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Conjectures Emerging Not-So-Unsettled:  

Oppermann’s, Firoozbakht’s, Legendre’s, Andrica’s, Brocard’s, etc. 

 

By Arthur V. Shevenyonov 

 

ABSTRACT1 

All of the key Conjectures that may still be of interest beyond, or irrespective of, assuming the 

validity of RH appear straightforward to tackle with a handful of minimalist instruments based on 

the RI solely. A host of extra Propositions (zeta based formulae & equivalences) being spawned 

from the latter pillar as a ‘side effect’ of importance in its own right.  

 

3/3/222 

Background: Conjectures Grand & Less So 

Oppermann’s Conjecture: At least one prime could be fitted in between every pair of a square 

and a pronic product for numbers exceeding 1. 

𝜋{𝑛2} − 𝜋{𝑛(𝑛 − 1)} ≥ 1 ≤ 𝜋{(𝑛 + 1)2} − 𝜋{𝑛(𝑛 + 1)}     (𝐶𝑂𝑝𝑝) 

Legendre’s Conjecture:  

𝜋{(𝑛 + 1)2} − 𝜋{𝑛2} ≥ 1        (𝐶𝐿𝑒𝑔) 

 

Brocard’s Conjecture: There exist at least 4 primes in between pn+1 and pn squares 

𝜋{𝑝𝑛+1
2} − 𝜋{𝑝𝑛

2} ≥ 4     (𝐶𝐵𝑟𝑜𝑐) 

 

Andrica’s Conjecture: 

∀𝑛:  √𝑝𝑛+1 −√𝑝𝑛 < 1        (𝐶𝐴𝑛𝑑1) 

 
1 In memoriam each and every child that may [have] come to be terrified by, let alone murdered 

in, arbitrarily inflicted war conflicts…  
2 Developed over a time span of 15 through 23 February 2022, postponed on & suspended in 

light of the ongoing dramatic turmoil. 
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∃𝑥:  𝑝𝑛+1
𝑥 − 𝑝𝑛

𝑥 ≡ {
1  ↔ 𝑥𝑚𝑖𝑛 ≅ .567148           

< 1 ↔ 𝑥 < 𝑥𝑚𝑖𝑛
(𝐶𝐴𝑛𝑑2) 

Cramer’s Conjecture: 

𝑝𝑛+1 − 𝑝𝑛 = 𝑂((𝑙𝑜𝑔𝑝𝑛)
2)         (𝐶𝑟𝑎𝑚1) 

𝑝𝑛+1 − 𝑝𝑛 ≡ 𝑂(𝑝𝑛
𝑥)  ↔ 𝑥 ≈ .525    (𝐶𝑟𝑎𝑚2) 

 

Firoozbakht’s Conjecture: p1/n(n) is strictly decreasing 

𝑝𝑛+1 < 𝑝𝑛
1+
1
𝑛      (𝐶𝑜𝑛𝐹𝑖𝑟) 

 

Reducing on Riemann Identity 

To begin with, RI can be juxtaposed against an auxiliary functor, which metric could 

effectively be seen as a partial (interior) zeta. 

∃𝐸𝑛(∙): 
𝑝𝑛
𝑠

𝑝𝑛
𝑠 − 1

≡
𝐸𝑛
𝐸𝑛−1

  ↔  ∏
𝐸𝑛
𝐸𝑛−1

𝑁

1

=
𝐸𝑁
𝐸0
≡ 𝜁𝑁(𝑠),  𝜁𝑇(𝑠) = 𝜁(𝑠), 𝑇 → +∞     (1) 

It is a matter of pragmatic convention whether to assume E0=1 or E1=1 depending on how p0 and 

p1 count respectively. In any event, it is always an option to calibrate technically (experimentally) 

for the ‘right’ corner, or initial condition. In the meantime, please observe from (1) that the partial 

and complete (conventional, Riemann’s) zeta could prove either bounded or otherwise. 

Better yet, a reduction of the form (1a) could be considered for a phi being a finite 

function, preferably a linear operator such that, in Big O notation (the rare incident we invoke 

asymptotics explicitly in the present exposition): 

∃𝜑(∙): ∀𝑌 = 𝜑𝑋~𝑂(𝑋) 

𝐸𝑛 ≡ 𝜑𝑝𝑛
𝑠   𝑖𝑓𝑓  𝐸𝑛−1 ≡ 𝜑(𝑝𝑛

𝑠 − 1) = 𝜑𝑝𝑛−1
𝑠   (1𝑎) 

A functional recursion (2) readily obtains from (1a) while suggesting a somewhat generalized 

interim form (2a): 

𝑝𝑛
𝑠 = 𝑝𝑛−1

𝑠 + 1                    (2) 

∀𝑘 ≤ 𝑛:  𝑝𝑛
𝑠 = 𝑝𝑘

𝑠 + (𝑛 − 𝑘) = 𝑝0
𝑠 + 𝑛 = 𝑝1

𝑠 + (𝑛 − 1)      (2𝑎) 
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Now, of course, a more general function phi(n), possibly a nonlinear operator, could 

comply just as well with the exact same RI structural requirement (with an eye on an interim-

canceling property which meets the orduale, “simplicity-in-completeness” criterion). In this case, 

(1a) would be reworked as something like (1b), with commonality of the functional stretchings 

implying that of the arguments net of a residuale R(n) which, depending on the nature of the 

transforms, could be either a period or an integration constant, or the like. In other words: 

𝜑𝑛{𝑝𝑛
𝑠} = 𝜑𝑛{(𝑝𝑛+1

𝑠 − 1)}  ↔  {𝑝𝑛
𝑠} = {(𝑝𝑛+1

𝑠 − 1)} + 𝑅𝑛

= {𝑝𝑘
𝑠} + (𝑛 − 𝑘) −∑ 𝑅𝑖

𝑛

𝑖=1
             (1𝑏) 

On the other hand, a stretching would have to act consistently on both sides. E.g. if taking 

on a (1c) form, then again, our identity-based approach would suggest (1d): 

𝜑𝑛{(𝑎 + 𝑏)} ≡ 𝑎
𝑠 + 𝑏𝑠  → 𝜑𝑛{(𝑝𝑛 − 𝑝𝑛−𝑘)} ≡ 𝜑𝑛{(𝑝𝑛 − 𝑝𝑛−𝑘)} ↔ {𝑝𝑛

𝑠}

= {𝑝𝑘
𝑠} + {𝑝𝑛

𝑠 − 𝑝𝑘
𝑠} ~  {𝑝𝑘

𝑠} + (𝑛𝑠 − 𝑘𝑠) =   {𝑝1
𝑠} + (𝑛𝑝

𝑠 − 1𝑠),

𝑛 = 𝑛𝑝 ≡ 𝑝𝑛 ∈ 𝑵 ∩ 𝑷  (1𝑑) 

Though possibly looking trivial under some oversimplifying assumption as well as controversial 

in regards of resummation-based calibration, still (1d) accommodates the highly productive 

generating pattern, in particular the unity sign reversal pn=2mn±1—more so under the RH, or 

Re(s)=1/2.  

Somehow, (2a) suggests (3): 

𝑝𝑛
𝑠 − 1 = 𝑝𝑛−1

𝑠  ↔  ∏
𝑝𝑛
𝑠

𝑝𝑛
𝑠 − 1

=∏
𝑝𝑛
𝑠

𝑝𝑛−1
𝑠 =

𝑇

𝑛=1

𝑇

𝑛

𝑝𝑇
𝑠

𝑝1
𝑠 = (

𝑝𝑇
𝑝1
)𝑠 ≡ 𝜁(𝑠) = 1 + (𝑇 − 1) ∗ 𝑝1

−𝑠      (3) 

Less awkward, if we invoke (1a) again, phi could be calibrated for based on: 

𝐸𝑇~𝜁(𝑠) ≡ {
𝜑𝑝𝑇

𝑠

𝜑𝑇𝑝𝑇
𝑠    →  𝜑~𝜁(𝑠) ∗ 𝑝𝑇

−𝑠        (4𝑎) 

𝐸𝑛 = 𝜑𝑝𝑛
𝑠~𝜁(𝑠) ∗ (

𝑝𝑛
𝑝𝑇
)𝑠         (4𝑏) 

∏
𝐸𝑛
𝐸𝑛−1

=
𝐸𝑇
𝐸1
= (
𝑝𝑇
𝑝1
)𝑠 = 𝑝𝑇

𝑠 = 𝐸𝑇 = 𝜁(𝑠)      (4𝑐) 

Seems like, a linear phi (unless a Mikusinski-type operator) can be assumed away as canceling 

out. But that might imply the trivial controversy of zeta collapsing to an infinite power of unity, s 

irrespective. This entire setup could be rethought as follows (in many modes, linear and 

otherwise, with a phi-hjatt being non-unitary/non-degenerate), e.g.: 
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∃𝜑�̂� : 
𝑝𝑛
𝑠

𝑝𝑛
𝑠 − 1

≡ 𝜑�̂� =
𝐸𝑛
𝐸𝑛−1

  →  ∏
𝐸𝑛
𝐸𝑛−1

= 𝜁(𝑠) =∏𝜑�̂�         (5𝑎) 

𝑝𝑛
𝑠 =

𝜑�̂�(𝑠)

𝜑�̂�(𝑠) − 1
 ,   𝑝𝑛

𝑠 − 1 =
1

𝜑�̂�(𝑠) − 1
            (5𝐿) 

𝑝𝑛
𝑠 = 𝜑�̂�{𝑝𝑛−1

𝑠 } = 𝜑�̂�
[𝑛−𝑘]{𝑝𝑘

𝑠} = 𝜑�̂�
[𝑛−1]{𝑝1

𝑠}     (5𝑁𝐿) 

 

Rethinking Along Orduale/Residuale Lines 

The entire setup could be reapproached in a more straightforward, less azimuthale 

fashion. For starters, consider an orduale representation pertaining to identity-based (i.e. ensured) 

fitting (6). 

∀𝑛, 𝑘 ≤ 𝑛 ∈ 𝑵 ∃𝜑: 
𝑃𝑛
𝑃𝑘
≡ {
𝜑𝜁
𝜁𝜑
     ,   ∀𝑃𝑥 ∈ 𝑷         (6) 

Irrespective of whether or not the above fudge-calibrations act as [non-linear] operators or mere 

multipliers/powers, one other (in fact, closely collated) approach of a residuale nature could be 

embarked on (7) suggesting that, for any number of objects, it is conceivable to find a rho-

aggregate (a Lame function or constant elasticity of substitution) rendering them one, or making 

their ad-hoc complete set simply intra-related. (In a sense, this could be an extension of groups 

with rho acting as a particular generalized operation, as was proposed in Shevenyonov (2019).) 

∀∆∃𝜌: 𝑃𝑛
𝜌
≡ 𝑃𝑘

𝜌
+ ∆𝜌                (7) 

One can also make sure the above generalizes Andrica’s conjecture (CAnd2) in a number 

of ways albeit interrelated.  

Now, if we were to refer again to the very definition of the zeta as in RI, extra 

convenience can be salvaged from (8). 

∃𝐵(∙): 𝜁(𝑠) ≡
𝐵2
𝐵1
∗
𝐵3
𝐵2
…
𝐵𝑇
𝐵𝑇−1

=
𝐵𝑇
𝐵1
=
𝜑𝑃�̃�

𝜑𝑃1̃
  ↔  𝑃�̃� = 𝑃𝑛−∆̃ ∗ 𝜁, ∆= 𝑇 − 1 → ∞ 

𝑃�̃� ≡ 𝑃𝑛
𝑠 = 𝑃1

𝑠 ∗ 𝜁
𝑛−1
𝑇−1 = 𝑃𝑘

𝑠 ∗ 𝜁
𝑛−𝑘
𝑇−1(𝑠)      (8) 

𝑃𝑛 = 𝜁
𝑛−1
𝑇−1~1

𝑛−1
𝑠        𝑖𝑓 𝑃1 = 1        (8𝑎) 

Please check this holds identically for n=T and k=1, even as the actual calibrating parameter 

could (or may have to) be different, if one were to arrive at a working closed form as well as 

recurrent and efficient formula for generating primes based on the indices alone. Still, the 
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structure and order of magnitude should suffice for inference in orduale (weak, monotonous, ol-

multiplicative) terms while staying more cautious when it comes to residuale (stronger-form, ol-

additive) implications. (The archaic-Latin “ol-” being the core/weaker root-stem of “ul-

tra/ultimate”) For instance, depending on how successful the convention of P1=1works out, the 

generating structure is captured in (8a). Or, invariant thereto (and perhaps the particular s-value 

beyond power-of-unity), a relation/ratio for any two primes could be inferred as one ultimate 

alternative to conventional differentials being tested by the grand conjectures. In passing, the P1 

could capture/hide/subsume whatever calibration factor best fits.  

At this rate, Andrica’s conjecture (which does resemble phi-tweaking as in RI) could be 

addressed as follows. 

∃𝑥: 𝑃𝑛+1
𝑥 − 𝑃𝑛

𝑥 ≡ 1 = 1𝑥 = 𝑃𝑛
𝑥 ∗ (𝜁

1
[𝑇−1]∗𝑠 − 1)  ↔  (

𝑃𝑛+1
𝑃𝑛
)𝑥 = 𝜁

1
[𝑇−1]∗𝑠~11/𝑠      (8𝑏) 

On second thoughts, (8) can be reworked with respect to the interior as opposed to the 

corners, in partial-zeta terms: 

𝑃𝑛
𝑠 = 𝑃𝑘

𝑠 ∗ 𝜁𝑛
𝑛−𝑘
𝑛−1            (8′) 

In which light, (8b) takes on a modified representation (8c): 

(
𝑃𝑛+1
𝑃𝑛
)𝑥 = 𝜁𝑛

1
[𝑛−1]∗𝑠     (8𝑐) 

Again, anywhere near the extreme, x could take on nearly any value under-unity (if only because 

of the unity-reversion or conversion in the RHS as per any reasonable s-value above unity). 

Within the interior n<T, however, the lower bound is higher than that at around .50457 as a 

tossup in between the P2/P2=2/1=2 versus P3/P2=3/2=1.5 corners with the same weights 

attached to [complete or extreme-case] zeta taken to the respective powers (as adjusted to an 

allowance for a partial-to-complete zeta). 

𝑥𝑚𝑖𝑛 >
3/2

3
2 + 2/1

∗
𝑙𝑜𝑔𝜁

1
2(2)

log (3/2)
+

2/1

3
2 + 2/1

∗
𝑙𝑜𝑔𝜁

1
2(2)

log (2/1)
= .50457     (8𝑑) 

This proves (CAnd2), whilst (CAnd1) could build on (8b) by substituting x=1/2, such that the 

setup becomes a matter of infinity-times-zero comparable to unity in the extreme case, and less 

per any interior cases: 

Now, how about Firoozbakht’s conjecture? Just replace/specify x=1/n to arrive at (8e): 

𝑃𝑛
1/𝑛
= 𝑃𝑘

1/𝑛
∗ 𝜁

1
[𝑇−1]∗𝑠𝑛~𝑐𝑜𝑛𝑠𝑡1/𝑛    (8𝑒) 
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As long as an arbitrary initial/interior reference value Pk is viewed as an exogenous function, 

(ConFir) does hold with an eye on the resultant function being strictly decreasing.  

As far as Cramer’s is concerned, by invoking (8) again, observe: 

𝑃𝑛+1 − 𝑃𝑛 = 𝑃𝑛 ∗ (𝜁
1

[𝑇−1]∗𝑠 − 1) = 𝑃1 ∗ 𝜁
𝑛−1

[𝑇−1]∗𝑠 ∗ (𝜁
1

[𝑇−1]∗𝑠 − 1)   (8𝑓) 

Not only does (8f) resemble Euler’s beta-like density (as if to allow for oscillations), it also hints 

at surefire applicability of the aforementioned rho-residuale! For one thing, (Cram2) follows 

from the early interior case around n-1=n/2, i.e. n=2 or 3 (at the extreme, the gap collapses to 

o(zeta^(1/s)) in small-o). In partial-zeta terms, (8f) becomes (8f*): 

∆𝑃𝑛~

{
 
 

 
 𝑃1 ∗ 𝜁2

1
𝑠 ∗ (𝜁2

1
𝑠 − 1) , 𝜁2 =

𝑃1
𝑠𝑃2
𝑠

(𝑃1
𝑠 − 1)(𝑃2

𝑠 − 1)
~

2𝑠

2𝑠 + 1 − (1𝑠 + 2𝑠)
=

2𝑠

1 − 1𝑠
 

𝑃1 ∗ 𝜁3
1
2𝑠 ∗ (𝜁3

1
2𝑠 − 1),   𝜁3 = 𝜁2 ∗

𝑃3
𝑠

𝑃3
𝑠 − 1

=
6𝑠

(3𝑠 − 1)(1 − 1𝑠)
=

6𝑠

3𝑠 + 1𝑠 − 1

 

∆𝑃𝑛~𝑃1 ∗

{
 
 

 
 (

2𝑠

1−1𝑠
)1/𝑠 ∗ [(

2𝑠

1−1𝑠
)

1

𝑠
− 1]~4𝑇

2

𝑠 − 2𝑇1/𝑠 → 2,   𝑠 ∈ 𝑹 ≫ 0

(
6𝑠

3𝑠+1𝑠−1
)1/𝑠 ∗ [(

6𝑠

3𝑠+1𝑠−1
)

1

𝑠
− 1]~2,   𝑠 ∈ 𝑹

𝑛 = 2, 3      (8f*) 

Both these values about stand the scrutiny of the square root of either 2 or 3, and both P2 and P3 

for that matter. A still more-rigorous procedure could apply identically (8f**): 

∃𝑥:  𝜁𝑛

1
[𝑛−1]𝑠 ∗ (𝜁𝑛

1
[𝑛−1]𝑠 − 1) ≅ 𝜁𝑛

𝑥
𝑠   ↔ 𝑥 ≅

1
𝑠 ∗ 𝑙𝑜𝑔𝜁𝑛

2
[𝑛 − 1]𝑠

∗ 𝑙𝑜𝑔𝜁𝑛 + 𝜀𝑛

~
𝑛 − 1

2
     (8𝑓 ∗∗) 

Again, for the case n=2, 3, x seems to be a fairly accurate [lower-bound] predictor of the 

experimental (empirical, phenomenological) value of .525 under epsilon tending to o(1) 

asymptotically. By contrast, the more accurate estimate as in (8f***) may have to be considered 

in the more general domains of (n, s), leaving x largely intact structurally. 

𝑥′ ≈ (
2

𝑛 − 1
+ 𝜀𝑛 ∗ 𝜑𝑛)

−1

~𝑥, 𝜑𝑛~{
(𝑙𝑜𝑔2𝑇)−1~𝑜(1)

(𝑙𝑜𝑔2)−1 = 3.3219
      (8𝑓 ∗∗∗) 

In the meantime, one may have come to wonder just whence all these mysterious 

conflations around ½ arise. It happens, a peculiar recursion could be proposed for Andrica’s and 

RH alike: 
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𝑥 = 𝑡~√𝑡 − 1/22 ≈ .56…   ↔
𝑠 −

1
2
𝑖
= 𝑡~𝑠�̅� = (

1

2
+ 𝑖𝑡) (

1

2
− 𝑖𝑡) ↔ 𝑠 ≈

1

2
+ 𝑖𝑠�̅� (8𝑓′) 

The ‘naive’ conjecture posits a product of the RH conjugates in the RHS.  

 

On the other hand, based on the limit convention (X), (8g) obtains: 

𝑥𝜌 − 1

𝜌 𝜌→0
→  𝑙𝑜𝑔𝑥                                          (𝑋) 

𝜁
1

[𝑇−1]∗𝑠 − 1~
𝑙𝑜𝑔𝜁

1
𝑠

[𝑇 − 1]
=

𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
 

𝜁
𝑛−1

[𝑇−1]∗𝑠~(
𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
+ 1)𝑛−1 ≈

[𝑛 − 1] ∗ 𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
+ 1 

𝑙𝑜𝑔𝑃𝑛 = 𝑙𝑜𝑔𝑃1 +
[𝑛 − 1] ∗ 𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
=
[𝑛 − 1] ∗ 𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
 

∆𝑃𝑛 ≈ [𝑛 − 1] (
𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
)
2

= {
𝑂(𝑙𝑜𝑔2𝑃𝑛)

𝑜(𝑙𝑜𝑔2𝑃𝑛)
          (8𝑔) 

Please note that the Big O result comprises the interior (smaller n) cases, while small-o anywhere 

near the extreme (larger n). Incidentally, as will be shown in the subsequent section, this very 

result (Cram1) could be discerned more directly from RI equivalences.  

Furthermore, Brocard’s conjecture can be tackled in all too straightforward a way (even 

though we have alternate, more elegant means on hand).   

𝜋{𝑝𝑛+1
2} − 𝜋{𝑝𝑛

2} =
𝑝𝑛+1

2

2𝑙𝑜𝑔𝑝𝑛+1
−

𝑝𝑛
2

2𝑙𝑜𝑔𝑝𝑛
>
𝑝𝑛+1

2 − 𝑝𝑛
2

2𝑙𝑜𝑔𝑝𝑛

=
𝑃1

2𝑙𝑜𝑔𝑝𝑛
[𝜁

2𝑛
[𝑇−1]∗𝑠 − 𝜁

2(𝑛−1)
[𝑇−1]∗𝑠]~

𝜁𝑛

2
[1−1/𝑛]∗𝑠 − 𝜁𝑛

2/𝑠

2
𝑠 ∗ 𝑙𝑜𝑔𝜁𝑛

 

𝑍
1

1−1/𝑛 − 𝑍 ≥ 4𝑙𝑜𝑔𝑍   𝐼𝐹  𝑍
1
𝑛−1 ≥

4

𝜋(𝑍)
+ 1 <

4

𝑍
+ 1, 𝐼𝐹 𝑍 ≡ 𝜁𝑛

2/𝑠 ≥ 4 

𝑍
𝑛
𝑛−1 > 𝑍 + 4  𝐼𝐹 

𝑛

𝑛 − 1
>
log (𝑍 + 4)

𝑙𝑜𝑔𝑍
>
𝑙𝑜𝑔2𝑍

𝑙𝑜𝑔𝑍
= 1 +

𝑙𝑜𝑔2

𝑍
>
3

2
    (9) 
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Apparently, for n large enough and tending to T (effective infinity), the criterion in (9) reduces to 

(9a): 

𝑜(𝜋(𝑍))~𝑜 (𝜋 (𝜁
2
𝑠)) ≥ 4     (9𝑎) 

But, this extreme case might be of lesser relevance compared to an interior, even as it calls for the 

PND frequency-equivalence (the pi) to take on extremely large values. Anyway, as imperfect as 

(9) might be, it seems to be pointing to n>>3 being the required possibility, according as (Broc) 

postulates, with Z>4 requirement met for most cases we have observed, yet probably only per 

select cases of zeta-complete as opposed to partial.  

Again, the representation can be rethought more elegantly, by making use of (8g): 

∆𝑃𝑛 ≈ [𝑛 − 1] (
𝑙𝑜𝑔𝜁

[𝑇 − 1] ∗ 𝑠
)
2

= (𝑙𝑜𝑔𝑍1/2)2 =
1

(𝑛 − 1)
∗ 𝑙𝑜𝑔2𝑃𝑛    (8𝑔 ∗) 

𝜋{𝑝𝑛+1
2} − 𝜋{𝑝𝑛

2} >
2𝑃𝑛∆𝑃𝑛
2𝑙𝑜𝑔𝑃𝑛

=
𝑃𝑛𝑙𝑜𝑔

2𝑃𝑛
(𝑛 − 1)𝑙𝑜𝑔𝑃𝑛

=
𝑃𝑛𝑙𝑜𝑔𝑃𝑛
(𝑛 − 1)

≥ 4  𝐼𝐹𝐹 𝑃𝑛𝑙𝑜𝑔𝑃𝑛 ≥ 4(𝑛 − 1)   (9𝑏) 

𝐼𝐹𝐹   ∆𝑃𝑛𝜋(𝑃𝑛) ≡ 2𝑚 ∗ 𝜋(𝑃𝑛) > 4  ↔ 𝐼𝐹𝐹  𝜋(𝑃𝑛) > 2       (9𝑐) 

Obviously, (9c) always holds for large enough primes, i.e. in excess of 3, as shown before. One 

other way of positing this would be to re-qualify (8g*) to account for the selfsame prime delta of 

2m (the larger the m, the lower the interval PND density): 

𝑃𝑛 > 𝑒
√2𝑚(𝑛−1), 𝑚 ∈ 𝑵 ≥ 1    (8ℎ) 

 

Following prior exposition above, the remaining two conjectures by Legendre-

Oppermann (LO/OL) set of conjectures should be a “piece of pie.” 

𝜋{(𝑛 + 1)2} − 𝜋{𝑛(𝑛 + 1)} =
(𝑛 + 1)2

2log (𝑛 + 1)
−

𝑛(𝑛 + 1)

𝑙𝑜𝑔𝑛 + log (𝑛 + 1)
>

(𝑛 + 1)

2log (𝑛 + 1)
=
𝜋(𝑛 + 1)

2
 

𝜋{𝑛2} − 𝜋{𝑛(𝑛 − 1)} >
𝜋(𝑛)

2
   (9𝑑) 

Needless to say, both sides of (9d) feature values in excess of 1 for large enough n>2. QED for 

both (LO/OL).  
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Zeta Based Formulae & Equivalences 

To start with, we herein propose a set of rho-transitions with rho tending to zero, so as to 

shed some prior light on just how counterintuitive some of the relationships sought after might 

emerge. Aside from (X) above, consider the following. 

∀𝑥:  𝑒𝑥 = (1 + 𝜌𝑥)1/𝜌  ↔ 𝑙𝑜𝑔𝑒𝑥 =
𝑒𝑥𝜌 − 1

𝜌
= 𝑥    (𝑋1) 

∀𝑥, 𝑥0: ∆𝑙𝑜𝑔𝑥 =
𝑥𝜌 − 𝑥0

𝜌

𝜌
=
(𝑥/𝑥0)

𝜌 − 1

𝜌
       (𝑋2) 

𝑙𝑜𝑔∏𝑦 =
(∏𝑦

𝜌
) − 1

𝜌
=∑

(𝑦𝜌 − 1)

𝜌
  ↔  ∑(𝑦𝜌 − 1) = (∏𝑦)𝜌 − 1   (𝑋3) 

Evidently, (X3) comes very close to unearthing the interlinkage between additivity 

(generalized as residuality) versus multiplicity (orduality)! We will, however, be interested in 

one-to-one or at least onto-correspondences, or per-element comparisons, if we are to infer 

meaningful, closed-form expressions generating primes over and above whatever has been 

proposed in literature. While at it, consider how (X3) can be narrowed down to (X3*): 

∀𝑘: 𝑙𝑜𝑔𝑦𝑘 =
𝑦𝑘𝜌 − 1

𝜌
= 𝑘(𝑦𝜌 − 1) ↔ 

𝑦𝑘𝜌 − 1

𝑘𝜌
= 𝑦𝜌 − 1    (𝑋4)  

𝜌𝑥 = log(1 + 𝜌𝑥)       (𝑋5𝑎) 

𝑥𝜌 = 𝑒𝑥
𝜌
− 1       (𝑋5𝑏) 

Interestingly enough, (X4) depicts k-invariance.  

Now, why don’t we zoom in on the innermost interchange between the elements of 

objects as diverse as sums and products? Suppose (P0), which hints at RI inter alia: 

∃𝑥, 𝑦: ∑𝑥 ≡∏𝑦       (𝑃0) 

It can be shown (less trivial) and readily verified (very easily by [re]summation or multiplication) 

that: 

𝑥𝑛 = 𝜑𝑙𝑜𝑔𝑦𝑛, 𝜑 =
𝛱

𝑙𝑜𝑔𝛱
=

𝛴

𝑙𝑜𝑔𝛴
     (𝑃1) 

When applied to RI, the phi-fudge amounts to nothing other than an equivalent of PND frequency 

over n=zeta: 
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𝜑𝑅𝐼 =
𝜁(𝑠)

𝑙𝑜𝑔𝜁(𝑠)
= 𝜋(𝜁) ≡ 𝜋𝑠      (𝑃1′) 

One is now in a position to appreciate that: 

𝑛−𝑠 = 𝜋𝑠𝑙𝑜𝑔(1 − 𝑃𝑛
−𝑠)−1         (𝑃2) 

Based on (X), one arrives at (P2a), which it is natural to linearize toward (P2b). 

𝜌𝑛−𝑠

𝜋𝑠
= 1 − (1 − 𝑃𝑛

−𝑠)𝜌       (𝑃2𝑎) 

𝑃𝑛
𝑠~𝜋𝑠𝑛

𝑠                    (𝑃2𝑏) 

In a sense, the pi-frequency acts as an activator of a “primalize” type, whilst its inverse as 

a “[re]naturalize” operator. A convention could come in handy whereby any natural either proves 

a respective prime simultaneously or it does not, in which event the pi(s) takes on corner 

(superficially or phenomenologically Boolean type) values of 1 versus 0. A summation of these 

over a particular interval spanning 1 to N, though, returns PND pi equivalence: 

∑𝜋𝑠
1/𝑠
1𝑘~𝜋(𝑁)

𝑁

𝑘=1

              (𝑃3) 

Somewhat more rigorously, (P4) holds and can be checked in a number of ways, not least 

inferred trivially from (P2), (X): 

𝑃𝑛
−𝑠 = 1 − [1 − 𝜌

𝑛−𝑠

𝜋𝑠
]1/𝜌 = 1 − 𝑒

−
𝑛−𝑠

𝜋𝑠         (𝑃4) 

At the same time, by substituting things back into RI, it occurs that: 

𝜁(𝑠) ≡∏
1

(1 − 𝑃𝑛
−𝑠)

=∏𝑒
𝑛−𝑠

𝜋𝑠 = 𝑒∑𝑛
−𝑠/𝜋𝑠 = 𝑒𝑙𝑜𝑔𝜁 = 𝜁, 𝑄𝐸𝐷 

Note in passing that the respective terms on both sides throughout are co-distributed 

monotonously and can thus be compared (juxtaposed), even though they might call for per-

element (interior, interim) adjustment/fitting factors or functors so as to carefully account for and 

arrive at productive prime-generating forms. Arguably, any phi-adjustments would do as long as 

the corners garner a unity ratio, i.e. the product of fitting terms cancels out. 

∃𝜑𝑛 ≡
𝐴𝑛
𝐴𝑛−1

: ∏
1

(1 − 𝑃𝑛
−𝑠)

≡∏𝑒
𝜑𝑛
𝑛−𝑠

𝜋𝑠 , ∏𝜑𝑛 =
𝐴𝑇
𝐴1
≡ 1 

∃𝜑𝑛(∙):     𝑃𝑛
−𝑠 ≡ 1 − 𝑒

−𝜑𝑛
𝑛−𝑠

𝜋𝑠           (𝑃4′) 
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For instance, the A-terms could be distributed as the combinatorial coefficients of a binomial 

decomposition of 2T, or their normalized representation ((P5) being but a wild guess, I accede). 

𝜑𝑘 =
𝐴𝑘
𝐴𝑘−1

=
(𝑇
𝑘
)

( 𝑇
𝑘−1
)
, ∀𝑘 = 0, 𝑇̅̅ ̅̅ ̅ 1 =

(𝑇
𝑘
)

( 𝑇
𝑇−𝑘
)
=
𝐴𝑘
𝐴𝑇−𝑘

      (𝑃5) 

From combining (P4) and (X), (P2b) results as an actual relationship rather than a 

linearized one, if only subject to Big O notation due to rho/rho inconclusivity as opposed to 

explicit asymptotics we make little if any use of above and beyond rho-transforms.  

Recall now (P2b) and how it plugs in on RI: 

𝜁 ≡∑𝑛−𝑠 =∑𝜋𝑠𝑃𝑛
−𝑠   ↔  ∑𝑃𝑛

−𝑠 ~
𝜁

𝜋𝑠
= 𝑙𝑜𝑔𝜁(𝑠)       (𝑃6) 

If the pi-functor cannot be rearranged on both sides as common, it acts identically as a 

“renaturalize” (“deprimalize”) operator. This borne in mind, one immediately induces recurrent 

open-forms and close-form cross-correspondences (P7a-b): 

𝜁(𝑠) ≡∑𝑛−𝑠 ~𝑒∑𝑃𝑛
−𝑠
= 𝑒∑𝑛

−𝑠/𝜋𝑠        (𝑃7𝑎) 

𝑒∑𝑛
−𝑠
~(∑𝑛−𝑠)𝜋𝑠  ↔  𝑒𝜁~𝜁𝜋𝑠                        (𝑃7𝑏) 

In fact, the latter is an identity.  

At this point, it could be rewarding to introduce and compare primality versus naturality 

weights/shares, defined as below: 

𝛼𝑛 ≡
𝑛−𝑠

𝜁
, 𝜁 ≡∏𝜁𝛼𝑝   ↔   𝛼𝑝 = −

log (1 − 𝑃𝑛
−𝑠)

𝑙𝑜𝑔𝜁
= −

log (1 − 𝑃𝑛
−𝑠)

∑𝑃𝑛
−𝑠  , 𝛼�̂� ≡

𝑃𝑛
−𝑠

𝑙𝑜𝑔𝜁
     (𝐴) 

∑𝛼𝑛
𝑛

= 1 =∑𝛼𝑝
𝑝

=∑𝛼�̂�  

𝑝

   (𝐵) 

(
𝑃𝑛
𝑛
)−𝑠 = 𝜋𝑠

−1 =
𝛼�̂�𝑙𝑜𝑔𝜁

𝛼𝑛𝜁
=
𝛼�̂�

𝛼𝑛
∗ 𝜋𝑠

−1   ↔  𝛼�̂� = 𝛼𝑛 𝑂𝑅 𝜋𝑠
−1 = 𝑇±1       (𝑃8𝑎) 

𝛼𝑛𝑙𝑜𝑔𝜁 = 𝑃𝑛
−𝑠   ↔ 𝑙𝑜𝑔𝜁 =

𝑃𝑘
−𝑠

𝛼𝑘
=∑𝑃𝑛

−𝑠   ∀𝑘          (𝑃8𝑏) 

𝜁 =
𝑘−𝑠

𝛼𝑘
=∑𝑛−𝑠      ∀𝑘         (𝑃8𝑐) 
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Please observe that (P8b-c) denote k-invariance, while together pointing to [non-linear] recursion 

(P8d): 

𝑙𝑜𝑔
𝑛−𝑠

𝛼𝑛
=
𝑃𝑛
−𝑠

𝛼𝑛
       (𝑃8𝑑) 

While at it, (A) suggests cross-correspondence (P8e) while pointing to cross-index equivalence 

due to (P4): 

𝑙𝑜𝑔𝜁 =
𝑃𝑛
−𝑠

𝛼�̂�
= −

𝑙𝑜𝑔(1 − 𝑃𝑛
−𝑠)

𝛼𝑝
   ↔  𝛼𝑝 = 𝛼�̂�       (𝑃8𝑒) 

Transitivity with reference to (P8a) suggests complete and simple equivalence of the indices 

attempted: 

𝛼𝑝 = 𝛼�̂� = 𝛼𝑛     (𝑃8𝑓) 

Arguably, with the aid of the above, proofs for the conjectures could be reconsidered 

along new, possibly more facile lines.  

 

After-Math 

Incidentally, little had I known that a minor handful of the results obtained are known in 

the literature in a somewhat weak, asymptotic representation (please see Appendix for some 

standard prior/exogenous results). For instance, the prime summation is referred to as the “prime 

zeta function” P(s), with a result similar to (P6) being obtained in a less-than-efficient manner, by 

building on cumbersome derivations. I remain hopeful the present paper makes an early step 

toward a clearer vision which is yet to develop.  

On the other hand, some of the results presented herewith reveal a striking similarity to 

my earlier as well as heretofore-unpublished apparatuses, notably P-calculus (Shevenyonov 

2016), L-gebra (Shevenyonov 2022). To illustrate:  

𝑃[𝑥](𝑛) = 𝑃2
[𝑥](𝑘) + 𝑃3

[𝑥](𝑛 − 𝑘)       (𝑃9𝑎) 

𝐿𝑛
𝑠 = 𝐿𝑠𝑛,      ∆

𝑘𝑋 = 𝑋 − 𝑘          (𝑃9𝑏) 

Compare with some of the findings as implied by the prior exposition herein: 

∃𝜑: 𝑃𝑛 → 𝑛,𝜑
−1: 𝑛 → 𝑃𝑛 

𝜑(𝑃𝑛
𝑠) = 𝑛 ± 𝑐𝑜𝑛𝑠𝑡, 𝑃𝑛

𝑠 = 𝜑−1𝑛 = 𝜋𝑠𝑛
𝑠  ↔ 𝜑−1~𝜋𝑠𝑛

𝑠−1, 𝑐𝑜𝑛𝑠𝑡~𝜑𝑃𝑘
𝑠 − 𝑘   (𝑃9𝑐) 

𝑃𝑛
𝑠 = 𝑃𝑘

𝑠 + 𝜑−1(𝑛 − 𝑘)          (𝑃9𝑑) 
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APPENDIX: Select Standard/Reference Results 

 

Based on the “prime zeta,” it has been known that: 

𝑃(𝑠) ≡∑𝑃𝑛
−𝑠 ~𝑙𝑜𝑔𝜁(𝑠)~𝑙𝑜𝑔

1

𝑠 − 1
, 𝑠 → 1     (𝑆1) 

I shall focus on the latter asymptotic correspondence, which I presume may have been discerned 

from the rather daunting, awkward representation for zeta building on the so-called “Stieltjes 

constants” (gamma-n), with gamma-null referring to “Euler-Mascheroni constant” that’s fairly 

unwieldy in its own right: 

𝜁(𝑠) =
1

𝑠 − 1
+∑

𝛾𝑛
𝑛!

∞

𝑛=0

(1 − 𝑠)𝑛      (𝑆2𝑎) 

𝛾𝑛 = lim
𝑚→∞

(∑
𝑙𝑜𝑔𝑚𝑘

𝑘

𝑚

𝑘=1

) −
𝑙𝑜𝑔𝑛+1𝑚

𝑛 + 1
     (𝑆2𝑏) 

𝛾0 =∑
1

𝜋(𝑘)
− 𝑙𝑜𝑔∞       (𝑆2𝑐)

∞

𝑘=1

 

While the core result (S1) is trivially implied from substituting s=1 in (S2a), the coefficients are 

intractable, the derivation counterintuitive and hardly productive when it comes to understanding 

the nature of primes. In contrast, my approach bypasses azimuthality while generating a plethora 

of formal results in addition to a schema for as convenient a proving of the grand conjectures that 

have long dangled inconclusive.  
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