen in the work of Rivoal
and Zudilin [10, 11]. Their results, that there are an infinite number of odd
n such that ζ(n) is irrational and at least one of the cases 5,7,9, 11 likewise
irrational do suggest a radically different approach is necessary.
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Let

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

We show that every rational number in (0, 1) can be written as a single
decimal using the denominators of a term in zn as a number basis. But
the partial sums can’t be expressed with such a single decimal. These two
properties yield a proof that all zn are irrational.

Properties of zn

We define a decimal set.

Definition 1. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in

base jn. The decimal set for jn is

Djn = djn \

j−1⋃

k=2

dkn .

The set subtraction removes duplicate values.

Definition 2.
k⋃

j=2

Djn = Ξn
k

The union of decimal sets gives all rational numbers in (0, 1).

Lemma 1.
∞⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in a dbn and hence in some Drn

with r ≤ b. This follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1),
abn−1 < bn and so a/b ∈ dbn .
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Next we show sn
k /∈ Ξn

k .

Lemma 2. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (2)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (2) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 3. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.

The reasoning is much the same as in Lemma 2; cf. Chapter 2, Problem
21 in [2], solution in [7]. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (3)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.
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Lemma 4. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate [4].

Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 4, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 4, we have assurance of the
existence of a p that satisfies Lemma 3. Using Lemmas 2 and 3, we have 2npn

divides the denominator of r/s and as 2npn > kn, the proof is completed.

Corollary 1.

sn
k /∈ Ξn

k

Proof. This is a restatement of Theorem 1.

zn is irrational

Theorem 2. zn is irrational.

Proof. Suppose zn is rational. Then, using Lemma 1, zn ∈ Ξn
k for some first

k. Using Corollary 1 and convergence there exists a K such that for all j > K

zn − sn
j < Ξn

k − sn
k = εk. (4)

It also follows that for all j ≤ K

zn − sn
j > εk. (5)

These properties follow as sn
j goes monotonically towards zn. Also, we know

a convergent point will be less than all partial sums, so the right hand side
of (4) does not require an absolute value.

There are three possibilities for the relationship between the smallest j
value and k: k = j, k > j, or k < j. We will show each gives a contradiction.

If k = j, noting (4) implies

∞∑

r=j+1

1

rn
= zn − sn

j < Ξn
k − sn

k = εk
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and so adding sn
k gives

∞∑

r=j+1

1

rn
+ sn

j = zn < Ξn
k = εk + sn

k ,

which implies zn < zn, a contradiction.
If k > j, then once again adding sn

k gives

k∑

r=j+1

1

rn
+

∞∑

r=k+1

1

rn
+

k∑

r=2

1

rn
< Ξn

k ,

but the left hand side of this inequality is greater than zn and once again
this implies zn + δ < zn, where δ > 0, a contradiction.

For k < j, as k < K, (5) gives zn − sn
k > εk, whereas (4) stipulates

zn − sn
k = εk, another contradiction.

Our assumption of the rationality of zn leads to a contradiction in all
cases: zn is irrational.

2 Conclusion

The property sn
k /∈ Ξn

k means that the decimal bases required to represent
partial sums are always greater than the bases given by the denominators of
the partial’s terms used as bases. As these latter bases encompass all candi-
date rational convergence points, partials can only get close to (have perfect
approximations in single decimals) using ever changing and ever growing
decimal bases. Whereas if the convergent point were rational these partials
would get ever closer to a single decimal in a fixed decimal basis.

A source of confusion can be that decimal representations of any conver-
gent series in a given base will have partials with an ever greater number
of decimal digits. So .1 repeating in base 10 will have partials with an ever
greater number of digits, yet those points must converge to a fixed, single
decimal in some base: .1, base 9 for a convergence point of 1/9. If this isn’t
true for a set of bases that includes all rational plausible convergence points
as single digits, then the series must converge to an irrational number.
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