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Abstract

In this paper we will use a different way to prove that there exists at least a prime number p in
between 2n and 3n where n is a positive integer. The proof extends the Bertrand’s postulate /
Chebyshev’s theorem which states that a prime number exists between n and 2n. The method
to prove this proposition is to analyze the binomial coefficient, a similar method used by Erdds
in the proof of Bertrand’s postulate.

Introduction

The Bertrand’s postulate / Chebyshev’s theorem states that for any positive integer n, there is
always a prime number p such that n < p < 2n. It was proved in 1850 [1]. In 1932, Paul Erdés [2]
used a much simpler method to prove the theorem by carefully analyzing the central binomial

coefficient (2:) In 2006, M. El Bachraoui [3] extended the theorem by proving that for any

positive integer n, there is a prime number p such that 2n < p < 3n. In this paper, the author
will use a different method to prove the same extension by analyzing the binomial coefficient

(37?) First, we will define and clarify some terms and concepts. Then we will propose the

subject of the thesis.

Definition: Fa2p>b{n} denotes the prime number decomposition operator. It is the product of

the prime numbers in the decomposition of a positive integer n or a positive integer expression.
In this operator, p is a prime number, a and b are real numbers,andn>a2p>b21.

It has some properties: By definition, it is always true that Fa2p>b{n} >1 — (1)
If no prime number in I';5,,.p{n}, then [y5p.p{n} =1, or vice versa, if (354, p{n} =1, then no
prime number in [y5pop{ntasin [55p.4{12}=11°7° 5 = 1. —(2)

If there is at least one prime number in I35 {n}, then Iy5p.p{n} > 1, or vice versa, if
[aspsp{n}t>1, then there is at least one prime number in [y5p.p{ntasin Isp {12} =3 > 1.

—(3)

Similar to Paul Erd8s’ paper [2], we define R(p) by the inequalities pR® <3n < pR®+1 and
determine the p-adic valuation of (31:1)
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vy () = 5 (G =3y (@) = vy () = 228 (1 27] = 5] = |Z]) < rew)

p' p'
because for any real numbers a and b, the expression of |a + b] — |a] — | b] is 0 or 1.

Thus, if p divides (°"), then v, ((31;1)) < R(p) <log,(3n), or p”p((?)) <pR® <3n —(4)
And if 3n2p > |V3n], then0< v, ((31;1)) <R(p)<1. — (5)

From the prime number decomposition,

(3n) (3n)! (3n)! (3n)! } .

(3n)!
ni-(zn)! F3nzpsnt '(Zn)!}. n2P>l\/3_nJ{n!-(2n)! )

wamep { nt-(2n)

Since all prime numbers in n! are not in the range of 3n > p >n,

(3n)! (3n)!
F3n2p>n {m} = 37’l>p>7’l{ (2n)! }
, (3n)!
Referring to (5), I, .. 13w, {n' (Zn)'} [Tnzp P
It has been proved [4] that Hn>p p <22"3 whenn>3.
(3n)! n— (3n)!
Thus forn >3, ( ) <I3pspand n )l} 2n=3 F\/ﬁPp{nl (Zn)'} —(6)

Proposition

For every positive integer n, there exists at least a prime number p such that 2n < p < 3n.

Proof:
331’1—2
By induction on n, forn =3, nT) = 2—4 = 45 2 (3n) (9) 84,

If (371) (Zzn 2 for n stands, then for n +1,

3(n+1)y _ (3n+3)(3n+2)(3n+1) (3n) S 3(3n+2)(3n+1) 33n-2 S 33(n+1)-2

n+l /7 (n+1)(2n+2)(2n+1) 2n+2)(2n+1) n(227"2)  (n+1)(22M+1-2)
b 3(3n+2)(3n+1) 33n-2 3n+2 3n+1 33n-2 5 33. 33n-2
CAWE onin@nt) n@T ) T 1 2n (1)@ ) (n+1)(22"72)

3n 33Tl—2
Thus forn 2 3, (n)>m —(7)
Applying (7) into (6):
33n-2 (3n)! e (3n)!

Forn23, — o <Ianspen{ 5 1 ZA W T Gerwmers —(8)
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Let 77(x) be the number of prime numbers less than or equal to x, where x is a positive real
number. For the first six sequential natural numbers, there are three prime numbers 2, 3, and 5.
For adding any successive set of six sequential natural numbers, there are at most two prime

numbers added, p =1 (MOD 6) and p =5 (MOD 6). Thus, rt(x) < EJ+2 < §+2. —(9)
Referring to (4) and (9),

(3n)! 3n LEL
Caiigep Lyt = Divamtep ()} s G < @ny e — (10)

33n—2 (371)

-3 AE
Applying (10) into (8): T < F3n>p>n{ o) - (3n) s

AELIP)
Since both 22" 3 >0and (3n) 3 "“>0forn >3,

n n
§ (8n)! 3in~? _ 32:(3) _32 (%)
3n2p>n{ (2n)! } > @+2 - @+3 - ? ) V3n+9 —(11)
n(22n=2)(2°"73)(3n) 3 3:(3n) 3 (3n) 3

u 32 [27\* V3x+o
Let f(x) = where x, u, w arereal numbersand x 284, u==—- (—) , w=(3x) 3

3 16
L2 ®)-2 (D) n(D)-u-n(D)

dw V3x+9 V349N rin(3x) . V3x+9 mBx)+2 | 3
(00 = (60F) (a2 5w (58 42)

- Q- ()22

27\ _ InGBx)+2 3
Let fi(x) = In (16)—&——

2v/3x x

ln(3x)
4—x\/_

Since f;'(x) = = >0, when x >1, f; (x) is a strictly increasing function.

When x =84, f,(x) = In (27) In(3x)+2

P —T—;~0523 0.237 -0.012=0.274 > 0.

Thus, when x > 84, f;(x) >0.
Since when x 284, u, w,and f; (x) are greater than zero, f'(x) = % - fi(x)>0.
Thus f(x) is a strictly increasing function for x > 84. Then when x > 84, f(x + 1) > f(x).

)

Let n = |x| > 84, then f(n+1)>f(n)=%-m

Bn) 3
(27) (27)84
. _ _ 32 16 _32 16 1.307E+20 .
Since forn =84, f(n) = 2 s = TR 1, and since
(3n) 3 (252) 3
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27\
f(n+ 1) > f(n), byinduction on n, whenn > 84, f(n) = % . % >1. —(12)
(3n) 3

Bn)!, 32 (%)

Applying (12) to (11): When n > 84, F3n>p>n{ ! >S5 —GFn oL
(3n) 3
Thus when n > 84,
(3n)! (3n)! (3n)! (3n)!
F3n>p>n{ (2n)! }_ 3n>p>2n{ (2n)! } 2n>p> { (2n)! } —>p>n{ (2n)! —(13)
When 2n2p > in % if v,((3n)!) has one factor of p then v,((2n)!) also has one factor of
p- Thus, v, (EZ ;,) v,(Bn)) —v,((2n)ND=1-1=0.
. . (3n)!
Since p°=1, referring to (2), F2n>p> of —= @) }=
(3n)! (3n)! Bn)!
Thus, when n > 84, F3n>p>n{ 2n)! }= 3n>p>2n{ (2n)! } —>p>n{ (2n)! — (14)
(3n)! (3n)!
Referring to (1), T'3p>paon{ - 2! }>1and F3n>p n{ @) } 21, from (14), at least one of these
two factors is greater than one when n > 84.
(3n)! (3n)!
If n>84 and F3n>p>2n{ ! }>1, since W is a positive integer expression, then referring to
(3), there exists at least a prime number p such that 2n < p < 3n. — (15)
(3n)! (3n)'
n (3n) (3n)!
If ~242and I, (Dyzpo2(] n{——= )] } = 1, then from (14), the factor [3p5p.on{ > )] }>
Referring to (3), there exists at least a prime number p such that 2n < p <3n. — (16)

(3n)!
(2n)!

prime number p such that 2m < p < 3m. Since n 2 84 > m > 42, the statement is also valid for n.

n .
If =242and I (Byzpo2(] ){ }>1,letm= > then when m 2 42, there exists at least a

Thus, when n 2 84, there exists at Ieast a prime number p such that 2n <p < 3n. —(17)
From (16) and (17), no matter F3n>p n{ n )| is equal to 1 or greater than 1, there exists at

least a prime number p such that 2n <p < 3n when n > 84. — (18)
Table 1 shows that when 1 < n < 84, there is a prime number p such that 2n < p <3n. —(19)

Thus, the proposition is proven by combining (15), (18), and (19): For every positive integer n,
there exists at least a prime number p such that 2n <p <3n.
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Table 1: For 1 < n < 84, there is a prime number p such that 2n < p < 3n.

2n 2 4 6 8 10 12 14 16 18 20 22 24 26 28
p 3 5 7 11 13 17 17 19 23 29 29 31 31 37
3n 3 6 9 12 15 18 21 24 27 30 33 36 39 42

2n 30 32 34 36 38 40 42 44 46 48 50 52 54 56
p 37 41 41 43 43 47 47 53 53 59 59 61 61 67

3n 45 48 51 54 57 60 63 66 69 72 75 78 81 84

2n 58 60 62 64 66 68 70 72 74 76 78 80 82 84

p 67 71 71 73 73 79 79 83 83 89 89 97 97 101

3n 87 90 93 96 99 102 | 105 | 108 | 111 | 114 | 117 | 120 | 123 | 126

2n 86 88 90 92 94 96 98 | 100 | 102 | 104 | 106 | 108 | 110 | 112

p 101 | 103 | 103 | 107 | 107 | 109 | 109 | 113 | 113 | 127 | 127 | 131 | 131 | 137

3n | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 153 | 156 | 159 | 162 | 165 | 168

2n | 114 | 116 | 118 | 120 | 122 | 124 | 126 | 128 | 130 | 132 | 134 | 136 | 138 | 140

p 137 | 139 | 139 | 149 | 149 | 151 | 151 | 157 | 157 | 163 | 163 | 167 | 167 | 173

3n | 171 | 174 | 177 | 180 | 183 | 186 | 189 | 192 | 195 | 198 | 201 | 204 | 207 | 210

2n | 142 | 144 | 146 | 148 | 150 | 152 | 154 | 156 |158 | 160 | 162 | 164 | 166 | 168

p 173 | 179 | 179 | 181 | 181 |191 | 191 |193 |193 | 197 | 197 | 199 | 199 | 211

3n | 213 | 216 | 219 | 222 |225 |228 |231 |234 | 237 |240 | 243 | 246 | 249 | 252
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