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Abstract In this paper proof of the twin prime conjecture is going to be presented. Originally very difficult problem (in

observational space) has been transformed into a simpler one (in generative space) that can be solved. It will be shown

that twin primes could be obtained through two stage sieve process, and that will be used to show that exist infinite

number of twin primes. The same approach is used to prove Polignac's conjecture for cousin primes.

1 Introduction

In number theory, Polignac's conjecture states: For any positive even number n, there are infinitely

many prime gaps of size  n.  In other words: there are infinitely many cases of two consecutive

prime numbers with the difference n [1]. For n = 2 it is known as twin prime conjecture.

The results that were presented in the literature and that are the closest to the solution of the twin

prime conjecture are the following: 

1. Conditioned on the truth of the generalized Elliot-Halberstam Conjecture [2], in [3] it has

been shown that there are infinitely many primes' gaps that have value of at most 6. 

2. In [3] it has been proved that exists infinitely many primes that have gaps that are not bigger

than 246, unconditionally. 

In this paper the proof of Polignac's conjecture for n = 2 and n = 4, is going to be provided. The

proof is  inspired by the recently proposed proof of Sophie Germain prime conjecture [4].  The

problem is addressed in generative space, which means that prime numbers are not going to be



analyzed directly, but rather their representatives that are used to produce them. It will be shown

that twin primes could be generated by two stage recursion type sieve process. This process will be

compared to the other two stage sieve process that leaves infinitely many numbers. The fact that

sieve process that generate twin primes leaves more numbers than the other sieve process, will be

used to prove that infinitely many twin primes exist. 

In the last part of the paper it will be shown that the number of cousin primes is infinite, too.

Without going into the details, here we can say that using a procedure very similar to one proposed

in this paper,  it  is  possible to make an elementary proof of Green-Tao theorem [5]. The major

difference is that in the case of Green-Tao theorem recursion has the depth that is equal to the

length of the arithmetic progression, while the depth of the recursion in the case of twin prime

conjecture is 2 (equal to the length of the “arithmetic progression” with two elements). 

Remark 1: In this paper any infinite series in the form c1·l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Multiplication tensor

The fundamental theorem of arithmetic states that  every integer greater than 1 can be uniquely

represented by a product of powers of prime numbers, up to the order of the factors [6].   Having

that in mind, an infinite dimensional tensor M
N
 that contains all natural numbers only once, is going

to be constructed. In order to do that we are going to mark vector that contains all prime numbers

with p. So, p(1) = 2, p(2) = 3, p(3) = 5, and so on. Tensor M
N
 with elements m

i1 i2 i3  ...
  is defined by

the following equation (i
1
, i

2
, i

3
, … are natural numbers):

mi1 i2 i3 ...= p(1)i1− 1 p (2)i2− 1 p(3)i3− 1... .

The alternative definition is also possible. Now, the following notation is going to be assumed for



some infinite size vectors

2 = [20 21 22 23 …], 3 = [30 31 32 33 …],  5 = [50 51 52 53 …] … 

It is simple to be seen that every vector is marked by bold number that is equal to some prime

number and that components of the vector are defined as powers of that prime number, including

power zero. Now, the M
N
-tensor can be defined as

M
N
 = 2 ○ 3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product.

The tensor M
N
 is of infinite dimension (equal to number of prime numbers) and size, and contains

all  natural  numbers  exactly  ones.  It  is  easy to  understand  why it  is  so,  having  in  mind   the

fundamental theorem of arithmetic.  We are going to call this type of infinite tensor a half infinite

tensor.

Now, we are  going to  consider presentation of  even  and odd numbers  by infinite  dimensional

tensor. It is not difficult to be seen that even numbers could be represented by the tensor M
NE

 whose

elements are defined as 

mi1 i2 i3 ...= p(1)i1 p (2)i2− 1 p (3)i 3− 1... ,

or as 

M
NE

 = 2
s
 ○ 3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product and 2
s
 is vector defined as

2
s
 = [21 22 23 …].



The tensor that represents all odd numbers, M
NO

, contains elements defined as 

mi1 i2 ...= p(2)i1− 1 p(3)i2− 1 ... ,

or as 

M
NO

 =  3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product. This representation is useful, for instance, in the case when we

consider implementation of Sundaram or Erathostenes sieves. The tensor M
NO

, that represent odd

numbers, can also be produced by using shifted tensor M
NE

, where elements are defined as

mi1 i2 i3 ...=− 1+ p(1)i1 p (2)i2− 1 p (3)i 3− 1... ,

or 

M
NO

 = -1 + 2
s
 ○ 3 ○ 5 ○ 7 ○..., 

where ○ stands (as previously defined) for outer product. This tensor is also going to be marked as

M
NOS

.  For  instance  this  representation  is  good  for  analysis  of  the  sieve  that  leaves  Mersenne

numbers. 

3 Implementation of sieves

Now, we are going to analyze what is going to happen with M
N
-tensor when we implement three

different sieves.

First we are going to analyse the Sundaram sieve [7]. Sundaram sieve represents a way to extract

prime numbers from natural numbers. Idea is to remove all composite numbers in infinitely many

steps using threads. 

First, all even numbers (except 2) are removed from the set of natural numbers. Then, it is necessary



to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (1) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(2 i+1)(2 j+1) ,

where i, j ϵ N. Now, it is easy to see that the following equation holds

m = 2ij + i + j = (2i + 1) j + i. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers that cannot be represented by (1) will stay. 

In order to understand the process, a 3D tensor of infinite size, that contains all natural numbers that

could be defined by the first 3 primes – 2, 3 and 5 (any three primes could be chosen – it does not

change the line of reasoning). That tensor represents 3D sub-tensor of M
N
-tensor. 

Here we are going to illustrate the frontal, lateral and top slice of this tensor. The frontal, top and

lateral slices of the tensor are represented by infinite size 2D matrices given as 



1 21 22 23 ... 1 21 22 23 ... 1 51 52 53 ...

31 2·3 22·3 23·3 ... 51 2·5 22·5 23·5 ... 31 5·3 52·3 53·3 ...

32 2·32 22·32 23·32 ... 52 2·52 22·52 23·52 ... 32 5·32 52·32 53·32 ...

33 2·33 22·33 23·33 … 53 2·53 22·53 23·53 … 33 5·33 52·33 53·33 …

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

      Front slice Top slice        Lateral slice

Implementation of Sundaram sieve is presented in Figure 1.

Figure 1. a) 3D infinite tensor; b) collapse of the tensor after removal of the thread defined by p(1); c) additional

collapse of the tensor  after removal of the thread defined by p(2); final collapse of the tensor after removal of the

thread defined by p(3).

From Fig1. it can be seen that removal of a single thread defined by first prime number will result

in collapse of the tensor along the dimension that is defined by that prime number. The whole sub-



tensor  is  going  to  collapse  to  one  element  that  contains  prime  number  that  defines  the

corresponding thread and that dimension of the tensor. All other elements along that dimension are

empty (the empty elements are introduced in order to have reasonable tensor representation). At the

end of the process we are going to have 2x2x2 tensor that have only 4 elements that are non-empty.

One is top, left corner that is filled by 1, and 3 of his neighbors along the orthogonal dimensions

that are filled with first three prime numbers. All other elements (4 in total) are empty.  In general

case only those elements of the tensor that are going to be nonempty after implementation of full

Sundaram sieve, are given by the following equation (tensor will have 2x2x2x … dimension)

m1 1 1...=1 ;m1 2 1 11...=p (1); m1 1 2 1 1...= p(2); m1 1 1 2 1...= p(3); ...m11 1 ...2 (on position k+1)1 1...= p(k ); ... .

The second sieve that is going to be considered is a sieve that is obtained by simple extension of

Sundaram sieve – when you remove one thread defined by some prime number, you also remove a

prime number that defines that thread. We will call this sieve extended Sundaram sieve or eSuS

sieve. 

The third sieve of interest is sieve that is the one which we are going to call Mersenne sieve. In this

sieve, in first step all even numbers are removed. Then, from the odd numbers are removed the

threads defined by the following equation:

a i=2 p( i) j− 1, i=2,3, 4,... (3)

where j ϵ N. It is not difficult to be seen that only numbers that are going to be left are Mersenne

numbers, or numbers in the form 

a=2i
− 1, i=1, 2,3, ...

This can be easily concluded from the M
NOS

 representation of  odd numbers – removal of individual

threads causes the collapse of the M
NOS

 tensor along that dimension, and only dimension that is not



going to be affected is the one that is defined by prime number 2.

Now, we are going to compare three sieves that we mentioned in this section. We are going to

compare their characteristics and the number of numbers left (that are smaller than some natural

number n) after implementation of several steps of the sieve.

Before  we  start  with  comparison,  we  are  going  to  analyse  two  elementary  experiments  with

enumerated balls  and boxes (sieves can be presented in a similar context). As it is going to be

shown in the following examples, if you stick to the numbers on the balls that are moved, rather

than number of the balls that are moved, numbers can, even, create a small problem.

First experiment: Imagine that we have infinite number of balls with all natural numbers written on

them exactly once that are placed in the source box (SB), that has the size equal to the number of

natural numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move balls with numbers 1 to 10

on them from SB to EB, and remove from the EB the ball with number 10 on it. In the moment ½

minute before midnight, balls with numbers 11-20 are transferred from SB to EB, and ball with

number 20 on it is removed from EB. We continue the process at the moments 1/2n, n  ϵ N minute

before midnight – transfer the balls with numbers form n*10+1 to (n+1)*10 from SB to EB, and

remove ball with number (n+1)*10 on it from EB.

Now, we can try to  answer the following question:  What is  the number of  the balls  in  EB at

midnight? The answer is obvious and everybody will answer that that number is infinite. 

Second experiment: Imagine, again, that we have infinite number of balls with all natural numbers

written on them exactly once that are placed in the source box (SB), that has the size equal to the

number of natural numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move balls with numbers 1 to 10

on them from SB to EB, and remove from the EB the ball with number 1 on it. In the moment ½



minute before midnight, balls with numbers 11-20 are transferred from SB to EB, and the ball with

number 2 on it is removed from EB. We continue the process at the moments 1/2n,  n ϵ N minute

before midnight – transfer the balls with numbers from n*10+1 to (n+1)*10 from SB to EB, and

remove ball with number (n+1) on it from EB.

Now, we can try, again, to answer the following question: What is the number of the balls in EB at

midnight? Again, the answer is obvious and everybody will answer that that number is infinite.

However, if you are asked to give an example of the ball with any specific number on it, that is still

in the EB, you will not be able to do it. The reason is quite obvious – for any number you choose,

you can specify a moment in time in which the ball with that number on it has been removed form

the EB. This process represents an algorithm how you can remove first 1/10 of the natural numbers

from the set of natural numbers. What can be interesting to notice is that we can actually define

shallow and deep infinity and shallow and deep limes – in this case shallow limes of the number of

the balls in the EB is 0, while deep limes is infinity. This can be useful in analysing some sieves

where potentially it is easy to prove some properties in shallow infinity while, at the same time, it is

difficult to be done in deep infinity. However, this discussion is out of the scope of this paper. 

So, numbers on the balls are not relevant for reasoning – in both experiments that were

previously analysed, the process was following – put 10 balls in the EB and then remove one – or

very simplified,  put  nine  balls  in  the  EB in  every step.  If  there is  no  collapse  of  elementary

reasoning (CER), we can safely conclude that number of the balls in the EB at midnight is infinite.

Actually, it is not difficult to be seen that two previously mentioned  experiments are the special

cases of a more general experiment in which in every step ten balls are put in the EB and one of

the existing balls in the EB is removed completely randomly.

Now,  comparison  of   Sundaram  (Erathostenes),  eSuS  and  Mersenne  sieves  is  going  to  be

preformed. In the text that follows Sundaram sieve will be marked as SuS0 and Mersenne sieve as

MeS. The sieves are going to be compared in three categories: 

1. how many numbers smaller than some natural number n are they going to leave,



2. how many threads are they going to need to achieve this,

3. if some of the numbers left, are going to be removed by the threads that will enable to check

number of numbers smaller than some natural number  m >  n that are left by implementation of

sieve in some future search.

The  following  table  contains  comparison  of  the  three  sieves  of  interest.  We denote  with  π(n)

number of primes smaller than n.

Table 1. Comparison of Sundaram (Erathostenes), extended Sundaram and Meresenne sieves

SuS0 eSuS MeS

Number of numbers
smaller than n left

π(n)+1≈π(n) π(n)-π(√n)+1≈π(n) log
2
(n)

Number of threads
used

π(√n) π(√n) π(n/2)

Will some numbers are
going to be removed in

next steps 

no yes no

As it is indicated in the table, in the text that follows we are going to ignore that sieves SuS0 and

eSuS will leave number 1. Also, we are going to consider that the value  π(√n) can be ignored in

comparison to value π(n) for n that is large enough (and that is for all cases of interest). 

Here, the following inequalities are going to be presented without presenting the proofs (although

the proofs are not difficult):

n− √n≫ π(√n) , for some n big enough (4)

 π(π(n)2 )>π(√n) , for some n that is big enough. (5)

The value of  n in (5),  that is  big enough, can be precisely found by using the fact that prime

counting function is non-decreasing and that square root function is strictly increasing, but here that

is not of particular interest (see Fig 2.). In equation (4) what is the n that is big enough is something



that is defined by the context in which inequality is used.

Fig. 2. Comparison of the number of threads required for the realization of the MeS and SuS -1 sieves for generation of
semi Mersenne primes (SMP) and twin primes (TWP) numbers smaller than some natural number n

Here, an additional difference between SuS0 and MeS on one side and eSuS on the other side is

going to be stressed. It  is  not  difficult  to be understood that  after infinite  number of steps,  or

removal of infinite number of threads, we are not going to be able to specify a single number left by

eSuS although the number of numbers left is infinite. This is another example in which limes in

shallow infinity is zero and limes in deep infinity is infinite. For SuS0 and MeS both shallow and

deep infinity limeses are infinite. Also one more thing is worth noticing: SuS0 will leave infinitely

more numbers left than the eSuS (every thread leaves one number more), however that infinite

difference is very small comparing to the overall number of numbers left (asymptotically the ratio

of those two numbers is zero).



4 Proof of the twin prime conjecture

It is well known that every two consecutive odd numbers (psk,  plk) between two consecutive odd

numbers divisible by 3 (e.g. 9 11 13 15, or 39 41 43 45), can be expressed as 

psk = 6k – 1,  plk = 6k + 1, k ϵ N. (6)

Twin prime numbers are obtained in the case when both  psk  and plk are prime numbers. If any of

the  psk or plk (or both) is a composite number, then we cannot have twin primes. In the text that

follows we will call numbers psk - numbers in mps form and numbers plk  - numbers in mpl form.

Here we are going to present a two stage sieve process that can be used for generation of twin

primes.  In  the  first  stage  we are  going to  produce prime numbers  by removing all  composite

numbers from the set of natural numbers. In the second stage, we are going to remove all prime

numbers that have a bigger odd neighbor that is a composite number. At the end, only the prime

numbers in the mps form, that represent the smaller number of a twin prime pair, are going to stay.

Their number is  equal to the half of the number of twin primes. It is going to be shown that that

number is infinite. It is easy to check that all numbers in mpl form are going to be removed from the

set, since their bigger odd neighbors are composite numbers divisible by 3. (Of course it would be

possible to organize stage 2 in such a way to remove all odd numbers that have smaller neighbor

that is composite. In  that case what would be left are prime numbers in  mpl form, that represent

bigger primes in twin pairs,  and all  primes in  mps form would be removed, since they have a

smaller neighbor divisible by 3. This is completely equivalent process to the first one and will not

be analyzed further.)

STAGE 1

Prime numbers can be obtained by implementation of  Sundaram sieve as it is explained in the

previous section.

When all numbers represented by m in (2) are removed from the set of odd natural numbers bigger



than 1, only the numbers that represent odd prime numbers are going to stay. In other words, only

odd numbers that cannot be represented by (1) will stay.  As it was already said, sieve defined by (2)

is going to be marked as SuS0. 

The numbers that are left after this stage are prime numbers, and their number is π(n). From [8] we

know that the following holds

π(n)≈
n

ln (n )
.

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other

prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that their bigger odd neighbor must be in the form 2n + 3,  n ϵ N.  Now, we

should implement a second step in which we are going to remove number 2 (since 2 cannot make

twin pair) and all odd primes (in the form 2m+1) whose bigger neighbor is composite number in the

form  2m + 3, m ϵ N. If we make the same analysis again, it is simple to understand that m must be

in the form

m = 2ij + i + j – 1 = (2i + 1) j + i -1. (7)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent a smaller primes of the twin pairs (it is simple to understand that prime numbers in mpl

form have neighbors that are composite odd numbers divisible by 3). So, their number is equal to

the half of the number of twin primes. The sieve defined by (7) is going to marked as SuS-1.

It is not difficult to understand (prove) that sieves SuS0 and SuS-1 can be implemented in reverse

order and the final result will be the same. Those two sieves are almost equivalent, if the number of

numbers  left  after  the  implementation  of  the  sieve  are  considered.  In  the  case  when  SuS-1 is

implemented  first,  the  number  of  numbers  smaller  than  natural  number  n,  that  are  left  after



implementation of sieve is going to be marked as π
-1
(n). It is very simple to prove that the following

equation holds

π(n) – π
-1
(n) ≤ 1.

Let us mark the number of twin primes with π
G2

. Also, let us define the number of numbers that is

left after consecutive implementations of Sundaram sieve, SuS0, and Mersenne sieve, MeS, as p
SMP

.

The numbers obtained after implementation of those sieves are going to be called semi Merssenne

primes, or SMP. The second stage MeS sieve is applied on prime number indexes. In that case it is

easy to understand that the following equation would hold (n ϵ N)

pSMP(n)= floor (log2(π(n))) , (8)

where p
SMP

(n) represents the number of SMP smaller than some natural number n. Since the twin

primes are obtained by implementation of the SuS0 in the first stage and sieve that is similar to it,

SuS-1 in the second stage, it is not difficult to conclude that numbers  π
G2

 is bigger than the p
SMP

 . In

order to understand why it is so, we are going to analyze (3) and (7) in more detail. 

It is not difficult to be seen that m in (3) and (7) is represented by the threads that are defined by odd

prime numbers. For details see Appendix A. Now we are going to compare sieves  SuS-1 and MeS

step by step,  for  a  few initial  steps  (analysis  can be easily extended to  any number of  steps).

Removal of number 2 in the second stage of SuS-1 is ignored.  What we would like to say is that the

values of the fractions presented in the table are asymptotically correct, but in the finite case they

are only approximately correct. 



Table 2 Comparison of the stages 2 for generation of semi-Mersenne primes and generation of

twin primes – threads defined by a few smallest primes

Step Stage 2 - MeS Step Stage 2 - SuS-1

1 Remove even numbers 

amount of numbers left is 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 2/3 of the
numbers that are left after previous step

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 3/4 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 4/5 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 5/6 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 6/7 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left is 9/10 of the
numbers that are left after previous step

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left is 10/11 of the
numbers that are left after previous step

5 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left is 11/12 of the
numbers that are left after previous step

From the table, it can be noticed that threads defined by the same prime number in the first and the

second column will not remove the same percentage of numbers. The reason is obvious – consider

for instance the thread defined by 3: in the first column it will remove 1/3 of the numbers left, but in

the second column it will remove ½ of the numbers left, since the thread defined by 3 in stage 1 has

already removed one third of the numbers (odd numbers divisible by 3 in observation space). So,

only odd numbers (in observational space) that give residual 1 and -1 when they are divided by 3

are  left,  and  there  is  approximately  same  number  of  prime  numbers  that  give  residual  -1  and

numbers that give residual 1, when the number is divided by 3. Same way of reasoning can be

applied for all other threads defined by the same prime in different columns that represent different

second stage sieves - MeS and SuS-1.  More rigorous poof for the values of the fractions in the

second column (and all others that are not presented in the table), based on Dirichlet's theorem on

arithmetic progressions [9], is presented in Appendix B.



From Table 2 can be seen that in every step, except step 1, threads in the second column will leave

bigger percentage of numbers than the corresponding threads in the first column. This could be

easily understood form the analysis that follows: 

– suppose that we have two natural numbers  j,  k  such that  j – 1  ≥  k  (j,  k ϵ N  ), then the

following set of equations is trivially true

j+k− 1⩾ 2k

− j− k+1⩽ − 2k

jk− j− k+1⩽ jk− 2k

( j− 1)(k− 1)⩽ ( j− 2) k

k− 1
k

⩽
j− 2
j− 1

The equality sign holds only in the case j = k + 1. In the set of prime numbers there is only one case

when j = k + 1 and that is in the case of primes of 2 and 3. In all other cases p(i) – p(i - 1) > 1 , (i >

1, i ϵ N, p(i) is i-th prime number).  So, in all cases i > 2

p(i− 1)− 1
p (i− 1)

<
p (i)− 2
p (i )− 1

.

From Table 2 (or last equation) we can see that bigger number of numbers is left in every step of

stage 2 then in the stage 1 (except 1st step). From that, we can conclude that after every step bigger

than 1, part of the numbers that is left in stage 2 after implementation of  SuS-1 is bigger than the

number of numbers left in the stage 2 after implementation of MeS (that is also true if we consider

amount of numbers left after removal of all numbers generated by threads that are defined by all

prime numbers smaller than some natural number).  

Having in mind previous analysis, it can be safely concluded that the following equation holds

  
πG2

2
>pSMP=

lim
n→ ∞

pSMP(n) .



From previous inequality it can be concluded that the following equation must hold

πG2 > pSMP=
lim

n → ∞
pSMP (n) .

Having in mind (8), and since it it easy to show that  following holds

lim
n→ ∞

log2(π(n))=∞ ,

then it is easy to understand that the following equation holds

pSMP=
lim

n→ ∞
pSMP (n)=∞ .

Now, we can safely conclude that the number of twin primes is infinite. That concludes the proof. 

5. Estimation of the number of twin primes

Here we will state the following conjecture: for n big enough, number of twin primes smaller than

some natural number n, marked as π
G2

(n) is given by the following equation 

πG2(n) ∼ 4C2π(π(n))≈ 4 C2

π (n)
ln (π(n))

,  

where C
2
 represents the twin prime constant [10]. Why it is reasonable to make such conjecture is

explained in Appendix C.  More precisely, instead of value π (π(n)) in the previous formula should

stay value π(π(n))-π(√π(n))+1. However, based on the discussion after the Table 1, for n big enough

value -π (√π(n))+1 can be ignored.

If we  mark the number of primes smaller than some natural number  n with π(n)  ≈ f (n), where

function f (n) gives good estimation of the number of primes smaller than n, than π
G2

(n), for n big

enough, is given by the following equation

πG2(n) ∼ 4C2⋅ f ( f (n)) .



 In particular case f (n) = Li (n), the following equation holds

πG2(n) ∼ 4C2⋅∫
2

n

(
dx

ln (x ) ln(∫
2

x

( dt
ln (t ))))

.

For numbers n in the range [103 , 1016], the following equation gives good estimation of the number

of twin primes smaller than n

πG2(n)≈ 0.985⋅(
2
3

log(n)

2
3

log(n)+1)⋅ 4C2⋅∫
2

n

(
dx

ln ( x) ln(∫
2

x

( dt
ln( t ))))

.

In particular case of recently proposed f (n) = MoLi (n) [11], the following equation holds

πG2(n) ∼ 4C2⋅∫
2

n

((
1

ln ( x+√x)
−

1
2
⋅∫

2

x

( dt
(t √x+x )(ln2

( t+√x)))) dx

ln(∫2
x

( dt
ln (t+√x))+√n)) .

For numbers n in the range [102 , 106], the following equation gives good estimation of the number

of twin primes smaller than n

πG2(n) ∼ 2∫
2

n

((
1

ln (x+√x )
−

1
2
⋅∫

2

x

( dt
(t√x+ x)(ln 2

(t+√x)))) dx

ln(∫2
x

( dt
ln(t+√x ))+√n)).

6. Proof that the number of cousin primes is infinite

The cousin primes are successive prime numbers with gap 4. It is clear that cousin primes represent

pairs of odd numbers that surround odd number divisible by 3 (e.g. (7 9 11), or (13 15 17)). A pair

can only represent a cousin primes if both those numbers are primes. So, if we denote a pair of odd



numbers that surround an odd number divisible by 3 as pl
k
 = 6k + 1 and ps

k
 = 6(k + 1) – 1, k ϵ N,

these  numbers  can  represent  cousin  primes  only in  the  case  when  both  pl
k
 and  ps

k
 are  prime

numbers.  If  any of the  ps
k
 or  pl

k
 (or both) is a composite number,  then we cannot have cousin

primes. 

Here, similar to the case of twin primes we are going to create a two stage process for generation of

cousin primes.

STAGE 1 

Using the same methodology as previously, generate all prime numbers. In order to do that, from

the set  of  all  natural  numbers  bigger  than 1,  remove all  even numbers  (except  2)  and all  odd

numbers generated by equation (2).

STAGE 2

What was left after first stage are prime numbers. With the exception of number 2, all other prime

numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is simple to

understand that  their  bigger  odd cousin must  be in  the form 2n + 5,  n ϵ N.  Now, we should

implement a second step in which we are going to remove number 2 (since 2 cannot make cousin

pair) and all odd primes (in the form 2m + 1) that have bigger odd composite cousin in the form  2m

+ 5, m ϵ N. If we make the same analysis like in the case of twin primes, it is simple to understand

that m must be in the form

m = 2ij + i + j – 2 = (2i + 1) j + i -2. (9)

All numbers (in observational space)| that are going to stay must be numbers in mpl form and they

represent a smaller primes of the cousin pairs (it is simple to understand that prime numbers in mps

form have cousins that are composite odd numbers divisible by 3). Their number is equal to the half

of cousin primes.

Now, using the same method like in the case of the twin prime conjecture, it can be proved that



exists infinitely many cousin primes.

Let us mark the number of cousin primes smaller than some natural number n with π
G4

(n). Here we

will state the following conjecture (see Appendix C): for n big enough, number of cousin primes is

given by the following equation 

πG4(n) ∼ 4C2

π(n)
ln (π(n))

.  

If  we mark the number of primes smaller than some natural number  n with π(n)  ≈ f (n), where

function f (n) gives good estimation of the number of primes smaller than n, than π
G4

(n), for n big

enough, is given by the following equation

πG4(n) ∼ 4C2⋅ f ( f (n)) .

Note: Here we can see that  constant C
2
 has a  misleading name. It  is  connected with repeated

(recursive) implementation of a sieve that produces certain type of prime numbers (in the second

step same sieve is applied on the set depleted by the first sieve) which is also, but not exclusively,

connected to the twin primes. It seems that better notation for that constant would be 2S.
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APPENDIX A.

Here it is going to be shown that m in (2) is represented by threads defined by odd prime numbers.

Now, the form of  (2) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 

Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From

examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the thread defined by one

of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assumimg

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or



m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (3),  (7) and (9) .



APPENDIX B.

Now we are going to show that the inputs in the second column of Table 2 are correct. In order to

do that, we are going to use Dirichlet's theorem on arithmetic progressions [9]. The theorem states

that for any two positive coprime integers a and d, there are infinitely many prime numbers in the

form a + nd, where n is also positive integer. Beside that, theorem also  proves that for a given value

of  d, proportion of primes in each of progressions  a +  nd, asymptotically, is 1/φ(d), where  φ(d)

represents Euler's totient function [12] that represents number of feasible progression for a given d,

such that a and d are coprimes.    

In  the analysis  that  follows  k represent  natural  number,  while  n represents nonnegative integer

numbers. Also, in order to simplify analysis, it is assumed that reader is capable to understand when

certain context requires use of only odd or only even numbers n and/or k.

It is easy to understand that any thread in generative space, defined by some prime number in (7),

will generate the thread in observational space that is defined by the same prime number, but with a

different residual class. For instance, thread 3k in generative space will produce the thread 3(2k) +1

in  observational  space  and  so  on.  So,  from  now  on,  we  are  going  to  analyze  numbers  in

observational space in order to make analysis easier. 

Now, in the Step 1 of Stage 2, for generation of twin primes, the numbers that are going to be

removed are generated by the thread defined by the prime number 3. That corresponds to the thread

3(2k)+1 in observational space. In that case one half of the prime numbers are going to be removed.

That follows directly from the Dirichlet's theorem [9], since all prime numbers can be expressed

only in the form 3n+1 or 3n+2.

In the next step we are going to analyze what is going to happen when we remove thread defined by

number 5, and which is given by 5(2k) + 3 in observational space. In order to understand that, we

are going to represent  all  numbers by the 15 threads defined by number 15. Those threads are



defined by the following progressions:

15n+1,  15n+2,  15n+3,  15n+4,  15n+5,  15n+6 15n+7,  15n+8,  15n+9,  15n+10,  15n+11,  15n+12,

15n+13, 15n+14 and 15n+15. 

We know that in the first stage (generation of prime numbers) numbers divisible by 3 (1/3 of the

threads) defined by threads 15n+3, 15n+6, 15n+9, 15n+12 and 15n+15 are going to be removed, as

well as numbers divisible by 5 (1/5 of the threads left) defined by the threads 15n+5 and 15n+10. 

The threads that are left are:

15n+1, 15n+2, 15n+4, 15n+7, 15n+8, 15n+11, 15n+13 and 15n+14.

Based on Dirichlet's theorem we know that each of these threads contain 1/8 of the prime numbers.

In the first step of second stage odd numbers in the form 3k + 1, should be removed. That means

that half of the threads that can be represented in the form 3k +1 are going to be removed. Those

threads are 15n+1, 15n+4, 15n+7 ad 15n+13.

So, the threads that are left are 15n+2, 15n+8, 15n+11 and 15n+14, and each of them contains 1/8 of

the prime numbers. 

In the second step of the second stage, numbers defined by thread defined by 5, in the form 5(2k)+3

have to be removed. The only thread that is left and that can be expressed in the form  5(2k)+3 is

thread 15n+8. Now, we can easily conclude that number of primes that is removed by the thread

defined by number 5 is ¼  of the numbers left (or that ¾ of the available numbers is left). 

However, it is difficult to generalize the proposed method for the other steps in Stage 2. So, an

alternative method is going to be analyzed.

After all numbers in the form 3(2k) + 1 are removed, we know that all odd prime numbers that are

left have to be in the form 3(2k+1) + 2, or, for the sake of simplicity, in the form 3k + 2 (and reader

should have in mind that we are talking only about odd numbers,  since all even numbers were

removed in the first step of Stage 1). We know that all numbers that are left have to be in some of



the following forms

3(5n+1) +2, 3(5n+2) +2, 3(5n+3) +2, 3(5n+4) +2 and 3(5n+5) +2, or

15n + 3*1 +2 , 15n + 3*2 +2, 15n + 3*3 +2 , 15n + 3*4 +2 , 15n + 3*5 + 3*0 +2. (B.1)

Since all forms in (B.1) contain the term(s) divisible by 15 (and consequently divisible by 5), it is

clear that additional forms that are going to be removed, will be removed based on the analysis of

the following expressions

 3*1 +2 ,  3*2 +2,  3*3 +2 ,  3*4 +2 ,  3*0 +2 . (B.2)

We know that in the first stage thread that is divisible by 5 has to be removed and in the second step

of the Stage 2, thread that is in the form 5k + 3, has to be removed. We can see that all five terms in

equation (B.2) represent simple calculations on the finite field  Z5 [13]. It is known that in that case,

multiplication of all elements of the field with element of the field that is not zero, will lead to a

permutation of the elements of the field [13]. Also, addition of the one nonzero element of the field

to all other elements of the field will lead to a permutation of the elements of the field [13]. From

that we can conclude that exactly one term will be congruent to 0 by modulo 5, and only one term

will be congruent to 3 by modulo 5. That means that out of 5 threads defined by (B.1), three are

going to stay after second step in Stage 2, which means that ¾ of the numbers that were left after

step 1 in Stage 2, are going to stay after removal of the corresponding thread defined by number 5

(that is based on the Dirichelt's theorem [9] - all feasible threads defined by number 15 contain the

same number of prime numbers).

After step 2 in Stage 2, all numbers can be written in the following forms 

15n + 2, 15n + 11 and 15n + 14. (B.3)

Now, this analysis can be applied on all consecutive step of Stage 2. In the step 3 of the Stage 2, we

are going to apply a similar analysis like in the step 2 of Stage 2. In this case, instead of one thread

defined by 3k + 2, we have three threads defined by (B.3). In  the third step of Stage 2, thread

defined by number 7 is going to be removed. Impact of that removal is the easiest if we analyze the



following forms of the remaining threads (here we are going to present forms for thread 15k + 2; the

other 2 threads could analyzed analogously) 

15(7n+1)+2, 15(7n+2)+2, 15(7n+3)+2, 15(7n+4)+2, 15(7n+5)+2, 15(7n+6)+2, 15(7n+7)+2, or

105n+15*1+2 , 105n+15*2+2, 105n+15*3+2 , 105n +15*4+2 , 105n+ 15*5 + 2, 105n+ 15*6 + 2,

105n+15*7+ 15*0 + 2. (B.4)

Since all forms in (B.4) contain the term(s) divisible by 105 (and consequently divisible by 7), it is

clear that additional forms that are going to be removed, will be removed based on the analysis of

the following expressions

15*1+2, 15*2+2, 15*3+2 , 15*4+2 ,  15*5 + 2, 15*6 + 2,  15*0 + 2, (B.5)

or having in mind that a*b (mod 7) = a mod (7) * b mod (7), the forms of interest are given by

1*1+2, 1*2+2, 1*3+2 , 1*4+2 ,  1*5 + 2, 1*6 + 2,  1*0 + 2. (B.6)

Similarly to the situation in step 2, we can see that all  seven terms in equation (B.6) represent

simple calculations on the finite field Z7 [13].  Using the same line of reasoning like in the previous

step, we can conclude that fraction of number of numbers that are going to stay after step 3 is

exactly the one given in Table 2, and that is 5/6 of all numbers left after step 2 (here is assumed that

the same analysis can be analogously performed for the other 2 threads defined by (B.3)). After this

step 15 threads defined by number 105 are going to stay and each is going to contain the same

percentage of prime numbers. 

Now, it is obvious that proposed analysis can be applied to all consecutive steps of stage 2. In all

cases, the removal of certain threads will be based on multiplication and addition of the finite field

Zpk, where pk represents the odd prime number that defines thread that is going to be removed in

the k-th step of Stage 2. In all cases those multiplications and addition will result in the permutation

of all elements of the corresponding finite field and in every step, and it can be shown that in every



step they are going to leave the ratio (pk-2)/(pk-1) of available numbers by using reasoning similar

to the cases  pk = {3, 5, 7}.  From this analysis we can understand that the values in the second

column of Table 2 are correct. Same can be concluded for all other threads that are not presented in

the table. The proposed analysis holds also in the case of threads that are defined by prime numbers

that are infinite (see [14]).



APPENDIX C.

Here, asymptotic density of numbers left, after implementation of the eSuS and the SGP sieve is

going to be calculated (the eSuS represents extended SuS0 sieve, in which after the removal of

thread defined by some prime number in (2), also that prime number is removed). After removal of

all even composite numbers and first k steps of the SuS0 sieve, density of numbers left is given by

the following equation

ck=
1
2
∏
j=2

k+1

(1−
1

p( j )
) ,

where p(j) is  j-th prime number. (We should have in mind that the density considered in previous

equation are asymptotically correct).

In the case of SuS-1 sieve the density of numbers left after the first k-steps is given by the following

equation

c2k=∏
j=2

k+1

(1− 1
p ( j)− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

So, if implementation of first sieve will result in the number of prime numbers smaller than n which

we denote as π(n), than implementation of the second sieve on some set of size π(n) should result in

the number of numbers gp(n) that are defined by the following equation (for some big enough n)

gp(n)=rS2S1(n)⋅
π(n)

ln (π (n))
,

where r
S2S1

(n) is defined by the following equation (k is the number of primes smaller or equal to

√n)

r S2S1(n)=
c2k

ck

=

∏
2< p≤ √n

( p − 2
p − 1)

∏
p≤ √n
( p − 1

p )
=2 ∏

2< p≤ √n
( p − 2

p − 1)(
p

p − 1)≈ 2C2 .

where p represents prime number. For n that is not big, gp(n) should be defined as   



gp(n)= f COR(n)⋅ 2C2⋅
π(n)

ln(π(n))
,

where  f
COR

(n)  represents  correction  factor  that  asymptotically  tends  toward  1  when  n tends  to

infinity. Here, the number of numbers left after eSuS is approximated by n/ln(n).


