A Different Way to Prove a Prime Number between 2N and 3N

Wing K. Yu

Abstract

In this paper we will use a different way to prove that there exists at least a prime number p in between 2n and 3n where n is a positive integer. The proof extends the Bertrand's postulate - Chebyshev's theorem which states that a prime number exists between n and 2n. The method to prove this proposition is to analyze the binomial coefficient, a similar method used by Erdős in the proof of Bertrand's postulate.

Introduction

The Bertrand's postulate - Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that n . It was proved in 1850 [1]. In 1932, Paul Erdős [2]used a much simpler method to prove the theorem by carefully analyzing the central binomial $coefficient <math>\binom{2n}{n}$. In 2006, M. El Bachraoui [3] extended the theorem by proving that for any positive integer n, there is a prime number p such that 2n . In this paper, the authorwill use a different method to prove the same extension by analyzing the binomial coefficient $<math>\binom{3n}{n}$. First, we will define and clarify some terms and concepts. Then we will propose the subject of the thesis.

Definition: $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \}$ denotes the prime factorization operator of $\binom{3n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{3n}{n}$ in the range of $a \ge p > b$. In this operator, p is a prime number, a and b are real numbers, and $3n \ge a \ge p > b \ge 1$.

It has some properties:

It is always true that
$$\Gamma_{a \ge p > b} \{ \binom{3n}{n} \} \ge 1$$
 - (1)
If there is no prime number in $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \}$, then $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \} = 1$, or vice versa,
if $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \} = 1$, then there is no prime number in $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \}$. - (2)
For example, $\Gamma_{8 \ge p > 6} \{ \binom{12}{4} \} = 7^0 = 1$. No prime number is in $\binom{12}{4}$ in the range of $8 \ge p > 6$.
If there is at least one prime number in $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \}$, then $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \} > 1$, or vice versa,
if $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \} > 1$, then there is at least one prime number in $\Gamma_{a \ge p > b} \{ \binom{3n}{n} \}$. - (3)
For example, $\Gamma_{6 \ge p > 4} \{ \binom{12}{4} \} = 5 > 1$. Prime number 5 is in $\binom{12}{4}$ in the range of $6 \ge p > 4$.

Let $v_p(n)$ be the *p*-adic valuation of *n*, the exponent of the highest power of *p* that divides *n*. Similar to Paul Erdős' paper [2], we define R(p) by the inequalities $p^{R(p)} \le 3n < p^{R(p)+1}$, and determine the *p*-adic valuation of $\binom{3n}{n}$.

$$v_p\left(\binom{3n}{n}\right) = v_p((3n)!) - v_p((2n)!) - v_p(n!) = \sum_{i=1}^{R(p)} \left(\left\lfloor\frac{3n}{p^i}\right\rfloor - \left\lfloor\frac{2n}{p^i}\right\rfloor - \left\lfloor\frac{n}{p^i}\right\rfloor\right) \le R(p)$$

because for any real numbers a and b , the expression of $\lfloor a + b \rfloor - \lfloor a \rfloor - \lfloor b \rfloor$ is 0 or 1.
Thus, if p divides $\binom{3n}{n}$, then $v_p\left(\binom{3n}{n}\right) \le R(p) \le \log_p(3n)$, or $p^{v_p\left(\binom{3n}{n}\right)} \le p^{R(p)} \le 3n$ (4)

From the prime number decomposition, when
$$n > \lfloor \sqrt{3n} \rfloor$$
,
 $\binom{3n}{n} = \frac{(3n)!}{n! \cdot (2n)!} = \Gamma_{3n \ge p > n} \{ \frac{(3n)!}{n! \cdot (2n)!} \} \cdot \Gamma_{n \ge p > \lfloor \sqrt{3n} \rfloor} \{ \frac{(3n)!}{n! \cdot (2n)!} \} \cdot \Gamma_{\lfloor \sqrt{3n} \rfloor \ge p} \{ \frac{(3n)!}{n! \cdot (2n)!} \}$.
When $n \le \lfloor \sqrt{3n} \rfloor$, $\binom{3n}{n} \le \Gamma_{3n \ge p > n} \{ \frac{(3n)!}{n! \cdot (2n)!} \} \cdot \Gamma_{\lfloor \sqrt{3n} \rfloor \ge p} \{ \frac{(3n)!}{n! \cdot (2n)!} \}$.
Thus, $\binom{3n}{n} \le \Gamma_{3n \ge p > n} \{ \frac{(3n)!}{n! \cdot (2n)!} \} \cdot \Gamma_{n \ge p > \lfloor \sqrt{3n} \rfloor} \{ \frac{(3n)!}{n! \cdot (2n)!} \} \cdot \Gamma_{\lfloor \sqrt{3n} \rfloor \ge p} \{ \frac{(3n)!}{n! \cdot (2n)!} \}$.
Since all prime numbers in $(n!)$ are pet in the range of $2n \ge n \ge n$.

Since all prime numbers in (n!) are not in the range of
$$3n \ge p > n$$
,

$$\Gamma_{3n\ge p>n}\left\{\frac{(3n)!}{n!\cdot(2n)!}\right\} = \Gamma_{3n\ge p>n}\left\{\frac{(3n)!}{(2n)!}\right\}.$$
Referring to (5), $\Gamma_{n\ge p>\lfloor\sqrt{3n}\rfloor}\left\{\frac{(3n)!}{n!\cdot(2n)!}\right\} \le \prod_{n\ge p} p$.
It has been proved [4] that $\prod_{n\ge p} p < 2^{2n-3}$ when $n \ge 3$.
Thus for $n\ge 3$, $\binom{3n}{n} < \Gamma_{3n\ge p>n}\left\{\frac{(3n)!}{(2n)!}\right\} \cdot 2^{2n-3} \cdot \Gamma_{\lfloor\sqrt{3n}\rfloor\ge p}\left\{\frac{(3n)!}{n!\cdot(2n)!}\right\}$ – (6)

Proposition

For every positive integer *n*, there exists at least a prime number *p* such that 2n .

Proof:

By induction on *n*, for
$$n = 3$$
, $\frac{3^{3n-2}}{n(2^{2n-2})} = \frac{3^6}{2^4} = 45 \frac{9}{16} < {\binom{3n}{n}} = {\binom{9}{3}} = 84.$
If ${\binom{3n}{n}} > \frac{3^{3n-2}}{n(2^{2n-2})}$ for *n* stands, then for *n* +1,
 ${\binom{3(n+1)}{n+1}} = \frac{(3n+3)(3n+2)(3n+1)}{(n+1)(2n+2)(2n+1)} \cdot {\binom{3n}{n}} > \frac{3(3n+2)(3n+1)}{(2n+2)(2n+1)} \cdot \frac{3^{3n-2}}{n(2^{2n-2})} > \frac{3^{3(n+1)-2}}{(n+1)(2^{2(n+1)-2})}$
because $\frac{3(3n+2)(3n+1)}{(2n+2)(2n+1)} \cdot \frac{3^{3n-2}}{n(2^{2n-2})} = 3 \cdot \frac{3n+2}{2n+1} \cdot \frac{3n+1}{2n} \cdot \frac{3^{3n-2}}{(n+1)(2^{2n-2})} > 3^3 \cdot \frac{3^{3n-2}}{(n+1)(2^{2n-2})}$
Thus for $n \ge 3$, ${\binom{3n}{n}} > \frac{3^{3n-2}}{n(2^{2n-2})} = -(7)$

Applying (7) into (6):

For
$$n \ge 3$$
, $\frac{3^{3n-2}}{n(2^{2n-2})} < \Gamma_{3n \ge p>n} \{ \frac{(3n)!}{(2n)!} \} \cdot 2^{2n-3} \cdot \Gamma_{\lfloor \sqrt{3n} \rfloor \ge p} \{ \frac{(3n)!}{n! \cdot (2n)!} \}$ - (8)

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1 \pmod{6}$ and $p \equiv 5 \pmod{6}$. Thus, $\pi(n) \le \left\lfloor \frac{n}{3} \right\rfloor + 2 \le \frac{n}{3} + 2$.

Referring to (4) and (9),

Thus f(x) is a strictly increasing function for $x \ge 84$. Then when $x \ge 84$, f(x + 1) > f(x).

Let
$$x = n \ge 84$$
, then $f(n+1) > f(n) = \frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^n}{(3n)^{\frac{\sqrt{3n+9}}{3}}}$

Since for n = 84, $f(n) = \frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^n}{\left(3n\right)^{\frac{\sqrt{3n+9}}{3}}} = \frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{84}}{\left(252\right)^{\frac{\sqrt{252+9}}{3}}} \approx \frac{1.307E+20}{8.151E+19} > 1$, and since

f(n+1) > f(n), by induction on n, when $n \ge 84$, $f(n) = \frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^n}{(3n)^{\frac{\sqrt{3n+9}}{3}}} > 1.$ (12)

Applying (12) to (11): When $n \ge 84$, $\Gamma_{3n \ge p>n} \left\{ \frac{(3n)!}{(2n)!} \right\} > \frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^n}{(3n)^{\frac{\sqrt{3n+9}}{3}}} > 1.$

Thus when $n \ge 84$,

$$\Gamma_{3n \ge p > n}\left\{\frac{(3n)!}{(2n)!}\right\} = \Gamma_{3n \ge p > 2n}\left\{\frac{(3n)!}{(2n)!}\right\} \cdot \Gamma_{2n \ge p > \frac{3n}{2}}\left\{\frac{(3n)!}{(2n)!}\right\} \cdot \Gamma_{\frac{3n}{2} \ge p > n}\left\{\frac{(3n)!}{(2n)!}\right\} > 1.$$
 (13)

If there is any prime number p such that $2n \ge p > \frac{3n}{2}$, then (3n)! has the factor of p, and (2n)!also has the same factor of p. Thus, they cancel to each other in $\frac{(3n)!}{(2n)!}$ with no prime number in the range of $2n \ge p > \frac{3n}{2}$. Referring to (2), $\Gamma_{2n\ge p>\frac{3n}{2}}\left\{\frac{(3n)!}{(2n)!}\right\} = 1$. Thus, when $n \ge 84$, $\Gamma_{3n\ge p>n}\left\{\frac{(3n)!}{(2n)!}\right\} = \Gamma_{3n\ge p>2n}\left\{\frac{(3n)!}{(2n)!}\right\} \cdot \frac{\Gamma_{3n}}{2} \ge p>n}\left\{\frac{(3n)!}{(2n)!}\right\} > 1$. - (14) Referring to (1), $\Gamma_{3n\ge p>2n}\left\{\frac{(3n)!}{(2n)!}\right\} \ge 1$ and $\frac{\Gamma_{3n}}{2} \ge p>n}\left\{\frac{(3n)!}{(2n)!}\right\} \ge 1$, from (14), at least one of these two factors is greater than one when $n \ge 84$. If $n \ge 84$ and $\Gamma_{3n\ge p>2n}\left\{\frac{(3n)!}{(2n)!}\right\} > 1$, then referring to (3), there exists at least a prime number psuch that 2n . - (15)

$$\begin{split} & \Gamma_{\underline{3n}}_{\underline{2}} \ge p > n \left\{ \frac{(3n)!}{(2n)!} \right\} = \Gamma_{\underline{3} \cdot (\frac{n}{2}) \ge p > 2 \cdot (\frac{n}{2})} \left\{ \frac{(3n)!}{(2n)!} \right\}. \\ & \text{If } \frac{n}{2} \ge 42 \text{ and } \Gamma_{\underline{3} \cdot (\frac{n}{2}) \ge p > 2 \cdot (\frac{n}{2})} \left\{ \frac{(3n)!}{(2n)!} \right\} = 1, \text{ then from (14), the factor } \Gamma_{\underline{3n} \ge p > 2n} \left\{ \frac{(3n)!}{(2n)!} \right\} > 1. \\ & \text{Referring to (3), there exists at least a prime number } p \text{ such that } 2n$$

If $\frac{n}{2} \ge 42$ and $\Gamma_{3 \cdot (\frac{n}{2}) \ge p > 2 \cdot (\frac{n}{2})} \{ \frac{(3n)!}{(2n)!} \} > 1$, let $m = \frac{n}{2}$, then when $m \ge 42$, there exists at least a prime number p such that $2m . Since <math>n \ge 84 \ge m \ge 42$, the statement is also valid for n.

Thus, when $n \ge 84$, if $\Gamma_{3 \cdot (\frac{n}{2}) \ge p > 2 \cdot (\frac{n}{2})} \left\{ \frac{(3n)!}{(2n)!} \right\} > 1$, then $\Gamma_{3n \ge p > 2n} \left\{ \frac{(3n)!}{(2n)!} \right\} > 1$, and there exists at least a prime number p such that 2n . — (17)

From (16) and (17), no matter $\prod_{\frac{3n}{2} \ge p > n} \left\{ \frac{(3n)!}{(2n)!} \right\}$ is equal to 1 or greater than 1, there exists at least a prime number p such that $2n when <math>n \ge 84$. — (18)

Table 1 shows that when $1 \le n \le 84$, there is a prime number p such that 2n . (19)

Thus, the proposition is proven by combining (15), (18), and (19): For every positive integer n, there exists at least a prime number p such that 2n .

2 <i>n</i>	2	4	6	8	10	12	14	16	18	20	22	24	26	28
p	3	5	7	11	13	17	17	19	23	29	29	31	31	37
3n	3	6	9	12	15	18	21	24	27	30	33	36	39	42
2 <i>n</i>	30	32	34	36	38	40	42	44	46	48	50	52	54	56
p	37	41	41	43	43	47	47	53	53	59	59	61	61	67
3n	45	48	51	54	57	60	63	66	69	72	75	78	81	84
2 <i>n</i>	58	60	62	64	66	68	70	72	74	76	78	80	82	84
p	67	71	71	73	73	79	79	83	83	89	89	97	97	101
3n	87	90	93	96	99	102	105	108	111	114	117	120	123	126
2 <i>n</i>	86	88	90	92	94	96	98	100	102	104	106	108	110	112
p	101	103	103	107	107	109	109	113	113	127	127	131	131	137
3n	129	132	135	138	141	144	147	150	153	156	159	162	165	168
2 <i>n</i>	114	116	118	120	122	124	126	128	130	132	134	136	138	140
p	137	139	139	149	149	151	151	157	157	163	163	167	167	173
3n	171	174	177	180	183	186	189	192	195	198	201	204	207	210
2 <i>n</i>	142	144	146	148	150	152	154	156	158	160	162	164	166	168
p	173	179	179	181	181	191	191	193	193	197	197	199	199	211
3n	213	216	219	222	225	228	231	234	237	240	243	246	249	252

Table 1: For $1 \le n \le 84$, there is a prime number p such that 2n .

References

- [1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
- [2] P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (1930-1932), 194-198
- [3] M. El Bachraoui, *Prime in the Interval* [2*n*, 3*n*], International Journal of Contemporary Mathematical Sciences, Vol.1 (2006), no. 13, 617-621.
- [4] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate, Lemma 4.