A Different Way to Prove a Prime Number between 2N and 3N

Wing K. Yu

Abstract

In this paper we will use a different way to prove that there exists at least a prime number p in between $2 n$ and $3 n$ where n is a positive integer. The proof extends the Bertrand's postulate / Chebyshev's theorem which states that a prime number exists between n and $2 n$. The method to prove this proposition is to analyze the binomial coefficient, a similar method used by Erdős in the proof of Bertrand's postulate.

Introduction

The Bertrand's postulate / Chebyshev's theorem states that for any positive integer n, there is always a prime number p such that $n<p \leq 2 n$. It was proved in 1850 [1]. In 1932, Paul Erdős [2] used a much simpler method to prove the theorem by carefully analyzing the central binomial coefficient $\binom{2 n}{n}$. In 2006, M. El Bachraoui [3] extended the theorem by proving that for any positive integer n, there is a prime number p such that $2 n<p \leq 3 n$. In this paper, the author will use a different method to prove the same extension by analyzing the binomial coefficient $\binom{3 n}{n}$. First, we will define and clarify some terms and concepts. Then we will propose the subject of the thesis.

Definition: $\Gamma_{a \geq p>b}\{n\}$ denotes the prime number decomposition operator. It is the product of the prime numbers in the decomposition of a positive integer n or a positive integer expression. In this operator, p is a prime number, a and b are real numbers, and $n \geq a \geq p>b \geq 1$.
It has some properties: By definition, it is always true that $\Gamma_{a \geq p>b}\{n\} \geq 1$
If no prime number in $\Gamma_{a \geq p>b}\{n\}$, then $\Gamma_{a \geq p>b}\{n\}=1$, or vice versa, if $\Gamma_{a \geq p>b}\{n\}=1$, then no prime number in $\Gamma_{a \geq p>b}\{n\}$ as in $\Gamma_{12 \geq p>4}\{12\}=11^{0} \cdot 7^{0} \cdot 5^{0}=1$.

If there is at least one prime number in $\Gamma_{a \geq p>b}\{n\}$, then $\Gamma_{a \geq p>b}\{n\}>1$, or vice versa, if $\Gamma_{a \geq p>b}\{n\}>1$, then there is at least one prime number in $\Gamma_{a \geq p>b}\{n\}$ as in $\Gamma_{4 \geq p>2}\{12\}=3>1$.

Similar to Paul Erdős' paper [2], we define $R(p)$ by the inequalities $p^{R(p)} \leq 3 n<p^{R(p)+1}$, and determine the p-adic valuation of $\binom{3 n}{n}$.
$v_{p}\left(\binom{3 n}{n}\right)=v_{p}((3 n)!)-v_{p}((2 n)!)-v_{p}(n!)=\sum_{i=1}^{R(p)}\left(\left\lfloor\frac{3 n}{p^{i}}\right\rfloor-\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-\left\lfloor\frac{n}{p^{i}}\right\rfloor\right) \leq R(p)$
because for any real numbers a and b, the expression of $\lfloor a+b\rfloor-\lfloor a\rfloor-\lfloor b\rfloor$ is 0 or 1 .
Thus, if p divides $\binom{3 n}{n}$, then $v_{p}\left(\binom{3 n}{n}\right) \leq R(p) \leq \log _{p}(3 n)$, or $p^{v_{p}\left(\binom{3 n}{n}\right)} \leq p^{R(p)} \leq 3 n$
And if $3 n \geq p>\lfloor\sqrt{3 n}\rfloor$, then $0 \leq v_{p}\left(\binom{3 n}{n}\right) \leq R(p) \leq 1$.
From the prime number decomposition,
$\binom{3 n}{n}=\frac{(3 n)!}{n!\cdot(2 n)!}=\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\} \cdot \Gamma_{n \geq p>\lfloor\sqrt{3 n}]}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\} \cdot \Gamma_{[\sqrt{3 n}] \geq p}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\}$.
Since all prime numbers in $n!$ are not in the range of $3 n \geq p>n$,
$\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\}=\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}$.
Referring to (5), $\Gamma_{n \geq p>\lfloor\sqrt{3 n}\rfloor}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\} \leq \prod_{n \geq p} p$.
It has been proved [4] that $\prod_{n \geq p} p<2^{2 n-3}$ when $n \geq 3$.
Thus for $n \geq 3,\binom{3 n}{n}<\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot 2^{2 n-3} \cdot \Gamma_{[\sqrt{3 n}] \geq p}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\}$

Proposition

For every positive integer n, there exists at least a prime number \boldsymbol{p} such that $\mathbf{2 n}<\boldsymbol{p} \leq \mathbf{3 n}$.

Proof:

By induction on n, for $n=3, \frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}=\frac{3^{6}}{2^{4}}=45 \frac{9}{16}<\binom{3 n}{n}=\binom{9}{3}=84$.
If $\binom{3 n}{n}>\frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}$ for n stands, then for $n+1$,

$$
\binom{3(n+1)}{n+1}=\frac{(3 n+3)(3 n+2)(3 n+1)}{(n+1)(2 n+2)(2 n+1)} \cdot\binom{3 n}{n}>\frac{3(3 n+2)(3 n+1)}{(2 n+2)(2 n+1)} \cdot \frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}>\frac{3^{3(n+1)-2}}{(n+1)\left(2^{2(n+1)-2}\right)}
$$

because $\frac{3(3 n+2)(3 n+1)}{(2 n+2)(2 n+1)} \cdot \frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}=3 \cdot \frac{3 n+2}{2 n+1} \cdot \frac{3 n+1}{2 n} \cdot \frac{3^{3 n-2}}{(n+1)\left(2^{2 n-2}\right)}>3^{3} \cdot \frac{3^{3 n-2}}{(n+1)\left(2^{2 n-2}\right)}$
Thus for $n \geq 3, \quad\binom{3 n}{n}>\frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}$
Applying (7) into (6):
For $n \geq 3, \frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}<\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot 2^{2 n-3} \cdot \Gamma_{[\sqrt{3 n}] \geq p}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\}$

Let $\pi(x)$ be the number of prime numbers less than or equal to x, where x is a positive real number. For the first six sequential natural numbers, there are three prime numbers 2,3 , and 5 . For adding any successive set of six sequential natural numbers, there are at most two prime numbers added, $p \equiv 1$ (MOD 6) and $p \equiv 5$ (MOD 6). Thus, $\pi(x) \leq\left\lfloor\frac{x}{3}\right\rfloor+2 \leq \frac{x}{3}+2$.
Referring to (4) and (9),
$\Gamma_{[\sqrt{3 n}] \geq p}\left\{\frac{(3 n)!}{n!\cdot(2 n)!}\right\}=\Gamma_{\lfloor\sqrt{3 n}] \geq p}\left\{\binom{3 n}{n}\right\} \leq(3 n)^{\pi(\sqrt{3 n})} \leq(3 n)^{\frac{\sqrt{3 n}}{3}+2}$
Applying (10) into (8): $\frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)}<\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot 2^{2 n-3} \cdot(3 n)^{\frac{\sqrt{3 n}}{3}+2}$
Since both $2^{2 n-3}>0$ and $(3 n)^{\frac{\sqrt{3 n}}{3}+2}>0$ for $n \geq 3$,
$\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>\frac{3^{3 n-2}}{n\left(2^{2 n-2}\right)\left(2^{2 n-3}\right)(3 n)^{\frac{\sqrt{3 n}}{3}}+2}=\frac{32 \cdot\left(\frac{27}{16}\right)^{n}}{3 \cdot(3 n)^{\frac{\sqrt{3 n}}{3}}+3}=\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{n}}{(3 n)^{\frac{\sqrt{3 n}+9}{3}}}$
Let $f(x)=\frac{u}{w}$ where x, u, w are real numbers and $x \geq 84, u=\frac{32}{3} \cdot\left(\frac{27}{16}\right)^{x}, w=(3 x)^{\frac{\sqrt{3 x}+9}{3}}$
$\frac{d u}{d x}=\left(\frac{32}{3} \cdot\left(\frac{27}{16}\right)^{x}\right)^{\prime}=\frac{32}{3} \cdot\left(\frac{27}{16}\right)^{x} \cdot \ln \left(\frac{27}{16}\right)=u \cdot \ln \left(\frac{27}{16}\right)$
$\frac{d w}{d x}=\left((3 x)^{\frac{\sqrt{3 x}+9}{3}}\right)^{\prime}=\left((3 x)^{\frac{\sqrt{3 x}+9}{3}}\right)\left(\frac{\ln (3 x)}{2 \sqrt{3 x}}+\frac{\sqrt{3 x}+9}{3 x}\right)=w\left(\frac{\ln (3 x)+2}{2 \sqrt{3 x}}+\frac{3}{x}\right)$
$f^{\prime}(x)=\left(\frac{u}{w}\right)^{\prime}=\frac{w(u)^{\prime}-u(w)^{\prime}}{w^{2}}=\frac{u}{w}\left(\ln \left(\frac{27}{16}\right)-\frac{\ln (3 x)+2}{2 \sqrt{3 x}}-\frac{3}{x}\right)$
Let $f_{1}(x)=\ln \left(\frac{27}{16}\right)-\frac{\ln (3 x)+2}{2 \sqrt{3 x}}-\frac{3}{x}$
Since $f_{1}{ }^{\prime}(x)=\frac{\ln (3 x)}{4 x \sqrt{3 x}}+\frac{3}{x^{2}}>0$, when $x>1, f_{1}(x)$ is a strictly increasing function.
When $x=84, f_{1}(x)=\ln \left(\frac{27}{16}\right)-\frac{\ln (3 x)+2}{2 \sqrt{3 x}}-\frac{3}{x} \approx 0.523-0.237-0.012=0.274>0$.
Thus, when $x \geq 84, f_{1}(x)>0$.
Since when $x \geq 84, u, w$, and $f_{1}(x)$ are greater than zero, $f^{\prime}(x)=\frac{u}{w} \cdot f_{1}(x)>0$.
Thus $f(x)$ is a strictly increasing function for $x \geq 84$. Then when $x \geq 84, f(x+1)>f(x)$.
Let $n=\lfloor x\rfloor \geq 84$, then $f(n+1)>f(n)=\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{n}}{(3 n)^{\frac{\sqrt{3 n}+9}{3}}}$
Since for $n=84, f(n)=\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{n}}{(3 n)^{\frac{\sqrt{3 n}+9}{3}}}=\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{84}}{(252)^{\frac{\sqrt{252}+9}{3}}} \approx \frac{1.307 E+20}{8.151 E+19}>1$, and since
$f(n+1)>f(n)$, by induction on n, when $n \geq 84, f(n)=\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{n}}{(3 n)^{\frac{\sqrt{3 n}+9}{3}}}>1$.
Applying (12) to (11): When $n \geq 84, \Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>\frac{32}{3} \cdot \frac{\left(\frac{27}{16}\right)^{n}}{(3 n)^{\frac{\sqrt{3 n}+9}{3}}}>1$.
Thus when $n \geq 84$,
$\Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}=\Gamma_{3 n \geq p>2 n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot \Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot \Gamma_{\frac{3 n}{2} \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>1$
When $2 n \geq p>\frac{3 n}{2}$ in $\frac{(3 n)!}{(2 n)!}$, if $v_{p}((3 n)!)$ has one factor of p then $v_{p}((2 n)!)$ also has one factor of p. Thus, $v_{p}\left(\frac{(3 n)!}{(2 n)!}\right)=v_{p}((3 n)!)-v_{p}((2 n)!)=1-1=0$.
Since $p^{0}=1$, referring to (2), $\Gamma_{2 n \geq p>\frac{3 n}{2}}\left\{\frac{(3 n)!}{(2 n)!}\right\}=1$
Thus, when $n \geq 84, \Gamma_{3 n \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}=\Gamma_{3 n \geq p>2 n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \cdot \Gamma_{\frac{3 n}{2} \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>1$
Referring to (1), $\Gamma_{3 n \geq p>2 n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \geq 1$ and $\Gamma_{\frac{3 n}{2} \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\} \geq 1$, from (14), at least one of these two factors is greater than one when $n \geq 84$.
If $n \geq 84$ and $\Gamma_{3 n \geq p>2 n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>1$, since $\frac{(3 n)!}{(2 n)!}$ is a positive integer expression, then referring to (3), there exists at least a prime number p such that $2 n<p \leq 3 n$.
$\Gamma_{\frac{3 n}{2} \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}=\Gamma_{3 \cdot\left(\frac{n}{2}\right) \geq p>2 \cdot\left(\frac{n}{2}\right)}\left\{\frac{(3 n)!}{(2 n)!}\right\}$.
If $\frac{n}{2} \geq 42$ and $\Gamma_{3 \cdot\left(\frac{n}{2}\right) \geq p>2 \cdot\left(\frac{n}{2}\right)}\left\{\frac{(3 n)!}{(2 n)!}\right\}=1$, then from (14), the factor $\Gamma_{3 n \geq p>2 n}\left\{\frac{(3 n)!}{(2 n)!}\right\}>1$.
Referring to (3), there exists at least a prime number p such that $2 n<p \leq 3 n$.
If $\frac{n}{2} \geq 42$ and $\Gamma_{3 \cdot\left(\frac{n}{2}\right) \geq p>2 \cdot\left(\frac{n}{2}\right)}\left\{\frac{(3 n)!}{(2 n)!}\right\}>1$, let $m=\frac{n}{2}$, then when $m \geq 42$, there exists at least a prime number p such that $2 m<p \leq 3 m$. Since $n \geq 84 \geq m \geq 42$, the statement is also valid for n. Thus, when $n \geq 84$, there exists at least a prime number p such that $2 n<p \leq 3 n$.
From (16) and (17), no matter $\Gamma_{\frac{3 n}{2} \geq p>n}\left\{\frac{(3 n)!}{(2 n)!}\right\}$ is equal to 1 or greater than 1 , there exists at
least a prime number p such that $2 n<p \leq 3 n$ when $n \geq 84$.
Table 1 shows that when $1 \leq n \leq 84$, there is a prime number p such that $2 n<p \leq 3 n$.
Thus, the proposition is proven by combining (15), (18), and (19): For every positive integer n, there exists at least a prime number p such that $2 n<p \leq 3 n$.

Table 1: For $1 \leq n \leq 84$, there is a prime number p such that $2 n<p \leq 3 n$.

$2 n$	2	4	6	8	10	12	14	16	18	20	22	24	26	28
p	3	5	7	11	13	17	17	19	23	29	29	31	31	37
$3 n$	3	6	9	12	15	18	21	24	27	30	33	36	39	42
$2 n$	30	32	34	36	38	40	42	44	46	48	50	52	54	56
p	37	41	41	43	43	47	47	53	53	59	59	61	61	67
$3 n$	45	48	51	54	57	60	63	66	69	72	75	78	81	84
$2 n$	58	60	62	64	66	68	70	72	74	76	78	80	82	84
p	67	71	71	73	73	79	79	83	83	89	89	97	97	101
$3 n$	87	90	93	96	99	102	105	108	111	114	117	120	123	126
$2 n$	86	88	90	92	94	96	98	100	102	104	106	108	110	112
p	101	103	103	107	107	109	109	113	113	127	127	131	131	137
$3 n$	129	132	135	138	141	144	147	150	153	156	159	162	165	168
$2 n$	114	116	118	120	122	124	126	128	130	132	134	136	138	140
p	137	139	139	149	149	151	151	157	157	163	163	167	167	173
$3 n$	171	174	177	180	183	186	189	192	195	198	201	204	207	210
$2 n$	142	144	146	148	150	152	154	156	158	160	162	164	166	168
p	173	179	179	181	181	191	191	193	193	197	197	199	199	211
$3 n$	213	216	219	222	225	228	231	234	237	240	243	246	249	252

References

[1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21
[2] P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (1930-1932), 194-198
[3] M. El Bachraoui, Prime in the Interval [2n, 3n], International Journal of Contemporary Mathematical Sciences, Vol. 1 (2006), no. 13, 617-621.
[4] Wikipedia, Lemma 4, https://en.wikipedia.org/wiki/Proof_of_Bertrand\'s_postulate

