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A Different Way to Prove a Prime Number between 2N and 3N 

Wing K. Yu 

 

Abstract 

In this paper we will use a different way to prove that there exists at least a prime number 𝑝 in 

between 2𝑛 and 3𝑛 where 𝑛 is a positive integer. The proof extends the Bertrand’s postulate / 

Chebyshev’s theorem which states that a prime number exists between 𝑛 and 2𝑛. The method 

to prove this proposition is to analyze the binomial coefficient, a similar method used by Erdős 

in the proof of Bertrand’s postulate.  

 

Introduction 

The Bertrand’s postulate / Chebyshev’s theorem states that for any positive integer 𝑛, there is 

always a prime number 𝑝 such that 𝑛 < 𝑝 ≤ 2𝑛. It was proved in 1850 [1]. In 1932, Paul Erdős [2] 

used a much simpler method to prove the theorem by carefully analyzing the central binomial 

coefficient (2𝑛
𝑛

). In 2006, M. El Bachraoui [3] extended the theorem by proving that for any 

positive integer 𝑛, there is a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛. In this paper, the author 

will use a different method to prove the same extension by analyzing the binomial coefficient 

(3𝑛
𝑛

).  First, we will define and clarify some terms and concepts. Then we will propose the 

subject of the thesis.  

Definition:  Γ𝑎≥𝑝˃𝑏{𝑛} denotes the prime number decomposition operator. It is the product of 

the prime numbers in the decomposition of a positive integer 𝑛 or a positive integer expression. 

In this operator, 𝑝 is a prime number,  𝑎 and 𝑏 are real numbers, and 𝑛 ≥ 𝑎 ≥ 𝑝 ˃ 𝑏 ≥ 1. 

It has some properties: By definition, it is always true that Γ𝑎≥𝑝˃𝑏{𝑛} ≥ 1       — (1) 

If no prime number in Γ𝑎≥𝑝˃𝑏{𝑛}, then Γ𝑎≥𝑝˃𝑏{𝑛} = 1, or vice versa, if Γ𝑎≥𝑝˃𝑏{𝑛} = 1, then no 

prime number in Γ𝑎≥𝑝˃𝑏{𝑛} as in Γ12≥𝑝˃4{12} = 110·70· 50 = 1.          — (2) 

If there is at least one prime number in Γ𝑎≥𝑝˃𝑏{𝑛}, then Γ𝑎≥𝑝˃𝑏{𝑛} ˃ 1, or vice versa, if 

Γ𝑎≥𝑝˃𝑏{𝑛} ˃ 1, then there is at least one prime number in Γ𝑎≥𝑝˃𝑏{𝑛} as in Γ4≥𝑝˃2{12} = 3 ˃ 1. 

              — (3) 

Similar to Paul Erdős’ paper [2], we define R(𝑝) by the inequalities  𝑝𝑅(𝑝) ≤ 3𝑛 ˂  𝑝𝑅(𝑝)+1, and 

determine the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of (3𝑛
𝑛

). 
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𝑣𝑝 ((3𝑛
𝑛

)) = 𝑣𝑝((3𝑛)!) − 𝑣𝑝((2𝑛)!) − 𝑣𝑝(𝑛!) = ∑ (⌊
3𝑛

𝑝𝑖
⌋ − ⌊

2𝑛

𝑝𝑖
⌋ − ⌊

𝑛

𝑝𝑖
⌋)

𝑅(𝑝)
𝑖=1  ≤ R(𝑝)  

because for any real numbers 𝑎 and b, the expression of ⌊𝑎 + b⌋ − ⌊𝑎⌋ − ⌊ b⌋ is 0 or 1. 

Thus, if 𝑝 divides (3𝑛
𝑛

), then 𝑣𝑝 ((3𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(3𝑛), or 𝑝𝑣𝑝((3𝑛
𝑛 )) ≤ 𝑝𝑅(𝑝) ≤ 3𝑛    — (4) 

And if 3𝑛 ≥ 𝑝 ˃ ⌊√3𝑛⌋, then 0 ≤ 𝑣𝑝 ((3𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1.         — (5) 

From the prime number decomposition, 

(3𝑛
𝑛

) = 
(3𝑛)!

𝑛!·(2𝑛)!
 =  Γ3𝑛≥𝑝˃𝑛{

(3𝑛)!

𝑛!·(2𝑛)!
} · Γ𝑛≥𝑝˃⌊√3𝑛⌋ { 

(3𝑛)!

𝑛!·(2𝑛)! 
} · Γ⌊√3𝑛⌋≥𝑝 { 

(3𝑛)!

𝑛!·(2𝑛)! 
}.  

Since all prime numbers in 𝑛! are not in the range of 3𝑛 ≥ 𝑝 ˃ 𝑛,  

Γ3𝑛≥𝑝˃𝑛{
(3𝑛)!

𝑛!·(2𝑛)!
} = Γ3𝑛≥𝑝˃𝑛{ 

(3𝑛)!

(2𝑛)!
 }. 

Referring to (5), Γ𝑛≥𝑝˃⌊√3𝑛⌋ { 
(3𝑛)!

𝑛!·(2𝑛)! 
} ≤ ∏  𝑝𝑛≥𝑝 .  

It has been proved [4] that ∏  𝑝𝑛≥𝑝  ˂ 22𝑛−3 when 𝑛 ≥ 3.  

Thus for 𝑛 ≥ 3,  (3𝑛
𝑛

) ˂ Γ3𝑛≥𝑝˃𝑛{ 
(3𝑛)!

(2𝑛)!
 } · 22𝑛−3 · Γ⌊√3𝑛⌋≥𝑝 { 

(3𝑛)!

𝑛!·(2𝑛)! 
}     — (6) 

 

Proposition 

For every positive integer 𝒏, there exists at least a prime number 𝒑 such that 2𝒏 < 𝒑 ≤ 3𝒏. 

Proof:  

By induction on 𝑛,  for 𝑛 = 3,  
33𝑛−2

𝑛(22𝑛−2)
 = 

36

24
 = 45 

9

16
  <  (3𝑛

𝑛
) = (9

3
) = 84.  

If  (3𝑛
𝑛

) ˃  
33𝑛−2

𝑛(22𝑛−2)
  for 𝑛 stands, then for 𝑛 +1,  

  (3(𝑛+1)
𝑛+1

) = 
(3𝑛+3)(3𝑛+2)(3𝑛+1)

(𝑛+1)(2𝑛+2)(2𝑛+1)
 · (3𝑛

𝑛
) ˃  

3(3𝑛+2)(3𝑛+1)

(2𝑛+2)(2𝑛+1)
 · 

33𝑛−2

𝑛(22𝑛−2)
 ˃  

33(𝑛+1)−2

(𝑛+1)(22(𝑛+1)−2)
  

because  
3(3𝑛+2)(3𝑛+1)

(2𝑛+2)(2𝑛+1)
 · 

33𝑛−2

𝑛(22𝑛−2)
  = 3 · 

3𝑛+2

2𝑛+1
·

3𝑛+1

2𝑛
 · 

33𝑛−2

(𝑛+1)(22𝑛−2)
 ˃  33 · 

33𝑛−2

(𝑛+1)(22𝑛−2)
  

Thus for 𝑛 ≥ 3,   (3𝑛
𝑛 ) ˃ 

33𝑛−2

𝑛(22𝑛−2)
            — (7) 

Applying (7) into (6):  

For 𝑛 ≥ 3,  
33𝑛−2

𝑛(22𝑛−2)
 < Γ3𝑛≥𝑝˃𝑛{ 

(3𝑛)!

(2𝑛)!
 } · 22𝑛−3 · Γ⌊√3𝑛⌋≥𝑝 { 

(3𝑛)!

𝑛!·(2𝑛)! 
}     — (8) 
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Let π(x) be the number of prime numbers less than or equal to 𝑥, where 𝑥 is a positive real 

number. For the first six sequential natural numbers, there are three prime numbers 2, 3, and 5. 

For adding any successive set of six sequential natural numbers, there are at most two prime 

numbers added, 𝑝 ≡ 1 (MOD 6) and 𝑝 ≡ 5 (MOD 6). Thus, π(𝑥) ≤ ⌊
𝑥

3
⌋+2 ≤  

𝑥

3
 +2.      — (9)  

Referring to (4) and (9),  

Γ⌊√3𝑛⌋≥𝑝 { 
(3𝑛)!

𝑛!·(2𝑛)! 
} = Γ⌊√3𝑛⌋≥𝑝 {(3𝑛

𝑛
)} ≤ (3𝑛)π(√3𝑛 ) ≤ (3𝑛)

√3𝑛

3
+2     — (10) 

Applying (10) into (8):   
33𝑛−2

𝑛(22𝑛−2)
 ˂ Γ3𝑛≥𝑝˃𝑛{ 

(3𝑛)!

(2𝑛)!
 } · 22𝑛−3 · (3𝑛)

√3𝑛

3
+2    

Since both 22𝑛−3 ˃ 0 and (3𝑛)
√3𝑛

3
+2 ˃ 0 for 𝑛 ≥ 3,  

Γ3𝑛≥𝑝˃𝑛{ 
(3𝑛)!

(2𝑛)!
 } ˃ 

33𝑛−2

𝑛(22𝑛−2)(22𝑛−3)(3𝑛)
√3𝑛

3
+2

  = 
32·(

27

16
)

𝑛

3·(3𝑛)
√3𝑛

3
 +3

 = 
32

3
 · 

(
27

16
)

𝑛

(3𝑛)
√3𝑛+9

3
 

     — (11) 

Let 𝑓(𝑥) = 
𝑢

𝑤
  where 𝑥, 𝑢 , 𝑤 are real numbers and 𝑥 ≥ 84, 𝑢 = 

32

3
· (

27

16
)

𝑥

,  𝑤 = (3𝑥)
√3𝑥+9

3  

𝑑𝑢

𝑑𝑥
 = (

32

3
· (

27

16
)

𝑥
)

′

= 
32

3
· (

27

16
)

𝑥

· 𝑙𝑛 (
27

16
) =  𝑢 · 𝑙𝑛 (

27

16
)    

𝑑𝑤

𝑑𝑥
 = ((3𝑥)

√3𝑥+9

3 )

′

 = ((3𝑥)
√3𝑥+9

3 ) (
𝑙𝑛(3𝑥) 

2√3𝑥
+

√3𝑥+9 

3𝑥
) = 𝑤 (

𝑙𝑛(3𝑥)+2

2√3𝑥
+

3 

𝑥
) 

𝑓′(𝑥) = (
𝑢

𝑤
)

′

= 
𝑤(𝑢)′− 𝑢(𝑤)′

𝑤2  = 
𝑢

𝑤
 ( 𝑙𝑛 (

27

16
) −

𝑙𝑛(3𝑥)+2

2√3𝑥
−  

3 

𝑥
) 

Let 𝑓1(𝑥)  =  𝑙𝑛 (
27

16
) −

𝑙𝑛(3𝑥)+2 

2√3𝑥
−

3 

𝑥
  

Since  𝑓1
′(𝑥) = 

𝑙𝑛(3𝑥) 

4𝑥√3𝑥
 + 

3 

𝑥2 ˃ 0, when 𝑥 ˃ 1, 𝑓1(𝑥) is a strictly increasing function. 

When 𝑥 = 84,  𝑓1(𝑥) =  𝑙𝑛 (
27

16
) −

𝑙𝑛(3𝑥)+2 

2√3𝑥
−

3 

𝑥
 ≈ 0.523 – 0.237 – 0.012 = 0.274 ˃ 0. 

Thus, when 𝑥 ≥ 84,  𝑓1(𝑥) ˃ 0.  

Since when 𝑥 ≥ 84,  𝑢 , 𝑤 , and 𝑓1(𝑥) are greater than zero, 𝑓′(𝑥) = 
𝑢

𝑤
 · 𝑓1(𝑥) ˃ 0.  

Thus 𝑓(𝑥) is a strictly increasing function for 𝑥 ≥ 84. Then when 𝑥 ≥ 84, 𝑓(𝑥 + 1) ˃ 𝑓(𝑥). 

Let 𝑛 = ⌊𝑥⌋ ≥ 84, then  𝑓(𝑛 + 1) ˃ 𝑓(𝑛) = 
32

3
 · 

(
27

16
)

𝑛

(3𝑛)
√3𝑛+9

3
 

 

Since for 𝑛 = 84, 𝑓(𝑛) = 
32

3
 · 

(
27

16
)

𝑛

(3𝑛)
√3𝑛+9

3
 

 = 
32

3
 · 

(
27

16
)

84

(252)
√252+9

3
 

 ≈ 
1.307𝐸+20

8.151𝐸+19
 ˃ 1, and since  
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𝑓(𝑛 + 1) ˃ 𝑓(𝑛),  by induction on 𝑛, when 𝑛 ≥ 84, 𝑓(𝑛) = 
32

3
 · 

(
27

16
)

𝑛

(3𝑛)
√3𝑛+9

3
 

 ˃ 1.    — (12) 

Applying (12) to (11):  When 𝑛 ≥ 84,  Γ3𝑛≥𝑝˃𝑛{ 
(3𝑛)!

(2𝑛)!
 } ˃ 

32

3
 · 

(
27

16
)

𝑛

(3𝑛)
√3𝑛+9

3
 

 ˃ 1. 

Thus when 𝑛 ≥ 84,  

Γ3𝑛≥𝑝˃𝑛{ 
(3𝑛)!

(2𝑛)!
 } = Γ3𝑛≥𝑝˃2𝑛{ 

(3𝑛)!

(2𝑛)!
 } · Γ

2𝑛≥𝑝˃
3𝑛

2

{ 
(3𝑛)!

(2𝑛)!
 } · Γ3𝑛

2
≥𝑝˃𝑛

{ 
(3𝑛)!

(2𝑛)!
 } ˃ 1    — (13) 

When 2𝑛 ≥ 𝑝 ˃
3𝑛

2
 in 

(3𝑛)!

(2𝑛)!
 , if 𝑣𝑝((3𝑛)!) has one factor of 𝑝 then 𝑣𝑝((2𝑛)!) also has one factor of 

𝑝. Thus, 𝑣𝑝 (
(3𝑛)!

(2𝑛)!
) = 𝑣𝑝((3𝑛)!) − 𝑣𝑝((2𝑛)!) = 1 − 1 = 0. 

Since 𝑝0=1, referring to (2),  Γ
2𝑛≥𝑝˃

3𝑛
2

{ 
(3𝑛)!

(2𝑛)!
 } = 1  

Thus, when 𝑛 ≥ 84,  Γ3𝑛≥𝑝˃𝑛{ 
(3𝑛)!

(2𝑛)!
 } = Γ3𝑛≥𝑝˃2𝑛{ 

(3𝑛)!

(2𝑛)!
 } · Γ3𝑛

2
≥𝑝˃𝑛

{ 
(3𝑛)!

(2𝑛)!
 } ˃ 1    — (14) 

Referring to (1),  Γ3𝑛≥𝑝˃2𝑛{ 
(3𝑛)!

(2𝑛)!
 } ≥ 1 and Γ3𝑛

2
≥𝑝˃𝑛

{ 
(3𝑛)!

(2𝑛)!
 } ≥ 1, from (14), at least one of these 

two factors is greater than one when 𝑛 ≥ 84.  

If 𝑛 ≥ 84 and Γ3𝑛≥𝑝˃2𝑛{ 
(3𝑛)!

(2𝑛)!
 } ˃ 1, since 

(3𝑛)!

(2𝑛)!
 is a positive integer expression, then referring to 

(3), there exists at least a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛.      — (15) 

Γ3𝑛

2
≥𝑝˃𝑛

{ 
(3𝑛)!

(2𝑛)!
 } = Γ3·( 

𝑛

2
 )≥𝑝˃2·( 

𝑛

2 
){ 

(3𝑛)!

(2𝑛)!
 } .  

If  
𝑛

2 
 ≥ 42 and  Γ3·( 𝑛

2
 )≥𝑝˃2·( 

𝑛

2 
){ 

(3𝑛)!

(2𝑛)!
 } = 1, then from (14), the factor  Γ3𝑛≥𝑝˃2𝑛{ 

(3𝑛)!

(2𝑛)!
 } ˃ 1. 

Referring to (3), there exists at least a prime number p such that 2𝑛 < 𝑝 ≤ 3𝑛.     — (16) 

If  
𝑛

2 
 ≥ 42 and  Γ3·( 

𝑛

2
 )≥𝑝˃2·( 

𝑛

2 
){ 

(3𝑛)!

(2𝑛)!
 } ˃ 1, let 𝑚 = 

𝑛

2 
, then when 𝑚 ≥ 42, there exists at least a 

prime number 𝑝 such that 2𝑚 < 𝑝 ≤ 3𝑚. Since 𝑛 ≥ 84 ≥ 𝑚 ≥ 42, the statement is also valid for 𝑛. 

Thus, when 𝑛 ≥ 84, there exists at least a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛.     — (17) 

From (16) and (17), no matter Γ3𝑛

2
≥𝑝˃𝑛

{ 
(3𝑛)!

(2𝑛)!
 } is equal to 1 or greater than 1, there exists at 

least a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛 when 𝑛 ≥ 84.       — (18) 

Table 1 shows that when 1 ≤ 𝑛 ≤ 84, there is a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛.        — (19) 

Thus, the proposition is proven by combining (15), (18), and (19): For every positive integer 𝑛, 

there exists at least a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛. 
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Table 1: For 1 ≤ 𝑛 ≤ 84, there is a prime number 𝑝 such that 2𝑛 < 𝑝 ≤ 3𝑛.  

 2𝑛 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

𝑝 3 5 7 11 13 17 17 19 23 29 29 31 31 37 

3𝑛 3 6 9 12 15 18 21 24 27 30 33 36 39 42 

 

 2𝑛 30 32 34 36 38 40 42 44 46 48 50 52 54 56 

𝑝 37 41 41 43 43 47 47 53 53 59 59 61 61 67 

3𝑛 45 48 51 54 57 60 63 66 69 72 75 78 81 84 

 

 2𝑛 58 60 62 64 66 68 70 72 74 76 78 80 82 84 

𝑝 67 71 71 73 73 79 79 83 83 89 89 97 97 101 

3𝑛 87 90 93 96 99 102 105 108 111 114 117 120 123 126 

 

 2𝑛 86 88 90 92 94 96 98 100 102 104 106 108 110 112 

𝑝 101 103 103 107 107 109 109 113 113 127 127 131 131 137 

3𝑛 129 132 135 138 141 144 147 150 153 156 159 162 165 168 

 

 2𝑛 114 116 118 120 122 124 126 128 130 132 134 136 138 140 

𝑝 137 139 139 149 149 151 151 157 157 163 163 167 167 173 

3𝑛 171 174 177 180 183 186 189 192 195 198 201 204 207 210 

 

 2𝑛 142 144 146 148 150 152 154 156 158 160 162 164 166 168 

𝑝 173 179 179 181 181 191 191 193 193 197 197 199 199 211 

3𝑛 213 216 219 222 225 228 231 234 237 240 243 246 249 252 
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