The Riemann Hypothesis: Aspiring toward Perfect Simplicity

By Arthur V. Shevenyonov

Abstract

${ }^{1}$ The oft-ventured yet elusive Riemann Hypothesis allows for some unparalleled, perfecting simplicity which arguably denies any more-economical means. An overlap obtains with prior work from a drastically different angle.

For Aught Simple[r]

RH would seem to be building on individual terms that are [quadratic] zero-values (sufficiency) or on sign-alternation/reversal (necessity) which will be shown to effectively imply a minor extension of the same. The rationale is presented in (1), whilst a set of implications in (2).

$$
\begin{gather*}
\zeta(s) \equiv \sum_{n=1}^{T} n^{-s}=0 \sim \frac{1}{T} \boldsymbol{I F} n^{-s} \equiv n^{-(a+i t)}=0^{2} \sim T^{-2}, \quad T \rightarrow \infty \quad \text { (1) } \tag{1}\\
n^{-s}=n^{-a} *[\cos (2 i \pi k-t \log n)+i \sin (2 i \pi k-t \log n)]=0^{2}, \quad \forall k, n \in \boldsymbol{N} \\
\sqrt{\cos (\pm 2 i \pi k+t \log n)-i \sin (\pm 2 i \pi k+t \log n)}=0, \quad \forall a \\
\cos \left(\pm i \pi k+\frac{t}{2} * \log n\right)-i \sin \left(\pm i \pi k+\frac{t}{2} * \log n\right)=0 \quad(2 a) \tag{2a}\\
\cot \left(\frac{t}{2} * \log n \pm i \pi k\right)=i \tag{2b}
\end{gather*}
$$

What (2a) suggests is that, an argument/phase delta of $i^{*} p i^{*} k$ accounts for a minus sign under k odd, or $k=2 l+1$. In effect, $\operatorname{Re}(s)=1 / 2$ is implied as $-1=\exp (\log 1 *(2 l+1) / 2)$, if only because the potential $\operatorname{Re}(s)=a$ is rendered irrelevant (a-invariance), whilst $\operatorname{Re}(s)=\boldsymbol{k} / 2$ collapses to $1 / 2$ invariably due to $2 l / 2=1$. Please note that the $\log 1$ power obtains from:

$$
\begin{equation*}
n^{-s}=e^{\log 1+\log n^{-s}}=e^{\log \left(1 * n^{-s}\right)} \tag{3}
\end{equation*}
$$

Put differently, $1 / 2$ prevails as an implied real part if only phenomenologically (the underlying structural ontology being well there too).

[^0]Now, this was a sufficient scenario. One other way a zero zeta could obtain would necessarily involve either an n-specific extension/transform $\operatorname{phi}(n)$ (a finite, bounded function or factor or operator) or some kind of sign-variability across the n^{-s} terms, without necessarily building on adjacency. In other words (4):

$$
\begin{align*}
& \zeta(s)=0 \text { ONLY IF } \forall \varphi_{n} \exists \Delta_{n}: n^{-s} \\
& \qquad=\left\{\begin{array}{c}
\varphi_{n} * 0^{2} \\
-\left(n+\Delta_{n}\right)^{-s} \equiv-\left(\varphi_{n} n\right)^{-s}
\end{array} n^{-s}=0 \text { OR } \varphi_{n}=1^{\frac{2}{s}}\right. \tag{4}
\end{align*} ~ .
$$

This does appear to reduce the necessary criterion to a minor extension of the sufficient core. For that matter, the overlap with Shevenyonov (2022) looks striking-more so despite the drastically divergent core approaches!

Of interest could be to discern some further, "constructive" implications for $\boldsymbol{\operatorname { I m }}(s)$ based on (2b). By dint of standard identities, one arrives at (5a) through (5c) as equivalents pointing to (6).

$$
\begin{align*}
& \cot \left(\frac{t}{2} * \log n \pm i \pi k\right) \equiv \cot (\cdot)=\sqrt{\frac{\cos ^{2}(\cdot)}{1-\cos ^{2}(\cdot)}}=\sqrt{\frac{1}{\cos ^{-2}(\cdot)-1}}=i \text { IF } \cos ^{-2}(\cdot)=0 \tag{5a}\\
& \cot \left(\frac{t}{2} * \log n \pm i \pi k\right) \equiv \cot (\cdot)= \pm \sqrt{\frac{1+\cos 2(\cdot)}{1-\cos 2(\cdot)}}=i \text { IF } \cos 2(\cdot)=T \rightarrow \pm \infty \tag{5b}\\
& \cos ^{-2}(x)=0 \operatorname{IF}\left(\frac{e^{i x}-e^{-i x}}{2}\right)^{2}=T^{2} \leftrightarrow \frac{1}{n^{i t}-n^{-i t}-2} \sim 0^{2} \tag{5c}\\
& n^{-i t} \sim 0^{2} \leftrightarrow i t \sim T^{2} \sim(2 i \pi k)^{-2} \leftrightarrow t=\left\{\begin{array}{c}
-2 T \sim-T \\
-T^{2} / 2 \pi \sim-T^{2}
\end{array}\right. \tag{6}\\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \rightarrow \cos ^{2} x \text { IF } \sin ^{2} x \rightarrow 0 \leftrightarrow \frac{t}{2} * \log n \pm i \pi k, \\
& t=\mp \frac{2 i \pi k}{\log n}=\left\{\begin{array}{c}
0, \quad k=0 \\
-T, \quad k \rightarrow T
\end{array} \text { OR } n^{-i t}=e^{-2 \pi k}, \quad k \rightarrow T\right. \tag{7}
\end{align*}
$$

One other standard representation would hold as per (8):

$$
\begin{gather*}
\cos ^{2} x=\frac{1+\cos 2 x}{2} \rightarrow \cos 2 x \leftrightarrow \cos 2 x=\left\{\begin{array}{c}
\pm T \\
1
\end{array} \leftrightarrow x \equiv t * \log n \pm 2 i \pi k=\left\{\begin{array}{c}
0 \\
\pm 2 i \pi k
\end{array}\right.\right. \\
t \sim \frac{2 i \pi k}{\log n} \leftrightarrow n^{-i t}=e^{-2 \pi k}, \quad k \rightarrow T \tag{8}
\end{gather*}
$$

References

Shevenyonov, Arthur V. (2022). Generalizing [Un]Even Series-Sums Toward an Eventual Demonstration for the Riemann Hypothesis \& Implied Extensions. viXra: 2201.0062

[^0]: ${ }^{1}$ For those binding the world back to sense, beauty, chastity, and truth...

