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Abstract

Hypergraphs are a generalization of a graph in which an edge can
join any number of vertices. In contrast[1], in an ordinary graph, an
edge connects exactly two vertices.The applications of hypergraphs
can range from analogical explainations such as social networks to
hard generalities in the case of collabarative game theory where they
are known as simple games. The more abstract applications can be
used in localized and global optimizations of radial function under
computational geometry , and the optmizers generated could also be
used to solve linear scheduling problems.[2] The theoretical approach
developed under these categories can be used in embedding . cluster-
ing and classification which can be solved through the application of
spectral hypergraph clustering too.[3]

1 Introduction

Hypergraphs constitute a set of multi-variate relations among discrete in a
simple range system when considering computational geometry, on the other
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hand when talking about levi systems we can deploy laplace transformations
of the differential equation which is obtained by a linear transformation of a
cooperative game theory object object which is called a simple game.[4]
Generally when talking about machine learning problems we arrange systems
in accordance to the dual relation structure of independent objects or features
depending on the problem statement. When considering this we also take
in the assumption of the finite set structure for optimization and loss local
minimization [5], while the set is also a part of a Euclidean space associated
with the kernel matrix is also a general example of bi-linear optimization
with bi linear gradiential learning.
However, despite the easy general approach indicated above might and does
work pretty well for simple datasets pointing to euclidean system with lin-
early independent relations, they do demonstrate lesser accuracy in more
complex real world problems which may or may not have linear dependen-
cies. representing a set of complex relational objects as undirected or directed
graphs is not complete. For illustrating this point of view[4], let us consider
a problem of grouping a collection of articles into different topics. Given
an article, assume the only information that we have is who wrote this arti-
cle. One may construct an undirected graph in which two vertices are joined
together by an edge if there is at least one common author of their corre-
sponding articles , and then an undirected graph based clustering approach
is applied, e.g. spectral graph techniques.[6]
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2 Algorithms

The Algorithmics for this learning algorithm is a derivation from various Hy-
pergraph theorems and their application to back propagation based ANNs
through[4] , analytical differentiation of the case values and extending the
set of binary independent relationships between objects (features) of the sys-
tem(dataset) , to non euclidean multi-collinearity between the new objects.

2.1 Hall-Type Theorems

Hall type theorems are essentially generalizations of the Hall-Marriage the-
orems to hypergraph systems. Hall’s marriage theorem provides a condition
guaranteeing that a bipartite graph (X+Y, E) admits a perfect matching, or
- more generally - a matching that saturates all vertices of Y. The condition
involves the number of neighbors of subsets of Y.[4] Generalizing Hall’s theo-
rem to hypergraphs requires a generalization of the concepts of bipartiteness,
perfect matching, and neighbors.

2.1.1 Bipartiteness

Bipartiteness is the condition that let’s say a hypergraph (H,E) = {1,3,5,7,...}
Here E= {1,3,.} , {1,5,..} , {3,7,..} is bipartite with X = {1,2} Y= {2,3..}
which is multi-linearly distributed over the bi linear relation known as A1.

f : H → V, V = {1, 2, 3....}, {1, 2, ....}, {4, 5, ....}, {n− 1, n, ....}

3



f : H1 → V1, V1 = {1, 2, ....}, {1, 3, ....}, {4, 7, .}{3, 5, 7}

fn : Hn → Vn, V(n−1) = {n+1, n+2, N+3....}, {n+1, n+2, ....}, {n+4, n+5, ....}, {n, n−2, ....}
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2.1.2 Perfect Matching

matching in hypergraph systems let’s say V=(2,4) constructing a H=(1,3)
bipartite relation between two non-euclidean objects say X and Y[6]. match-
ing can be described as schedule and size optimization of the modulated by X
and Y which appears on the hyper vertex of edge M . which can be considered
a Y-perfect matching definition.[5]

f(Hi)
∞⋂
n=1

F (Vi) =
∞∑
n=1

n−vi
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f(Hi)
∞⋂
n=1

F (Vi) =
∞∑
i=1

n−vi

∞∑
j=1

nvj

f(Hi

∞⋂
n=1

Vi) =
∞∑
i=1

n−vi

∞∑
j=1

nv(j−1)

ν(HH(Y0)) ≥ (r − 1) · (|Y0| − 1)

ν∗(HH(Y0)) ≥ (r − 1) · (|Y0| − 1) + 1

ν(NH(Y0)) ≥ (r − 1) · (|Y0| − 1) + 1

τ(HH(Y0)) ≥ (2r − 3) · (|Y0| − 1)

τ(HH(Y0)) ≥ (2r − 3 + ϵ) · (|Y0| − 1) + 1

mw(NH(Y0)) ≥ |Y0|orw(NH(Y0)) ≥ 2|Y0| − 1w(NH(Y0)) ≥ 2|Y0| − 1

mw(NH(Y0)) ≥ |Y0|
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Figure 1: Alexnet Rep of The NN plot (sin(x), cos(x), x)

3 Neural Network Topology

The below is 3-d representation developed under the category of Hall Hyper-
graphed NNs.

Figure 2: LeNet representation
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Model Accuracy Score f1-score Loss(Sparse)

Alexnet 0.903 0.77 0.0.981
U-Net 0.87 0.73 0.105
CS-Net 0.88 0.82 0.107
YOLO 0.83 0.79 0.119

HypergraphNN 0.86 0.81 0.097

Table 1: Accuary and loss function table

4 Evaluation

The evaluation of the algorithm is done with general metrics we find out
that p-score and accuracy scores as well as different loss functions as the
output may or may not be binary in nature [1], looking from this direction
we realize that the hypergraph algorithm although may not show astute
results in the field of medical imaging but they can incredibly effective in
spatial transformation for generating non euclidean GAN objects.[4]

5 Conclusion

In this paper , we tried to review the recent developments in the application
of hypergraph theory to computer vision and object detection oriented neural
networks.
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