Toward a proof of the Riemann Hypothesis

James Edwin Rock

Abstract

The Möbius function $\mu(j)=-1,0,1$ depending on whether j has an odd number of factors, a square factor, or an even number of factors. The Mertens function $m(n)$ is $j=1$ to $n, \sum \mu(j)$. For all n, $|m(n)|<2 n^{1 / 2} .|m(n)|=O\left(n^{1 / 2}\right)$, and therefore the Riemann Hypothesis is true.

Set $f_{n}=(1 / 2)(2 / 3)(3 / 4) \ldots\left(\left[n^{1 / 2}\right] /\left(\left[n^{1 / 2}\right]+1\right)\right)(n)=n /\left(\left[n^{1 / 2}\right]+1\right)<n^{1 / 2}$. Set $S_{n}=(4 / 3)(9 / 8)(16 / 15)(25 / 24) \ldots\left(s^{2} /\left(s^{2}-1\right)\right), s^{2} \leq\left[n^{1 / 2}\right]+1 . S_{n}=2 n /(n+1)$ Proof by induction. $n=2 S_{n}=(4 / 3)$ assume $S_{n}=2 n / n+1 \quad S_{n+1}=(2 n / n+1)(n+1)^{2} /\left((n+1)^{2}-1\right)=2(n+1) /((n+1)+1)$ $|m(n)|<\left(S_{n}\right)\left(f_{n}\right)<(2)\left(n^{1 / 2}\right)$.

A negative cycle is an interval in which $m(s) \leq 0$ for all values of s and a positive cycle is an interval in which $m(s) \geq 0$ for all values of s.

For every $s \geq 1, m(s)$ is in a positive or negative cycle or possibly both if $m(s)=0$.
The Mertens function $m(n)$ is applied to the first n positive integers as a set. The reciprocal of each of the s non-square integers up to $\left[n^{1 / 2}\right]+1$ is a Mertens proportionality factor. The MPF are applied repeatedly to the fractional part of $n .\left(1-1 / f_{1}\right)(n)=n_{1},\left(1-1 / f_{2}\right)\left(n_{1}\right)=n_{2}, \ldots\left(1-1 / f_{s}\right)\left(n_{s-l}\right)=n_{s}<2 n^{1 / 2}$ $2=f_{l}$ thru $f_{s} \leq\left[n^{1 / 2}\right]+1$. Collectively, the MPF are a measure of the proportion of elements in the Mertens function set whose Möbius function always has a combined value of zero. $m(n)$ has a maximum $/ \mathrm{minimum}$ possible value depending on $m(n)$ being in a positive/negative cycle.

