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Abstract 

Dynamic latent scale GAN proposed a 

learning-based GAN inversion method with 

maximum likelihood estimation. In this paper, 

we propose a method for self-supervised out-

of-distribution detection using the encoder of 

dynamic latent scale GAN. When the dynamic 

latent scale GAN converged, since the entropy 

of the scaled latent random variable is optimal 

to represent in-distribution data, in-distribution 

data is densely mapped to latent codes with 

high likelihood. This enables the log-likelihood 

of the predicted latent code to be used for out-

of-distribution detection. The proposed method 

does not require mutual information of in-

distribution data and additional 

hyperparameters for prediction. The proposed 

method also showed better out-of-distribution 

detection performance than the previous state-

of-art method. 

 

1. Introduction 

 Given an in-distribution (ID) data, detecting 

data that does not belong to ID data is called 

out-of-distribution (OOD) detection (or 

anomaly detection). The difference between 

OOD detection and simple classification is that 

in OOD detection, only ID data is given to the 

model, and the model should classify ID data 

and unseen OOD data. In general, since the 

range of OOD data is very wide compared to 

ID data, it is almost impossible to define an 

OOD dataset and use it for ID-OOD 

classification (i.e., supervised learning).  

[1, 2] proposed an OOD detection method 

using statistics of a pre-trained model. However, 

since these methods require a pre-trained 

model, the model cannot be customized. For 

example, if the pre-trained model is a large 

model whose input is a high-resolution image, 

low-resolution images should be resized and 

input, which is inefficient. Also, large models 

may not be able to be used when 

computational performance is limited. Or, if the 

input resolution of the pre-trained is low, high-

resolution images should be downsampled, 

which degrades OOD detection performance. 

Furthermore, there may not be a good pre-

trained model for particular data domains.  

[3, 4] proposed method when the mutual 

information (e.g., the label of image) of data is 



given. However, those methods require mutual 

information of each data, so they cannot be 

applied when the mutual information is not 

given.  

[5, 6] proposed method when the input is an 

image. These methods are difficult to use for 

data domains other than images. 

In this paper, we propose AnoDLSGAN, a self-

supervised learning method for OOD detection 

that does not require any mutual information 

of data or a pre-trained model. The proposed 

method uses an encoder of dynamic latent 

scale GAN (DLSGAN) [7] for OOD detection. 

Simply, log-likelihood predicted by the encoder 

of DLSGAN is used for OOD detection. 

Therefore, AnoDLSGAN does not require 

additional hyperparameters for OOD prediction. 

 

2. Out-of-distribution detection with DLSGAN 

DLSGAN [7] proposed a learning-based GAN 

inversion method with maximum likelihood 

estimation of the encoder. The encoder of 

DLSGAN maps input data to predicted latent 

code.  

We found that the log-likelihood of the 

predicted latent code from the encoder of 

DLSGAN can be used for OOD detection. There 

are two characteristics that allow the DLSGAN 

encoder to be utilized for OOD detection. 

First is the latent entropy optimality. As 

DLSGAN training progresses, the entropy of 

scaled latent random variable decreases, and 

the entropy of the scaled encoder output 

increases. When DLSGAN is converged, the 

generator generates ID data with a scaled latent 

random variable, and the entropy of scaled 

latent random variable and scaled encoder 

output becomes optimal entropy for expressing 

ID data with the generator and encoder. It 

means that ID data generated by the generator 

is densely mapped to latent codes with high 

likelihood. Therefore, by the pigeonhole 

principle, OOD data can only be mapped to 

latent codes with low likelihood. 

Secondly, elements of DLSGAN encoder 

output are independent of each other and 

follow a simple distribution (the same as latent 

distribution). Therefore, it is very easy to 

calculate the log-likelihood of predicted latent 

code. 

The following equation shows the negative 

log-likelihood of the predicted latent code of 

input data. 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 = − ෍ log 𝑓(𝐸௜(𝑥)|𝜇௜ , 𝑣௜)

ௗ೥

௜ୀଵ

 

In the above equation, 𝑥 and 𝐸 represent the 

input data point and DLSGAN encoder, 

respectively. 𝐸(𝑥)  represents the 𝑑௭ -

dimensional predicted latent code of input data 

point 𝑥 . 𝑓  represents the probability density 

function of the i.i.d. latent random variable 𝑍. 

𝜇 and 𝑣 represent the latent mean vector and 

latent variance vector for the probability density 

function 𝑓 . 𝜇  is the mean vector of latent 

random variable 𝑍 . 𝑣  is the traced latent 

variance vector of DLSGAN. 𝐸௜(𝑥) , 𝜇௜ , and 𝑣௜ 

represent 𝑖 -th element of 𝐸(𝑥) , 𝜇 , and 𝑣 , 

respectively. 



Since each element of the encoder output 

𝐸(𝑋)  is independent of each other, the 

negative log-likelihood of the predicted latent 

code can be simply calculated by adding the 

negative log-likelihood of each element. 

The 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 is the negative log-likelihood 

of the predicted latent code 𝐸(𝑥) . If the 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒  is greater than the threshold, the 

input data is classified as OOD data. Otherwise, 

it is classified as ID data. 

AnoDLSGAN is a self-supervised OOD 

detection method, so it does not require any 

mutual information of ID data or a pre-trained 

model. Also, only one inference of encoder 𝐸 

is required to classify input data. 

 

3. Experiments 

3.1 Experiments settings 

We used MNIST handwritten digits dataset [8] 

as an ID dataset and CMNIST (Corrupted MNIST) 

dataset [9], FMNIST (Fashion MNIST) [10], and 

KMNIST (Kuzushiji MNIST) [11] dataset as OOD 

datasets. For the preprocessing, we added 

padding to the images to make the resolution 

32 × 32 and normalized the pixel values to be 

between –1 and 1. 

Fig. 1 shows samples of ID images and OOD 

images. The first column of Fig. 1 shows ID 

images. Columns 13-23 (right part of the right 

white line) show far OOD images of the OOD 

dataset (CMNIST, FMNIST, KMNIST). Columns 2-

12 (between the two white lines) show near 

OOD images. Near OOD images are generated 

by linear interpolation between far OOD images 

and ID images (i.e., 𝑛𝑒𝑎𝑟 𝑂𝑂𝐷 𝑖𝑚𝑎𝑔𝑒 =

𝑓𝑎𝑟 𝑂𝑂𝐷 𝑖𝑚𝑎𝑔𝑒 × 𝑘 + 𝐼𝐷 𝑖𝑚𝑎𝑔𝑒 × (1 − 𝑘) ). We 

used 𝑘 = 0.1 to generate near OOD images. 

The near OOD images are hard to distinguish 

for humans without looking very closely. 

Images from the CMNIST dataset were 

generated by adding corruption to the images 

from the MNIST dataset. Therefore, each image 

from the CMNIST dataset has a corresponding 

original image from the MNIST dataset. When 

generating near OOD images with the CMNIST 

dataset, corresponding images from the MNIST 

dataset were used as ID images, not random 

images from the MNIST dataset. 

We trained four types of models for OOD 

detection: AnoDLSGAN, InfoGAN [12], 

autoencoder, and classifier. Each model is 

trained only with the ID train dataset. 

AnoDLSGAN, InfoGAN, and autoencoder were 

trained without labels, while the classifier was 

trained with labels. 

Training AnoDLSGAN is the same as training 

DLSGAN. 

Training InfoGAN is the same as training 

DLSGAN without a dynamic latent scale. The 

latent random variable of InfoGAN has a larger 

entropy than the optimal entropy for 

expressing ID data. Therefore, ID data cannot 

densely map to latent space. To show that 

AnoDLSGAN has high OOD detection 

performance because ID data is densely 

mapped to latent space, we also experimented 

with InfoGAN for OOD detection. 



 

Figure 1. Sample images from datasets. Column 1: ID images, Columns 2-12: near OOD images, 

columns 13-23: far OOD images. 

OOD detection with InfoGAN is the same as 

AnoDLSGAN except for the dynamic latent 

scale (i.e., the same OOD score function as 

AnoDLSGAN with traced latent variance vector 

is used for OOD detection). 

The autoencoder is trained with reconstruction 

loss (l2 norm of the difference between an input 

image and reconstructed image). 

Reconstruction loss is also used for OOD 

detection with the autoencoder [13]. 

The classifier is trained with cross-entropy loss. 

Energy score [4] with ReAct [3] is used for OOD 

detection with the classifier.  

Following hyperparameters were used for 

training models. 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ൭

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001
𝑏𝑒𝑡𝑎ଵ = 0

𝑏𝑒𝑡𝑎ଶ = 0.99
൱ 

𝑒𝑝𝑜𝑐ℎ = 30 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ = 0.95 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ is a value 

multiplied by the learning rate for each epoch. 

The following figures show the model 

architecture used in the experiments. 

𝐼𝑛𝑝𝑢𝑡: [32, 32, 1] 𝐼𝑚𝑎𝑔𝑒 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 128) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 256) 

𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 2 × 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 256) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 512) 

𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 2 × 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 512) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 512) 

𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 2 × 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 1024) 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 
𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 (1) 𝐿𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (256) 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (10) 

Figure 2. Encoder architecture 

 

𝐼𝑛𝑝𝑢𝑡: [256] 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 
𝐹𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 (1024 × 4 × 4) 

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 [4, 4, 1024] 
𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 2 × 

𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 512) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 512) 

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 2 × 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 256) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 256) 

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 2 × 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 128) 
𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟 (𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 128) 

𝑇𝑜 𝑖𝑚𝑎𝑔𝑒 𝑙𝑎𝑦𝑒𝑟  
Figure 3. Decoder architecture 

In Figs. 2-3, the activation functions of all 

layers except the output layer are leaky ReLU, 

and the kernel size of all convolution layers is 

[3 × 3]. Equalized learning rate [16] is used for 



all layers. 

DLSGAN and InfoGAN use an encoder as a 

discriminator and a decoder as a generator. The 

encoder's classifier output was not used for 

GAN training. NSGAN with R1 regularization [14] 

was used for GAN training. Also, an exponential 

moving average with 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999 was 

used for traced variance vector 𝑣 . Following 

hyperparameters were used for GANs training. 

𝜆௘௡௖ = 1 

𝜆௥ଵ = 0.1 

𝑍 = (𝑍௜)௜ୀଵ
ଶହ଺ ~

௜.௜.ௗ.
 𝑁(0,1ଶ) 

𝜆௥ଵ  is R1 regularization weight. The paper 

proposed R1 regularization used 𝛾/2  as 

regularization weight, so based on that 

definition, 𝛾 is 0.2 when 𝜆௥ଵ is 0.1.  

Autoencoder uses encoder and decoder. 

Adversarial output and classifier output of the 

encoder were not used for encoder training.  

The classifier uses only an encoder. The 

adversarial output of the encoder was not used 

for classifier training.  

We evaluated the model performance using 7-

fold cross-validation. Each MNIST dataset has 

70k images. Therefore, the ID train dataset has 

60k images, the ID test dataset has 10k images, 

and the OOD test dataset has 10k images in 

each fold. The average area under the ROC 

curve (AUROC) was used for OOD detection 

performance evaluation. 

 

3.2 Experiment results 

Table 1 shows the basic model performance 

for each model. In table 1, FID [15] shows the 

generative performance of GANs. 10k 

generated images and 10k ID test images for 

each fold were used for FID evaluation. PSNR 

and SSIM show the difference between test 

images and reconstructed images. 

We trained a new model for each near OOD 

dataset, far OOD dataset, and hyperparameters. 

Therefore, the basic model performance was 

evaluated several times. Table 1 shows the 

minimum/maximum values of the basic model 

performance for each experiment. AnoDLSGAN 

showed better reconstruction performance 

(PSNR and SSIM) than InfoGAN as [7]. However, 

the reconstruction performance of the 

autoencoder was much better than GANs. The 

classifier showed high accuracy. 

 

 

 

 AnoDLSGAN (ours) InfoGAN [12] Autoencoder Classifier 

FID [15] 4.62~5.44 6.12~7.11 - - 

PSNR 15.56~15.93 13.79~14.18 29.08~29.10 - 

SSIM (× 100) 56.71~59.08 45.08~47.73 96.25~96.37 - 

Accuracy (× 100) - - - 99.47~99.51 

Table 1. Basic model performance 



AUROC (× 100) 
GAN Autoencoder Classifier 

AnoDLSGAN 

(ours) 

InfoGAN 

[12] 

Reconstruction 

[13] 

Energy[3,4] 

t=1, p=0.5 

Energy 

t=1, p=0.9 

Energy 

t=1, p=1.0 

Energy 

t=10, p=0.5 

Energy 

t=10, p=0.9 

Energy 

t=10, p=1.0 

N 

E 

A 

R 

O 

O 

D 

Shot noise 50.94 50.64 52.98 51.86 52.38 51.44 51.89 52.36 51.96 

Impulse noise 93.12 59.46 73.51 52.17 52.87 51.62 52.27 52.73 52.26 

Glass blur 62.22 52.19 48.30 54.44 55.66 53.38 54.52 55.58 54.70 

Motion blur 78.18 53.69 50.90 55.44 56.95 54.09 55.45 56.94 55.74 

Stripe 100.00 93.49 98.85 53.63 54.82 52.82 53.91 54.86 53.96 

Fog 95.26 61.20 76.12 58.21 60.54 56.31 58.66 60.62 58.77 

Spatter 63.61 51.42 52.48 51.08 51.39 50.83 51.11 51.38 51.14 

Dotted line 68.17 53.00 56.78 50.56 50.74 50.41 50.56 50.69 50.59 

Zigzag 85.78 56.90 65.78 51.16 51.53 50.86 51.17 51.45 51.21 

FMNIST 98.90 65.88 82.56 60.61 63.48 58.09 60.88 63.37 61.19 

KMNIST 97.94 65.88 84.74 60.76 63.62 58.17 60.94 63.40 61.27 

F 

A 

R 

O 

O 

D 

Shot noise 97.21 68.52 99.74 72.65 76.81 70.25 70.08 77.84 73.48 

Impulse noise 100.00 100.00 100.00 82.31 85.79 79.03 76.55 86.79 83.09 

Glass blur 99.97 93.15 99.82 91.02 94.73 85.81 88.98 95.99 92.04 

Motion blur 100.00 95.07 97.96 89.67 93.83 83.94 88.82 95.16 90.91 

Stripe 100.00 100.00 100.00 90.06 93.82 85.49 87.55 94.13 90.82 

Fog 100.00 99.94 99.99 99.90 99.97 92.79 99.87 99.99 99.95 

Spatter 99.66 84.20 99.44 66.20 69.60 64.52 64.87 70.54 66.75 

Dotted line 99.37 84.71 99.97 61.99 64.43 60.91 58.23 63.97 61.67 

Zigzag 99.82 92.69 99.99 67.10 70.26 65.60 60.49 69.34 66.40 

FMNIST 100.00 99.85 99.98 95.53 97.89 89.68 91.98 97.97 96.00 

KMNIST 99.95 97.89 99.99 94.03 96.94 88.63 86.78 96.61 93.51 

Table 2. OOD detection performance for each method. Each value in the table is the average 

AUROC multiplied by 100.

Table 2 shows the OOD detection performance 

for each method. 1000 intervals between the 

minimum and maximum values of the 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 of the ID test dataset were used for 

the threshold value. Each value in the table is 

the average AUROC multiplied by 100. In 

“Energy” of Table 2, “t” represents the 

temperature of the energy score [4], and “p” 

represents the activation percentage of ReAct 

[3]. When p = 1.0, it is the same as that ReAct 

was not applied.  

In Table 2, one can see that the overall 

performance of AnoDLSGAN is the best. The 

performance of AnoDLSGAN is not significantly 

different from that of autoencoder 

reconstruction in far OOD detection, but it 

shows significantly better performance in near 

OOD detection, even if the reconstruction 

performance of autoencoder is much better 

than AnoDLSGAN’s.  

Additionally, OOD detection with autoencoder 

reconstruction shows better performance than 

the energy score with ReAct. Comparing p=0.9 

and p=1.0 in the energy score, one can see that 

there is a performance improvement when 

ReAct is applied as [3].  

Energy score with ReAct showed good 

performance in easy OOD of far OOD datasets 

detection (FMNIST and KMNIST) but showed 

relatively poor performance in some CMNIST 

datasets (Spatter, Dotted line, Zigzag). Also, it 

could hardly distinguish the near OOD images. 

Also, one can see that AnoDLSGAN has clearly 

better near OOD detection performance than 

InfoGAN. This indicates that AnoDLSGAN 



performs better than InfoGAN because ID data 

is densely mapped to the latent space due to 

the latent entropy optimality of DLSGAN. 

All methods failed to distinguish Shot noise 

near OOD images. Shot noise near OOD images 

are difficult to distinguish even for humans. 

 

4. Conclusion 

 In this paper, we showed that the encoder of 

DLSGAN can be used for OOD detection. The 

latent entropy optimality of DLSGAN enables ID 

data to be densely mapped to latent codes with 

high likelihood. This characteristic of DLSGAN 

enables high OOD detection performance with 

the DLSGAN encoder. OOD detection with 

AnoDLSGAN is very simple and does not 

require a pre-trained model, mutual 

information of ID data, and additional 

hyperparameters for prediction. Also, 

AnoDLSGAN showed high OOD detection 

performance compared to the previous state-

of-art method. 
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