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Summary

We study the embedding of octonions in the Clifford geometric algebra for space-
time STA Cl(1, 3), as suggested by Anthony Lasenby at AGACSE 2021. As far as
possible, we extend the approach to similar octonion embeddings for all three- and
four dimensional Clifford geometric algebras Cl(p, q), n = p + q = 3, 4. Noticeably,
the lack of a quaternionic subalgebra inCl(2, 1), seems to prevent the construction of
an octonion embedding in this case, and necessitates a special approach in Cl(2, 2).
As examples, we present for Cl(3, 0) the non-associativity of the octonionic product
in terms of multivector grade parts with cyclic symmetry, show how octonion prod-
ucts and involutions can be combined to make the opposite transition from octonions
to the Clifford geometric algebra Cl(3, 0), and how octonionic multiplication can be
represented with (complex) biquaternions or Pauli matrix algebra.
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1 INTRODUCTION

The algebra of octonions1 has independently been introduced byArthur Cayley in 18452, and is therefore also called Cayley num-
bers4. Octonions have recently been used for modeling in elementary particle physics6,20, to generalize the quaternion Fourier
transform10,13,15 to a higher dimensional octonion Fourier transform2, and for encryption27,28,29. One can directly compute with
octonions in various computer algebra systems1,22.
Here we first briefly summarize important octonion algebra properties (see19, pp. 300–302), assuming a, b, c, x, y ∈ O.

• Octonions O form an eight-dimensional bilinear algebra over the reals ℝ with basis {1, e1, e2, e3, e4, e5, e6, e7}.

• The multiplication table is given by (1 ≤ i, j ≤ 7)

ei ⋆ ei = −1, ei ⋆ ej = −ej ⋆ ei for i ≠ j, ei ⋆ ei+1 = ei+3, (1)

where (i, i + 1, i + 3) can be permuted cyclically and translated modulo 7.

†Soli Deo Gloria. This paper is published under the terms of the Creative Peace License 14.
0Abbreviations: GA, geometric algebra; STA, space-time algebra
1Note that they seem to have been first introduced by John T. Graves as octaves and mentioned in a letter to William R. Hamilton 8.
2It may be of interest what William Thomson (later Lord Kelvin) wrote in a letter dated 31st July 1864 to Hermann von Helmholtz in the context of the mathematics

of electric fields at plate boundaries: Oh! that the CAYLEYS would devote what skill they have to such things instead of to pieces of algebra which possibly interest four
people in the world, certainly not more, and possibly also only the one person who works. It is really too bad that they don’t take their part in the advancement of the world
and leave the labour of mathematical solutions for people who would spend their time so much more usefully in experimenting. 26, p. 433.
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• Via the Cayley-Dickson doubling process, octonions can be defined from pairs of quaternions p1, p2, q1, q2 ∈ ℍ (note the
order of factors, qc(…) is quaternion conjugation):

(p1, q1) ⋆ (p2, q2) =
(

p1p2 − qc(q2)q1, q2p1 + q1qc(p2)
)

. (2)

• O has no zero divisors, i.e., ab = 0 implies a = 0 or b = 0.

• O is a division algebra, i.e., ax = b and ya = b have unique solutions x, y for non-zero a.

• O is non-associative, i.e., in general a(bc) ≠ (ab)c.

• O admits unique inverses.

• O is alternative, i.e., a(ab) = a2b and (ab)b = ab2.

• O is flexible, i.e., a(ba) = (ab)a.

• O is one of only four alternative division algebras over ℝ: ℝ,ℂ,ℍ,O.

• O has a (positive-definite quadratic form) norm ‖… ‖ ∶ O → ℝ, the norm is preserved (i.e. admits composition), such
that ‖ab‖ = ‖a‖‖b‖.

• O is one of only four unital norm-preserving division algebras over ℝ: ℝ,ℂ,ℍ,O.

• O is essential for treating triality, an automorphism of the universal covering spin group Spin(8) of the rotation group
SO(8) or ℝ8. Triality is not an inner automorphism, nor an orthogonal matrix similarity, nor a linear transformation
Cl(8, 0) → Cl(8, 0), nor a linear automorphism of SO(8). Triality permutes three elements in the center of Cl(8, 0),
namely {−1, e12345678,−e12345678}, with basis vectors ei, (1 ≤ i ≤ 8), of ℝ8. Triality is a restriction of a polynomial
mapping Cl(8, 0) → Cl(8, 0) of degree two.

Furthermore, like for complex numbers, quaternions and biquaternions, there is a polar decomposition for octonions25. We
finally note previously known embeddings in Clifford algebra for octonions in high dimensions of Cl(0, 7), dim = 128, or
Cl(8, 0), dim = 256, see19, Chapters 7.4 and 23.
In the present treatment, we take up the recent suggestion of Anthony Lasenby16,17 for an embedding of octonions in space-

time algebra9, the Clifford geometric algebra of Minkowski space ℝ1,3. We systematically extend this approach to all Clifford
geometric algebras Cl(p, q), n = p+ q = 3, 4. In one instance (Cl(3, 0)) we also study the detailed expression of the octonionic
product in terms of the scalar-, vector-, bivector- and trivector parts of the multivector factors, compute the norm preservation,
and investigate how the non-associativity of this product expresses itself in these Clifford geometric algebra grade parts. In all
cases the octonionic embedding is specified, complete with full multiplication table and Fano plane diagram visualization, the
octonion conjugate is specified in terms of Clifford geometric algebra operations, the octonionic norm is computed explicitly
and expressed in Clifford geometric algebra.
The paper is structured as follows. Section 2 reviews the suggestion of Anthony Lasenby16,17 for the embedding of octonions

in 16-dimensional space-time algebra. Section 3 shows how octonion multiplication can be embedded in the eight-dimensional
Clifford geometric algebra Cl(3, 0) of Euclidean space ℝ3, complete with the full multivector grade part expression for the
product, and includes a special Subsection 3.2 on the well-known non-associativity of octonions explicitly expressed in the
example of Cl(3, 0), Subsection 3.3 on how octonion products and involutions can be combined to make the opposite transition
from octonions to the geometric product of multivectors in Clifford geometric algebra Cl(3, 0), Subsection 3.4 on implementing
octonion multiplication with (complex) biquaternions (ideal for software implementation), and Subsection 3.5 on how to express
the octonion product for Cl(3, 0) multivectors with complex two by two matrices. Section 4 shows how the corresponding
embedding of octonions works in the algebra of space time with opposite signature Cl(3, 1), and Section 5 shows the embedding
in anti-Euclidean space ℝ0,3 often preferred in Clifford analysis. Section 6 explains the embedding in Cl(1, 2), and Section 7
gives some argument of why it may not be possible to implement the octonionic product in a similar way in Cl(1, 2). Section
8 then explains how the octonion product can be embedded in the remaining Clifford geometric algebras with n = 4, i.e. for
Cl(0, 4), Cl(2, 2) and Cl(0, 4). The conclusion Section 9 contains a summary table for all implementations in Clifford geometric
algebras given in this work, listing column wise the algebra itself, the designation of Pauli- and non-Pauli spinors (or what
corresponds to them), the octonion conjugation, the octonionic product, the multiplication table number, the Fano plane diagram
figure number, the octonionic norm and the section in this work containing the respective detailed definitions and computations.
This is followed by acknowledgments and references.



Eckhard Hitzer 3

2 SPACE-TIME ALGEBRA CL(1, 3)

We now follow the presentation of the subject given by Anthony Lasenby at AGACSE 202116,17, who presented the first known
embedding of octonions in space-time algebra.
Space-time algebra was introduced 1966 by David Hestenes in9, as the Clifford geometric algebra Cl(1, 3) of Minkowski

space-time vector space ℝ1,3 with four orthonormal basis vectors squaring to

e20 = −e21 = −e22 = −e23 = 1. (3)

The resulting real space-time algebra has the 16-dimensional multivector basis of one scalar, four vectors, six bivectors, four
trivectors and one pseudoscalar

{1, e0, e1, e2, e3,
�1 = e10, �2 = e20, �3 = e30, I�1 = −e23, I�2 = −e31, I�3 = −e12,
Ie0 = −e123, Ie1 = −e023, Ie2 = −e031, Ie3 = −e012, I = e0123}. (4)

The even subalgebra of space-time algebra (Hestenes-Dirac) spinors  ∈ Cl+(1, 3) has the real eight-dimensional basis

{1, �1 = e10, �2 = e20, �3 = e30, I�1 = −e23 = �23, I�2 = −e31 = �31, I�3 = −e12 = �12, I = e0123 = �123}, (5)

and is isomorphic to Cl(3, 0) (and thus to complex biquaternions ℂ ⊗ ℍ), the geometric algebra of Euclidean space ℝ3 with
basis {�1, �2, �3}.
The spinor basis (also called rotor basis of space-time) can be split into Pauli spinors  + = 1

2
( + e0 e0) that commute with

e0 and have the four-dimensional basis

{1, I�1 = −e23, I�2 = −e31, I�3 = −e12}, (6)

and four-dimensional non-Pauli spinors  − = 1
2
( − e0 e0) that anticommute with e0

{�1 = e10, �2 = e20, �3 = e30, I = e0123}. (7)

Obviously multiplication with the pseudoscalar I (duality in GA) converts a Pauli spinor into a non-Pauli spinor and vice versa.
Lasenby16,17 introduces the octonion product of two STA spinors  , � ∈ Cl+(1, 3), a conjugate3 and a norm as

 ⋆ � =  +�+ + �̃− − + �− + +  −�̃+,  ∗ =  ̃+ −  −, ‖ ‖ =  ⋆  ∗ = e0 ⋅ ( e0 ̃) =
1
2
(e0 e0 ̃ +  e0 ̃e0), (8)

where the tilde operation indicates the reverse involution4, which changes the sign of every bivector in the two bases of Pauli
spinors (6) and non-Pauli spinors (7), but leaves the scalar and pseudoscalar invariant. We will see, that every of the four terms
in the product  ⋆ � of (8) corresponds to one 4 × 4 block in the octonionic multiplication table, as can be seen from

 + ⋆ �+ =  +�+,  − ⋆ �− = �̃− −,  + ⋆ �− = �− +,  − ⋆ �+ =  −�̃+. (9)

The full multiplication table, Table 1 , shows that the first two products in (9) result in Pauli spinors, whereas the last two
products result in non-Pauli spinors, respectively.
The definition of the octonionic conjugate  ∗ can be understood to correspond to the usual octonion conjugate by applying

it to the bases of Pauli spinors (6) and non-Pauli spinors (7), respectively,

{1, I�1, I�2, I�3}∗ = {1, I�1, I�2, I�3}∼ = {1,−I�1,−I�2,−I�3},
{�1, �2, �3, I}∗ = −{�1, �2, �3, I} = {−�1,−�2,−�3,−I}, (10)

so only the scalars are preserved and all bivectors and the pseudoscalar change sign. Note that the octonion conjugate  ∗ is an
anti-involution, i.e.

( ⋆ �)∗ = �∗ ⋆  ∗. (11)

3Note that the star index here does not mean duality of GA.
4Note that by construction  ̃± = ( ̃)±.
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Next, we compute the norm

‖ ‖ =  ⋆  ∗ = ( + +  −) ⋆ ( ̃+ −  −) =  + ̃+ + (̃− −) − + (− −) + +  −
̃̃ + =  + ̃+ −  ̃− − −  − + +  − +

=  + ̃+ −  ̃− − = 1
4
( + e0 e0)( ̃ + e0 ̃e0) −

1
4
( ̃ − e0 ̃e0)( − e0 e0)

= 1
4
(  ̃ + e0  ̃e0 −  ̃ − e0 ̃ e0) +

1
4
( e0 ̃e0 + e0 e0 ̃ +  ̃e0 e0 + e0 ̃e0 )

= 1
4
(2⟨  ̃⟩ − 2⟨ ̃ ⟩) + 1

2
[( e0 ̃) ⋅ e0 + ( ̃e0 ) ⋅ e0] =

1
2
⟨ e0 ̃e0 +  ̃e0 e0⟩ = ⟨ e0 ̃e0⟩

= ( e0 ̃) ⋅ e0, (12)

where we used that   ̃ is even and invariant under reversion, so it must be a linear combination of scalar and pseudoscalar
  ̃ = s + pI . But e0(s + pI)e0 = s − pI . So

  ̃ + e0  ̃e0 = s + pI + s − pI = 2s = 2⟨  ̃⟩, (13)

which is used for the equality at the beginning of the fourth equation line of (12). Moreover, we have commutativity of factors in
scalar part brackets ⟨  ̃⟩ = ⟨ ̃ ⟩, which explains the next equality (second equality on line four of (12)). The commutativity
under the scalar part brackets is used again to give the expression at the end of line four of (12), written as inner product at the
end of (12).
We first compute the squares of all Cl+(1, 3) basis elements (k = 1, 2, 3)

1 ⋆ 1 = 1+1+ = 1, I�k ⋆ I�k = I�kI�k = I2�2k = (−1)(+1) = −1,

�k ⋆ �k = �̃k�k = −�2k = −1, I ⋆ I = ĨI = II = −1. (14)

Furthermore, the first equality in (9) shows, that the 4 × 4 multiplication subtable of Pauli spinors  + is identical to their
geometric algebra product table, i.e.

(I�1) ⋆ (I�2) = II�1�2 = −�1�2 = −I�3, etc. (15)

By the second equality in (9) we have for the non-Pauli spinors with basis (6) that, apart from main diagonal elements
(j, k = 1, 2, 3, j ≠ k)

�j ⋆ �k = �̃k�j = −�k�j = �j�k = −�̃j�k = −�k ⋆ �j , (16)
which is again the same as the geometric product and is anti-symmetric. Moreover,

I ⋆ �k = �̃kI = −�kI = −I�k, �k ⋆ I = Ĩ�k = I�k = −I ⋆ �k, (17)

which shows the anti-symmetry of the octonionic product for unequal pairs of basis elements of non-Pauli spinors.
Now we look at the products of Pauli spinors on the left {1, I�1, I�2, I�3}, with non-Pauli spinors on the right {�1, �2, �3, I}

and obtain from the third equality in (9) that

1 ⋆  − =  −1 =  −,  + ⋆ I = I +, {1, I�1, I�2, I�3} ⋆ I = {I,−�1,−�2,−�3}, (18)

where the third equality set is the result of applying the second equality. Moreover (j, k = 1, 2, 3, j ≠ k)

(I�k) ⋆ �k = �kI�k = I�2k = I, (I�j) ⋆ �k = �kI�j = I�k�j = −I�j�k, (19)

e.g.,
(I�1) ⋆ �2 = −I�1�2 = −II�3 = �3, (I�2) ⋆ �1 = −I�2�1 = −I(−I�3) = −�3, etc. (20)

At the end, we need to compute the products of non-Pauli spinors on the left {�1, �2, �3, I}, with Pauli spinors on the right
{1, I�1, I�2, I�3} and obtain from the fourth equality in (9) that

 − ⋆ 1 =  −1̃ =  −1 =  −,
I ⋆ {1, I�1, I�2, I�3} = I{1, I�1, I�2, I�3}∼ = I{1,−I�1,−I�2,−I�3} = {I, �1, �2, �3}. (21)

Moreover (j, k = 1, 2, 3, j ≠ k)

�k ⋆ (I�k) = �k(̃I�k) = �k(−I�k) = −I, �j ⋆ (I�k) = �j (̃I�k) = �j(−I�k) = −I�j�k, (22)

e.g.,
�1 ⋆ (I�2) = −I�1�2 = −II�3 = �3, �2 ⋆ (I�1) = −I�2�1 = −I(−I�3) = −�3, etc. (23)
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TABLE 1 Multiplication table for Lasenby octonion embedding in STA Cl(1, 3). The upper left 4 × 4-block corresponds to
 +�+, the upper right 4 × 4-block to �− +, the lower left 4 × 4-block to  −�̃+, and the lower right 4 × 4-block to �̃− − of (8)
and (9).

Left
factors

Right factors
1 I�1 I�2 I�3 �1 �2 �3 I

1 1 I�1 I�2 I�3 �1 �2 �3 I
I�1 I�1 −1 −I�3 I�2 I �3 −�2 −�1
I�2 I�2 I�3 −1 −I�1 −�3 I �1 −�2
I�3 I�3 −I�2 I�1 −1 �2 −�1 I −�3
�1 �1 −I �3 −�2 −1 I�3 −I�2 I�1
�2 �2 −�3 −I �1 −I�3 −1 I�1 I�2
�3 �3 �2 −�1 −I I�2 −I�1 −1 I�3
I I �1 �2 �3 −I�1 −I�2 −I�3 −1

FIGURE 1 Illustration of space-time spinors in Cl+(1, 3) under the octonionic product (8) in Table 1 , as suggested by
Lasenby16,17. Fano plane depiction adapted from Steve Phelps21.

We finally summarize all products in the multiplication table for space-time spinors in Cl+(1, 3) under the Lasenby octo-
nion product (8) in Table 1 . The visual depiction of the multiplication relationships of Table 1 in Fig. 1 , clearly shows the
isomorphism to octonions.

3 OCTONIONIC PRODUCT IN CL(3, 0)

Here we not only show in Subsection 3.1 how to implement the octonionic product in Clifford geometric algebra Cl(3, 0), we
also study in Subsection 3.2 the non-associativity of the octonion product expressed in geometric algebra in terms of scalar,
vector, bivector and trivector components of the factors, in Subsection 3.3 we demonstrate that for octonions one can define an
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associative product, isomorphic to the geometric product of multivectors in Cl(3, 0), in Subsection 3.4 the implementation of
octonions with complex biquaternions is shown, and finally in Subsection 3.5 with complex two by two Pauli matrices.

3.1 Implementation in Cl(3, 0)
The implementation of the octonion product in Cl(3, 0) is of the widest possible importance, since it is the perhaps most fre-
quently applied geometric algebra of three-dimensional physical space ℝ3. And Cl(3, 0) is isomorphic to complex quaternions
(also called complex biquaternions), that is quaternions with complex coefficients Cl(3, 0) ≅ ℂ⊗ℍ, and isomorphic to the Pauli
matrix algebra (of complex two by two matrices) of quantum mechanics. Therefore, without any extra work we obtain embed-
dings of the octonion product in complex biquaternions and Paul matrix algebra. SinceCl(3, 0) is also a subalgebra of conformal
geometric algebra (CGA) Cl(4, 1), the embedding of the octonion product in Cl(3, 0) implies also an embedding in CGA.
Because the even STA subalgebra Cl+(1, 3) of real space-time spinors in Cl(1, 3) is isomorphic to the Clifford geometric

algebra Cl(3, 0) of Euclidean space ℝ3 with basis elements

{1, �1, �2, �3, I�1 = �23, I�2 = �31, I�3 = �12, I = �123}, (24)

we can also construct in Cl(3, 0) an octonionic product, because we can split it in its even subalgebra with basis

{1, �23, �31, �12}, (25)

and the set of odd grade (w.r.t. grades in Cl(3, 0)) elements

{�1, �2, �3, I = �123}. (26)

But for the construction of the octonion product in Cl(3, 0) we need an involution, that has the same effect on vectors �k, and
bivectors �jk (k ≠ j), as the reversion had in STA Cl(1, 3) where all these elements were bivectors. The desired conjugation
exists in deed in the form of Clifford conjugation5 (indicated by an overbar), i.e. the composition of (main) grade involution
and reversion, which preserves grades zero and three, but changes the signs of grades one and two in Cl(3, 0). We can therefore
immediately conclude, that a realization of the octonionic product ofM,N in Cl(3, 0) is given by

M =M+ +M−, N = N+ +N−, M ⋆N =M+N+ +N−M− +N−M+ +M−N+, (27)

with even grade partsM+, N+ ∈ Cl+(3, 0) and odd grade partsM−, N− ∈ Cl−(3, 0). The multiplication table is again Table
1 , with octonionic product illustration in Fig. 1 .

Remark 1. Note that in the octonion product of (27), the first two terms are of even grade, and the last two are of odd grade

(M ⋆N)+ =M+N+ +N−M−, (M ⋆N)− = N−M+ +M−N+, (28)

since the product of a pair of even (or odd) multivectors in Clifford geometric algebra is even, respectively, the product of an even
with an odd multivector is odd. This can also be easily verified from the multiplication table, Table 1 , in terms of multivector
grading in Cl(3, 0).

In the context of the well studied Clifford geometric algebra Cl(3, 0) of three-dimensional Euclidean space ℝ3, the algebra
being isomorphic to complex biquaternions (Hamilton quaternions with complex coefficients), it may help to understand the
geometric meaning of the even and odd product parts by expanding them in terms of the graded multivector partsMs = ⟨M⟩0 =
⟨M⟩,Mv = ⟨M⟩1,Mb = ⟨M⟩2 andMt = ⟨M⟩3, which are the scalar-, vector-, bivector- and trivector part ofM , respectively.
The even product part results in (with commutators [A,B] = AB − BA)

(M ⋆N)+ =M+N+ +N−M− = (Ms +Mb)(Ns +Nb) + (−Nv +Nt)(Mv +Mt)
=MsNs +NsMb +MsNb +MbNb −NvMv +NtMv −MtNv +MtNt

=MsNs +Mb ⋅Nb −Nv ⋅Mv +MtNt +NsMb +MsNb +
1
2
[Mb, Nb] −Nv ∧Mv +NtMv −MtNv, (29)

with scalar part
(M ⋆N)s =MsNs +Mb ⋅Nb −Nv ⋅Mv +MtNt, (30)

5Note that by constructionM± = (M)±.
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and bivector part
(M ⋆N)b = NsMb +MsNb +

1
2
[Mb, Nb] −Nv ∧Mv +NtMv −MtNv. (31)

The odd product part results in

(M ⋆N)− = N−M+ +M−N+ = (Nv +Nt)(Ms +Mb) + (Mv +Mt)(Ns −Nb)
=MsNv +NtMb +NvMb +MsNt +NsMv −MtNb −MvNb +NsMt

=MsNv +NtMb +NsMv −MtNb +Nv ⋅Mb −Mv ⋅Nb +Nv ∧Mb −Mv ∧Nb +MsNt +NsMt, (32)

with vector part
(M ⋆N)v =MsNv +NtMb +NsMv −MtNb +Nv ⋅Mb −Mv ⋅Nb, (33)

and trivector part
(M ⋆N)t = Nv ∧Mb −Mv ∧Nb +MsNt +NsMt. (34)

In19, p. 305, we find the following notation for the octonion product (there ◦ replaces ⋆)

M ⋆N =MsNs +MsN +MNs −M ⋅ N +M × N, M =Ms +M, N = Ns + N, (35)

that is only the scalar parts Ms and Ns are split off from M,N ∈ Cl(3, 0). Apart from MsNs, we can therefore identify the
following terms

MsN =MsNv +MsNb +MsNt, MNs = NsMv +NsMb +NsMt, M ⋅ N = −Mb ⋅Nb +Nv ⋅Mv −MtNt

M × N = 1
2
[Mb, Nb] −Nv ∧Mv +NtMv −MtNv +NtMb −MtNb +Nv ⋅Mb −Mv ⋅Nb +Nv ∧Mb −Mv ∧Nb. (36)

The octonion conjugate in Cl(3, 0) is given by

M∗ = M̃+ −M− =M+ −M−. (37)

Note that the octonion conjugate is an anti-involution, i.e.

(M ⋆N)∗ = N∗ ⋆M∗, (38)

which can be easily verified for random multivectors M,N ∈ Cl(3, 0), by implementing the octonion product (28) with the
Clifford Multivector Toolbox for Matlab23,24.
Computing the octonion norm further demonstrates the consistency of the implementation and exemplifies how to employ

available geometric algebra multivector properties:

‖M‖ =M ⋆M∗ = (M+ +M−) ⋆ (M+ −M−)
(27)
= M+M+ + (−M−)M− −M−M+ +M−M+

=M+M+ −M−M− = (Ms +Mb)(Ms −Mb) − (−Mv +Mt)(Mv +Mt)
=M2

s +MsMb −MsMb −M2
b +M

2
v −MvMt +MvMt −M2

t =M2
s −M

2
b +M

2
v −M

2
t

= ⟨MM̃⟩ =M ∗ M̃ =
8
∑

i=1
M2

i , (39)

whereMi ∈ ℝ, 1 ≤ i ≤ 8, are the coefficients ofM in the Cl(3, 0) basis (24). The above computation used the fact thatMs and
Mt are in the center of Cl(3, 0).M ∗ M̃ is the scalar product ofM and its reverse.
We can furthermore demonstrate explicitly that the octonion product (27) is norm-preserving. For that we extract from (39)

the following useful equality and symmetry

M+M+ =M2
s −M

2
b = ⟨M+M+⟩ = ⟨M+M+⟩ =M+M+, (40)

which could also be explained by the fact that Cl+(3, 0) is isomorphic to quaternions, and in this isomorphism Clifford
conjugation (…) acts like quaternion conjugation. Similarly, we can extract from (39) that

M−M− =M2
v −M

2
t = ⟨M−M−⟩ = ⟨M−M−⟩ =M−M−. (41)
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Then we can show norm-preservation by direct computation

‖M ⋆N‖ = ⟨(M ⋆N) ̃(M ⋆N)⟩ = ⟨(M ⋆N)+(M ⋆N)+⟩ − ⟨(M ⋆N)−(M ⋆N)−⟩

= ⟨(M+N+ +N−M−)(N+M+ +M−N−)⟩ − ⟨(M+N− +N+M−)(N−M+ +M−N+)⟩

= ⟨M+N+N+M+⟩ + ⟨N−M−M−N−⟩ + ⟨M+N+M−N−⟩ + ⟨N−M−N+M+⟩

− ⟨N+M−N−M+⟩ − ⟨M+N−M−N+⟩ − ⟨M+N−N−M+⟩ − ⟨N+M−M−N+⟩

= (M+M+)(N+N+) + (N−N−)(M−M−) − (N−N−)(M+M+) − (N+N+)(M−M−)

= (M+M+ −M−M−) (N+N+ −N−N−) = ‖M‖‖N‖, (42)

where the first two equalities follow from (39) by replacingM → (M ⋆N). For the third equality we apply the identities (28).
For the fifth equality we apply the identities (40) and (41) as well as the cyclic symmetry of the scalar part of the geometric
product. For the sixth equality we apply the symmetries contained in (40) and (41), and for the final equality once more the
fourth equality of (39).

Remark 2. Norm preservation could be shown by analogous computations for all other embeddings of octonions in Clifford
algebras explained in the current paper, but we hope this example provides sufficient illustration. Strictly speaking, from the
algebraic viewpoint, the identity of the multiplication table of the product embedding (27) with that of octonions (see Fig. 1 )
is fully sufficient to guarantee norm preservation as well.

3.2 Non-associativity of octonion product in Cl(3, 0)
The octonion product is known for its non-associativity, distinguishing it from matrix products or the fundamental multivector
product in Clifford geometric algebras. It may therefore be of interest to look at the non-associativity of the octonionic product
(27) in Cl(3, 0), and see how it is expressed in terms of the various multivector grade parts, because the latter interpretation does
not exist in canonical octonion algebra. Toward this end, we will first compute for M,N, P ∈ Cl(3, 0) the octonionic triple
products (M ⋆N)⋆ P ,M ⋆ (N ⋆P ) and their difference, and then express the latter in terms of the scalar-, vector-, bivector-
and trivector parts ofM,N , and P .

(M ⋆N) ⋆ P = (M ⋆N)+P+ + P −(M ⋆N)− + P−(M ⋆N)+ + (M ⋆N)−P +

= (M+N+ +N−M−)P+ + P −(N−M+ +M−N+) + P−(M+N+ +N−M−) + (N−M+ +M−N+)P +

=M+N+P+ +N−M−P+ + P −N−M+ + P −M−N+

+ P−M+N+ + P−N−M− +N−M+P + +M−N+P +. (43)

M ⋆ (N ⋆ P ) =M+(N ⋆ P )+ + (N ⋆ P )−M− + (N ⋆ P )−M+ +M−(N ⋆ P )+

=M+(N+P+ + P −N−) + (P−N+ +N−P +)M− + (P−N+ +N−P +)M+ +M−(N+P+ + P −N−)

=M+N+P+ +M+P −N− +N+P −M− + P+N−M−

+ P−N+M+ +N−P +M+ +M−P +N+ +M−N−P−. (44)

The difference is

(M ⋆N) ⋆ P −M ⋆ (N ⋆ P ) = [N−M−, P+] + [P −N−,M+] + [P −M−, N+]

+ P−N−M− −M−N−P− +N−[M+, P +] +M−[N+, P +] + P−[M+, N+], (45)

where the first line has even multivectors on the right and the second line consists of odd multivectors. The commutator of two
even multivectors occurs thrice, and reduces to the commutator of the bivector parts (because the scalar parts drop out of the
commutator computation) which is again a bivector, e.g.,

[M+, N+] = [Mb, Nb] = [M23�23 +M31�31 +M12�12, N23�23 +N31�31 +N12�12]
= (M31N23 −M23N31)�12 + (M23N12 −M12N23)�31 + (M12N31 −M31N12)�23. (46)
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Because the Clifford conjugate of a bivector isMb = −Mb, the three commutators of the odd part of (45) reduce to

N−[M+, P +] +M−[N+, P +] + P−[M+, N+] = −N−[Mb, Pb] +M−[Nb, Pb] + P−[Mb, Nb]
=M−[Nb, Pb] +N−[Pb,Mb] + P−[Mb, Nb], (47)

where we note the cyclicM,N, P -symmetry. Each of these three terms can be further expanded usingN− = Nv +Nt (etc.) as,
e.g.,

N−[Pb,Mb] = (Nv +Nt)[Pb,Mb] = Nv ⋅ [Pb,Mb] +Nt[Pb,Mb] +Nv ∧ [Pb,Mb], (48)
where the first two terms have vector grade and the third term is a trivector. The commutators of the even grade part of (45) can
be expanded as, e.g.,

[N−M−, P+] = [(−Nv +Nt)(Mv +Mt), (Ps + Pb)] = [−NvMv −NvMt +NtMv, Pb]
= −[Nv ∧Mv, Pb] −Mt[Nv, Pb] +Nt[Mv, Pb] = [Mv ∧Nv, Pb] − 2Mt(Nv ⋅ Pb) + 2Nt(Mv ⋅ Pb), (49)

the result being a bivector, and it was used that under the commutator the three scalars Ps,Nv ⋅Mv andNtMt, do not contribute.
In the expansion of the first odd grade part P−N−M− −M−N−P− the products involving two or three trivector parts drop out,
leaving

P−N−M− −M−N−P− =MvNvPv − PvNvMv + 2Mt(Nv ∧ Pv) + 2Nt(Pv ∧Mv) + 2Pt(Mv ∧Nv). (50)
The first two terms on the right give

MvNvPv − PvNvMv =Mv ∧Nv ∧ Pv − Pv ∧Nv ∧Mv + (Mv ∧Nv) ⋅ Pv − Pv ⋅ (Nv ∧Mv)
= 2Mv ∧Nv ∧ Pv + Pv ⋅ (Nv ∧Mv) − Pv ⋅ (Nv ∧Mv) = 2Mv ∧Nv ∧ Pv, (51)

where we used (Mv ⋅Nv)Pv − Pv(Nv ⋅Mv) = 0 in the first equality. Putting all this together we finally obtain

(M ⋆N) ⋆ P −M ⋆ (N ⋆ P )
= [Mv ∧Nv, Pb] − 2Mt(Nv ⋅ Pb) + 2Nt(Mv ⋅ Pb) + [Nv ∧ Pv,Mb] − 2Nt(Pv ⋅Mb) + 2Pt(Nv ⋅Mb)

+ [Pv ∧Mv, Nb] − 2Pt(Mv ⋅Nb) + 2Mt(Pv ⋅Nb)
+ 2Mv ∧Nv ∧ Pv + 2Mt(Nv ∧ Pv) + 2Nt(Pv ∧Mv) + 2Pt(Mv ∧Nv)
+Nv ⋅ [Pb,Mb] +Nt[Pb,Mb] +Nv ∧ [Pb,Mb] +Mv ⋅ [Nb, Pb] +Mt[Nb, Pb] +Mv ∧ [Nb, Pb]
+ Pv ⋅ [Mb, Nb] + Pt[Mb, Nb] + Pv ∧ [Mb, Nb], (52)

and note that the full result is also invariant under cyclic permutations ofM,N, P , and that the first two lines of (52) show the
even grade part, and the last three lines the odd grade part. An easy consequence of the cyclic symmetry is

(M ⋆N) ⋆ P −M ⋆ (N ⋆ P ) = (N ⋆ P ) ⋆M −N ⋆ (P ⋆M) = (P ⋆M) ⋆N − P ⋆ (M ⋆N). (53)

3.3 Geometric algebra from octonions
Being able to embed octonions in Cl(3, 0), we may ask the question for how in the opposite the geometric algebra multivector
product of Cl(3, 0) may be obtained from octonions. The simpler question of obtaining quaternions from octonions is easily
answered, one just identifies quaternions with the (even) Pauli spinor part of octonions, i.e. Cl+(3, 0) ≅ ℍ ≅ {1, e1, e2, e3},
where {e1, e2, e3} are the first three generators of octonions, and note that by (27)

M+ ⋆N+ =M+N+, (54)

where on the right sideM+N+ corresponds to the quaternion product (and the product in the even subalgebra Cl+(3, 0)). We
observe term by term that

M+N+
(27)
= M+ ⋆N+, M−N−

(27)
= N− ⋆M−, M−N+

(27)
= N+ ⋆M−, M+N−

Cl(3,0)
= N−M+

(27)
= N− ⋆M+, (55)

where the octonion overline conjugation ofN− ⋆M− andN− ⋆M+, applied to the octonion basis yields

{1, e1, e2, e3, e4, e5, e6, e7}
O
= {1,−e1,−e2,−e3,−e4,−e5,−e6, e7}. (56)
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According to the multiplication table Table 1 , octonion overline conjugation (56) can be expressed for every B ∈
{1, e1, e2, e3, e4, e5, e6, e7}, in product form as

B
O
= (−e7 ⋆ B) ⋆ e7 = −e7 ⋆ (B ⋆ e7). (57)

The full geometric product in Cl(3, 0) can thus be defined from octonions as

MN =M+N+ +M−N− +M−N+ +M+N− =M+ ⋆N+ +N− ⋆M
O
− +N+ ⋆M− +N

O
− ⋆M+

Cl(3,0)

, (58)

where in the last term the inner conjugation is octonionic (56), and the outer conjugation is Clifford conjugation in Cl(3, 0),
after the assignment

{1 → 1, e1 → �23, e2 → �31, e3 → �12, e4 → �1, e5 → �2, e6 → �3, e7 → �123}, (59)

has been made (compare (24)). Then (58) with assignment (59) yields the Clifford geometric algebra multiplication table of
Cl(3, 0).
An alternative, even more direct implementation of the fourth geometric product part in (58) can be obtained from

−(N− ⋆ I) ⋆ (M+ ⋆ I) = −(N−I) ⋆ (M+I)
(27)
= −M+IN−I = −I2M+N− =M+N−, (60)

observing that according to the multiplication table Table 1 , we have for anyM ∈ Cl(3, 0)

M ⋆ I =MI, M+ ⋆ I =M+I ∈ Cl−(3, 0), M− ⋆ I =M−I ∈ Cl+(3, 0). (61)

3.4 Representing octonions with biquaternions
The Clifford geometric algebra Cl(3, 0) can be represented with complex biquaternionsℂ⊗ℍ, that is quaternions with complex
coefficients. The isomorphic complex quaternion basis is

{1, �23 → i, �31 → j, �12 → k, �1 → i i, �2 → i j, �3 → i k, I = �123 → i}, (62)

where {1, i, j, k} ∈ ℍ is a real quaternion basis and i ∈ ℂ is an extra commutative imaginary unit. The first four elements in
(62) correspond to the even grade Pauli spinors (all real), and the last four elements to the odd grade non-Pauli spinors (all with
factor i), respectively. That is we have forM ∈ Cl(3, 0), with eight real basis coefficientsMk ∈ ℝ, 1 ≤ k ≤ 8, the isomorphic
biquaternion element

M =M+ +M− =M1 +M5 i +M6 j +M7 k + i(M8 +M2 i +M3 j +M4 k), M+ = Re(M), M− = i Im(M). (63)

The Clifford conjugation of Cl(3, 0) corresponds to the quaternion conjugation

M+ = qc(M+) =M1 −M5 i −M6 j −M7 k, M− = qc(M−) = i(M8 −M2 i −M3 j −M4 k). (64)

Then the octonionic productM ⋆N can be embedded in complex biquaternions via

M ⋆N = (M ⋆N)+ + (M ⋆N)− =M+N+ + qc(N−)M− +N−M+ +M−qc(N+)
= (M1 +M5 i +M6 j +M7 k)(N1 +N5 i +N6 j +N7 k) + i2(N8 −N2 i −N3 j −N4 k)(M8 +M2 i +M3 j +M4 k)
+ i(N8 +N2 i +N3 j +N4 k)(M1 +M5 i +M6 j +M7 k) + i(M8 +M2 i +M3 j +M4 k)(N1 −N5 i −N6 j −N7 k), (65)

reducing the computation of the octonionic product to complex quaternionic multiplications. Clearly, in (65) (M ⋆ N)+ =
Re(M ⋆ N) is simply the real quaternion part of M ⋆ N , whereas (M ⋆ N)− = i Im(M ⋆ N) is the imaginary part of
M ⋆N , respectively. This also means that it is very easy to implement octonionic multiplication in any numeric or symbolic
software package which can deal with biquaternion (complex quaternions) numbers.We note that this embedding of the octonion
product in biquaternions is to some degree similar to the definition of octonions as pairs of quaternions via the Cayley-Dickson
doubling process, compare19, p. 302. Yet there a new imaginary unit is used anticommuting with i, j, and k, as opposed to the
commutative i ∈ ℂ, used in the present subsection.
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3.5 Representing octonions with Pauli matrices
The Clifford geometric algebra Cl(3, 0) can be represented with complex two by two Pauli matrices, see19, p. 51, with matrix
basis elements

1 =
(

1 0
0 1

)

, �23 = i�1 =
(

0 i
i 0

)

, �31 = i�2 =
(

0 1
−1 0

)

, �12 = i�3 =
(

i 0
0 −i

)

,

�1 =
(

0 1
1 0

)

, �2 =
(

0 −i
i 0

)

, �3 =
(

1 0
0 −1

)

, I = �123 = i1 =
(

i 0
0 i

)

, (66)

where the first line shows the four even grade elements of one scalar and three bivectors, and the second line the four odd grade
elements of three vectors and one trivector (up to a sign, the first line multiplied by i or equivalently by I). A general element
M ∈ Cl(3, 0) can therefore be written in the Pauli matrix basis with eight real coefficients (Mk ∈ ℝ, 1 ≤ k ≤ 8), or four
complex coefficients as

M =M+ +M− = (M11 +M5i�1 +M6i�2 +M7i�3) + (M8i1 +M2�1 +M3�2 +M4�3)
= (M1 +M8i)1 + (M2 + iM5)�1 + (M3 + iM6)�2 + (M4 + iM7)�3

=
(

(M1 +M8i) + (M4 + iM7) (M2 + iM5) − i(M3 + iM6)
(M2 + iM5) + i(M3 + iM6) (M1 +M8i) − (M4 + iM7)

)

. (67)

If an element of Cl(3, 0) is given as complex two by two matrix

M =
(

M11 M12
M21 M22

)

, (68)

we can therefore extract from the four complex coefficients M11,M12,M21,M22 ∈ ℂ, the eight real coefficients in the basis
(66) as

M1 =
1
2
Re(M11 +M22), M2 =

1
2
Re(M12 +M21), M3 =

1
2
Im(M21 −M12), M4 =

1
2
Re(M11 −M22),

M5 =
1
2
Im(M12 +M21), M6 =

1
2
Re(M12 −M21), M7 =

1
2
Im(M11 −M22), M8 =

1
2
Im(M11 +M22). (69)

The complex matrix for the even part ofM ∈ Cl(3, 0) is

M+ =M11 + i(M5�1 +M6�2 +M7�3) =
(

M1 + iM7 M6 + iM5
−M6 + iM5 M1 − iM7

)

,

M+ =M11 − i(M5�1 +M6�2 +M7�3) = −
(

−M1 + iM7 M6 + iM5
−M6 + iM5 −M1 − iM7

)

, (70)

with symmetry6 for the diagonal elements, respectively the off diagonal elements,

M1 − iM7 = cc(M1 + iM7), −M6 + iM5 = −cc(M6 + iM5). (71)

The complex matrix for the odd part ofM ∈ Cl(3, 0) is

M− =M8i1 +M2�1 +M3�2 +M4�3 = i[M81 − i(M2�1 +M3�2 +M4�3)]

=
(

M4 + iM8 M2 − iM3
M2 + iM3 −M4 + iM8

)

= i
(

M8 − iM4 −M3 − iM2
M3 − iM2 M8 + iM4

)

,

M− = −i[−M81 − i(M2�1 +M3�2 +M4�3)] = −i
(

−M8 − iM4 −M3 − iM2
M3 − iM2 −M8 + iM4

)

, (72)

with the corresponding symmetry for the diagonal elements, respectively the off diagonal elements,

M8 + iM4 = cc(M8 − iM4), M3 − iM2 = −cc(−M3 − iM2). (73)

6Note that we use cc() for complex conjugation: cc(a + ib) = a − ib.
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The octonion product embedding can then be expressed forM,N ∈ Cl(3, 0) in complex matrix form for the (even grade) Pauli
part by

(M ⋆N)+ =M+N+ +N−M− =
(

M1 + iM7 M6 + iM5
−M6 + iM5 M1 − iM7

)(

N1 + iN7 N6 + iN5
−N6 + iM5 N1 − iN7

)

+ (−i)i
(

−N8 − iN4 −N3 − iN2
N3 − iN2 −N8 + iN4

)(

M8 − iM4 −M3 − iM2
M3 − iM2 M8 + iM4

)

, (74)

and for the (odd grade) non-Pauli part by

(M ⋆N)− = N−M+ +M−N+ = i
(

N8 − iN4 −N3 − iN2
N3 − iN2 N8 + iN4

)(

M1 + iM7 M6 + iM5
−M6 + iM5 M1 − iM7

)

+ i(−1)
(

M8 − iM4 −M3 − iM2
M3 − iM2 M8 + iM4

)(

−M1 + iM7 M6 + iM5
−M6 + iM5 −M1 − iM7

)

. (75)

The full octonionic productM ⋆N in complex two by two matrix form is simply the sum of (74) and (75).

4 OCTONIONIC PRODUCT IN CL(3, 1)

We now work in the Clifford geometric algebra Cl(3, 1) with opposite signature over the vector space ℝ3,1, found previously
relevant for the construction of the space-time Fourier transform in10,12,13. For this two pure unit quaternions f, g ∈ ℍ, f 2 =
g2 = −1 are chosen and quaternions x ∈ ℍ are split into

x± = 1
2
(x ± fxg). (76)

This split can be fully extended to Cl(3, 1) (see its tensor product relation to quaternions below), and in Cl(3, 1) the subalgebra
generated by time vector et, space volume i3, and hypervolume I ,

{1, et = e0, i3 = e123, I = eti3}, (77)

is isomorphic to quaternions. Choosing for the generalization of the split7 to Cl(3, 1), f = et, g = i3 = e∗t = etI−1 results in
the space-time split related to time axis et. In the resulting space-time Fourier transform, this space-time split naturally splits
Cl(3, 1) multivector valued wave packets into left- and right traveling wave packets.
Furthermore, Patrick Girard et al.7 find the tensor product of two quaternion algebras ℍ⊗ ℍ to be isomorphic to Cl(3, 1).8

Note that Hestenes’ choice of Cl(1, 3) for STA is algebraically not isomorphic to Cl(3, 1).9
The orthonormal basis vectors of ℝ3,1 square to

−e20 = e21 = e22 = e23 = 1. (78)

The 16-dimensional multivector basis of Cl(3, 1) is

{1, e0, e1, e2, e3, s1 = e10, s2 = e20, s3 = e30, Is1 = −e23 = −s23, Is2 = −e31 = −s31, Is3 = −e12 = −s12,
Ie0 = e123, Ie1 = e023, Ie2 = e031, Ie3 = e012, I = e0123 = −s1s2s3}. (79)

The even subalgebra Cl+(3, 1) of spinors is again isomorphic to Cl(3, 0) with eight-dimensional basis

{1, s1, s2, s3, Is1, Is2, Is3, I}. (80)

We have the important relationships

Ĩ = I, II = −1, s1s2 = −Is3 = −s2s1, Is1Is2 = −s1s2 = Is3. (81)

Furthermore, the even subalgebra of Cl(3, 0) ≅ Cl+(3, 1) commutes with e0 and has the basis

{1, Is1, Is2, Is3} (82)

7Note that here the asterisk corresponds to duality in geometric algebra e∗t = etI−1.
8Even without mentioning it, Patrick Girard et al. thus go back to the beginning, i.e. the very wayWilliamK. Clifford himself originally constructed geometric algebras

in 3.
9Remark by Gene McClellan at AGACSE 2021.
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TABLE 2 Multiplication table for octonion embedding in Cl(3, 1).

Left
factors

Right factors
1 Is1 Is2 Is3 s1 s2 s3 I

1 1 Is1 Is2 Is3 s1 s2 s3 I
Is1 Is1 −1 Is3 −Is2 I −s3 s2 −s1
Is2 Is2 −Is3 −1 Is1 s3 I −s1 −s2
Is3 Is3 Is2 −Is1 −1 −s2 s1 I −s3
s1 s1 −I −s3 s2 −1 −Is3 Is2 Is1
s2 s2 s3 −I −s1 Is3 −1 −Is1 Is2
s3 s3 −s2 s1 −I −Is2 Is1 −1 Is3
I I s1 s2 s3 −Is1 −Is2 −Is3 −1

for Pauli spinors (rotors in space)
 + = 1

2
( + (e20)e0 e0) =

1
2
( − e0 e0). (83)

The odd elements of Cl(3, 0) ≅ Cl+(3, 1) are the non-Pauli spinors10

 − = 1
2
( − (e20)e0 e0) =

1
2
( + e0 e0). (84)

with basis elements
{s1, s2, s3, I}, (85)

anti-commute with e0. We can again formulate an embedding of the octonionic product in Cl(3, 1) by defining for two spinors
 , � ∈ Cl+(3, 1) that

 ⋆ � =  +�+ + �̃− − + �− + +  −�̃+. (86)
Computing all products explicitly according to (86), we obtain the octonionic multiplication table Table 2 . A visualization
diagram for this octonionic multiplication is shown in Fig. 2 . Note that Fig. 1 and Fig. 2 are closely related by replacing �k
with sk (k = 1, 2, 3), and I by −I , respectively. Note that the multiplication table shows that the first two terms in (86) result in
Pauli spinors, whereas the last two terms result in non-Pauli spinors, respectively.
The octonion conjugate in Cl(3, 1), an anti-involution, is again given by

 ∗ =  ̃+ −  −, ( ⋆ �)∗ = �∗ ⋆  ∗. (87)

We now compute the octonion norm in Cl+(3, 1)

‖ ‖ =  ⋆  ∗ = ( + +  −) ⋆ ( ̃+ −  −) =  + ̃+ + (̃− −) − + (− −) + +  −
̃̃ + =  + ̃+ −  ̃− − −  − + +  − +

=  + ̃+ −  ̃− − = 1
4
( − e0 e0)( ̃ − e0 ̃e0) −

1
4
( ̃ + e0 ̃e0)( + e0 e0)

= 1
4
(  ̃ − e0  ̃e0 −  ̃ + e0 ̃ e0) +

1
4
(− e0 ̃e0 − e0 e0 ̃ −  ̃e0 e0 − e0 ̃e0 )

= 1
4
(2⟨  ̃⟩ − 2⟨ ̃ ⟩) − 1

2
[( e0 ̃) ⋅ e0 + ( ̃e0 ) ⋅ e0] = −1

2
⟨ e0 ̃e0 +  ̃e0 e0⟩ = −⟨ e0 ̃e0⟩

= −( e0 ̃) ⋅ e0, (88)

Note that the computation is closely analogous to (12) for Cl(1, 3), only several sign changes occur due to e20 = −1 in Cl(3, 1).

10Note that the definition of  ± provided here is consistent with the corresponding definition in Section 2, because inserting the factor (e20) = +1 in Section 2 preserves
the definition of  ±.



14 Eckhard Hitzer

FIGURE 2 Illustration of space-time spinors in Cl+(3, 1) under the octonionic product (86) in Table 2 . Fano plane depiction
adapted from Steve Phelps21.

5 OCTONIONIC PRODUCT IN CL(0, 3)

Now we want to pursue the question how far other Clifford algebras Cl(p, q), n = p + q = 3, might be suitable for a similar
embedding of octonions. First we turn to Cl(0, 3) with orthonormal vector basis of ℝ0,3

{e1, e2, e3}, e21 = e22 = e23 = −1. (89)

The eight-dimensional multivector basis of Cl(0, 3) has all vectors and bivectors squaring to −1, only the scalar and the central
unit trivector pseudoscalar square to +1

{1, e1, e2, e3, e23, e31, e12, I = e123}. (90)
We can split this into the even subalgebra Cl+(0, 3) of spinors (rotors)  + with basis

{1, e23, e31, e12}, (91)

and odd elements  − of Cl−(0, 3) with basis
{e1, e2, e3, I}. (92)

We define the octonionic product of two multivectors  , � ∈ Cl(0, 3) as

 ⋆ � =  +�+ + �̃− − + �− + +  −�̃+. (93)

Computing all products of basis elements of Cl(0, 3) under this new product, we obtain the multiplication table Table 3 . A
visualization diagram for this octonionic multiplication in Cl(0, 3) is shown in Fig. 3 . Note that the first two terms in (93) result
in even grade multivectors, whereas the last two terms result in odd multivectors, respectively.
The octonion conjugate in Cl(0, 3), an anti-involution, is given by

 ∗ =  ̃+ −  − ( ⋆ �)∗ = �∗ ⋆  ∗. (94)



Eckhard Hitzer 15

TABLE 3 Multiplication table for octonion product defined in Cl(0, 3).

Left
factors

Right factors
1 e23 e31 e12 e1 e2 e3 I

1 1 e23 e31 e12 e1 e2 e3 I
e23 e23 −1 e12 −e31 I −e3 e2 −e1
e31 e31 −e12 −1 e23 e3 I −e1 −e2
e12 e12 e31 −e23 −1 −e2 e1 I −e3
e1 e1 −I −e3 e2 −1 −e12 e31 e23
e2 e2 e3 −I −e1 e12 −1 −e23 e31
e3 e3 −e2 e1 −I −e31 e23 −1 e12
I I e1 e2 e3 −e23 −e31 −e12 −1

FIGURE 3 Illustration of basis elements ofCl(0, 3) under the octonionic product (93) in Table 3 . Fano plane depiction adapted
from Steve Phelps21.

As an application let us compute the octonion norm11 in Cl(0, 3)

‖ ‖ =  ⋆  ∗ =  + ̃+ −  ̃− − −  − + +  −
̃̃ + =  + ̃+ −  ̃− − = ( s +  b)( s −  b) − ( v −  t)( v +  t)

=  2
s −  s b +  s b −  

2
b −  

2
v +  

2
t −  v t +  v t =  2

s −  
2
b −  

2
v +  

2
t = ⟨  ⟩ =

8
∑

i=1
 2
i , (95)

where  i ∈ ℝ, 1 ≤ i ≤ 8, are the basis coefficients of  in the Cl(0, 3) basis (90), and  s,  b,  v and  t, are the scalar-, vector-,
bivector- and trivector part of  , respectively. Note the use of  s,  t ∈ center of Cl(0, 3).

11Note that using the principal reverse (see Equation (2.4) on page 2217 of 11), the composition of reversion with changing the sign of every basis vector factor, allows
to write the norm as scalar product ‖ ‖ = ⟨ pr( )⟩ =  ∗ pr( ) =  +pr( )+ +  −pr( )−, using pr( +) =  ̃+ and pr( −) = − ̃−.
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6 OCTONIONIC PRODUCT IN CL(1, 2)

Next we turn to Cl(1, 2) with orthonormal vector basis of ℝ1,2

{e1, e2, e3}, e21 = −e22 = −e23 = 1. (96)

The eight-dimensional multivector basis of Cl(1, 2) is

{1, e1, e2, e3, e23, e31, e12, I = e123}, (97)

with squares
e223 = e2123 = −1, e231 = e212 = +1. (98)

We can split the basis (97) into a four-dimensional quaternion like subalgebra (for  +) generated by the two vectors of negative
square {e2, e3},

{1, e2, e3, e23}, (99)
and the remaining four-dimensional  − set always involving the factor e1,

{e1, e31, e12, I = e123} = e1{1,−e3, e2, e23}. (100)

We define the octonionic product of two multivectors  , � ∈ Cl(1, 2) as

 ⋆ � =  +�+ + �− − + �− + +  −�+, (101)

where the overbar indicates Clifford conjugation.
Computing all products of basis elements of Cl(1, 2) under this new product, we obtain the multiplication table Table 4 . A

visualization diagram for this octonionic multiplication in Cl(1, 2) is shown in Fig. 4 . The multiplication table shows that the
first two product terms in (101) evidently belong to the quaternion like subalgebra (99), whereas the last two belong to the set
(100) always involving the factor e1.
Octonion conjugation in Cl(1, 2), an anti-involution, also uses Clifford conjugation (overbar notation)

 ∗ =  + −  −, ( ⋆ �)∗ = �∗ ⋆  ∗. (102)

As useful exercise, we compute the octonion norm in Cl(1, 2)

‖ ‖ =  ⋆  ∗ =  + + −  − − −  − + +  − + =  + + −  − −

= ( 0 +  2e2 +  3e3 +  23e23)( 0 −  2e2 −  3e3 23e23)
− (− 1e1 −  31e31 −  12e12 +  123I)( 1e1 +  31e31 +  12e12 +  123I)

=  2
0 +  

2
2 +  

2
3 +  

2
23 +  2 23

(

e2(−e23) + e23(−e2)
)

+  3 23
(

e3(−e23) + e23(−e3)
)

+  2
1 +  

2
31 +  

2
12 +  

2
123 +  1 123(e1I − Ie1)

=  2
0 +  

2
1 +  

2
2 +  

2
3 +  

2
23 +  

2
31 +  

2
12 +  

2
123, (103)

where  0, ...,  123 ∈ ℝ, are the eight multivector basis coefficients of  in the basis (97) of Cl(1, 2). We used that  0 and I are
central, and that cross terms always happen to cancel out due to the signs and (anti)commutation properties of basis elements
of (97). Just as in Footnote 11 for Cl(0, 3), the octonion norm in Cl(1, 2) can also be computed using the principal reverse

‖ ‖ = ⟨ pr( )⟩ =  ∗ pr( ). (104)

7 THE CASE OF CL(2, 1)

The Clifford algebra Cl(2, 1) is defined over the vector space ℝ2,1 with three orthonormal basis vectors

{e1, e2, e3}, e21 = e22 = −e23 = 1. (105)

The eight-dimensional multivector basis of Cl(2, 1) is

{1, e1, e2, e3, e23, e31, e12, I = e123}, (106)
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TABLE 4 Multiplication table for octonion product defined in Cl(1, 2).

Left
factors

Right factors
1 e2 e3 e23 e31 e12 e1 I

1 1 e2 e3 e23 e31 e12 e1 I
e2 e2 −1 e23 −e3 I −e1 e12 −e31
e3 e3 −e23 −1 e2 e1 I −e31 −e12
e23 e23 e3 −e2 −1 −e12 e31 I −e1
e31 e31 −I −e1 e12 −1 −e23 e3 e2
e12 e12 e1 −I −e31 e23 −1 −e2 e3
e1 e1 −e12 e31 −I −e3 e2 −1 e23
I I e31 e12 e1 −e2 −e3 −e23 −1

FIGURE 4 Illustration of basis elements of Cl(1, 2) under the octonionic product (101) in Table 4 . Fano plane depiction
adapted from Steve Phelps21.

where bivectors and trivectors square to
e223 = e231 = e2123 = 1, e212 = −1. (107)

Thus the basis of Cl(2, 1) contains only two commuting elements {e3, e12} that square to minus one and their product e123
squares to +1. Therefore no quaternionic subalgebra can be found in Cl(2, 1), which could give rise to the first 4 × 4 block in
the multiplication table of the embedding of an octonionic product. The previous method, introduced by Lasenby, to define an
octonion type product, seems therefore not applicable to Cl(2, 1).
One could think of taking inspiration from the principal reverse, which is the same as the reverse, except for multiplying e3

with "3 = e23 = −1. Applying this sign change (indicated by a prime) to the basis of the even subalgebra we obtain

{1, e23, e31, e12}′ = {1,−e23,−e31, e12}. (108)

So would it be possible to introduce an octonionic product in Cl(2, 1) in the following way?

M ⋆N =M+N
′
+ +N−

′
M− +N ′

−M+ +M−N+
′
. (109)
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This gives the correct diagonal elements when computing the first termM+N ′
+:

1 ⋆ 1 = 1, e23 ⋆ e23 = e23e
′
23 = −1, e31 ⋆ e31 = e31e

′
31 = −1, e12 ⋆ e12 = e12e12 = −1, (110)

but the product of e23 with e12 becomes symmetric (instead of antisymmetric):

e23 ⋆ e12 = e23e
′
12 = e23e12 = e31, e12 ⋆ e23 = e12e

′
23 = −e12e23 = −e13 = e31. (111)

So the answer is negative again.

8 OCTONIONIC PRODUCTS IN CL(P ,Q),N = P +Q = 4

We have already considered the Minkowski space-time algebras Cl(1, 3) and Cl(3, 1), and all Clifford algebras of three-
dimensional spaces Cl(p, q), n = p + q = 3. Now we want to consider the even subalgebras of all Clifford algebras Cl(p, q),
n = p + q = 4 of four-dimensional vector spaces ℝp,q , n = p + q = 4, in order to find the Clifford algebras that permit an octo-
nion product embedding via their even subalgebra, similar to the method proposed by Anthony Lasenby16,17 for Cl(1, 3) and its
even subalgebra Cl+(1, 3), isomorphic to Cl(3, 0).
For this purpose we can utilize the following even subalgebra isomorphisms, see19, p. 218.

Cl+(p, q) ≅ Cl(p, q − 1), Cl+(n, 0) ≅ Cl(0, n − 1). (112)

We therefore have five isomorphisms for Cl(p, q), n = p + q = 4:

Cl+(4, 0) ≅ Cl(0, 3), Cl+(3, 1) ≅ Cl(3, 0), Cl+(2, 2) ≅ Cl(2, 1), Cl+(1, 3) ≅ Cl(1, 2) ≅ Cl(3, 0),
Cl+(0, 4) ≅ Cl(0, 3) ≅ Cl+(4, 0), (113)

also applying Cl(p, q) ≅ Cl(q + 1, p − 1) of19, p. 215, and the last isomorphism follows from the first in reverse order.

Remark 3. Because we already found that Cl(2, 1) appears not to permit the Lasenby style embedding16,17 of the octonion
product, it would also not work in the even subalgebra of Cl(2, 2), according to Section 7. But we note that by excluding one
basis vector of positive square, Cl(2, 2) is found to have subalgebras isomorphic to Cl(1, 2), which would then allow to embed
an octonion product as in Section 6. More general, taking the hyperplane subalgebra of Cl(2, 2) obtained by excluding any
vector dimension of positive square from Cl(2, 2), produces an algebra isomorphic to Cl(1, 2), which allows following Section
6 to embed an octonion product.

The algebras Cl(1, 3) and Cl(3, 1) have already been treated in detail in Sections 2 and 4, respectively. So in the following
subsections we concentrate on Cl(4, 0), Cl(0, 4), and Cl(2, 2) (following Remark 3), respectively.

8.1 Octonionic products in Cl(4, 0)
We denote the orthonormal basis of ℝ4 by

{e0, e1, e2, e3}, e20 = e21 = e22 = e23 = 1. (114)

The even subalgebra Cl+(4, 0) has therefore the basis (now I is central)

{1, I�1 = e23, I�2 = e31, I�3 = e12, �1 = e10, �2 = e20, �3 = e30, I = e0123}, (115)

with (k = 1, 2, 3)

Ĩ = I, I2 = 1, �2k = −1, (I�k)2 = −1, �1�2 = −I�3, etc., I�1I�2 = −I�3, etc. (116)

The  + = 1
2
( + e0 e0) Pauli spinor part (isomorphic to quaternions) commuting with e0 is then

{1, I�1, I�2, I�3}, (117)

and the  − = 1
2
( − e0 e0) (dual) non-Pauli spinor part anti-commuting with e0 is

{�1, �2, �3, I = �1�2�3}. (118)
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TABLE 5 Multiplication table for Lasenby octonion embedding in Cl(4, 0).

Left
factors

Right factors
1 I�1 I�2 I�3 �1 �2 �3 I

1 1 I�1 I�2 I�3 �1 �2 �3 I
I�1 I�1 −1 −I�3 I�2 −I �3 −�2 �1
I�2 I�2 I�3 −1 −I�1 −�3 −I �1 �2
I�3 I�3 −I�2 I�1 −1 �2 −�1 −I �3
�1 �1 I �3 −�2 −1 I�3 −I�2 −I�1
�2 �2 −�3 I �1 −I�3 −1 I�1 −I�2
�3 �3 �2 −�1 I I�2 −I�1 −1 −I�3
I I −�1 −�2 −�3 I�1 I�2 I�3 −1

FIGURE 5 Illustration of basis elements of Cl(4, 0) under the octonionic product (119) in Table 5 . Fano plane depiction
adapted from Steve Phelps21.

We now use the Ansatz for the octonion product as

 ⋆ � =  +�+ − �̃− − + �− + +  −�̃+, (119)

where we note the sign difference of the second term with (8). Based on (119), we obtain the following multiplication table Table
5 . A visualization diagram for this octonionic multiplication in Cl(4, 0) is shown in Fig. 5 . Note that the multiplication table
shows that the first two terms in (119) result in Pauli spinors, whereas the last two terms result in non-Pauli spinors, respectively.
The octonion conjugation in Cl(4, 0), an anti-involution, is given by

 ∗ =  ̃+ −  −, ( ⋆ �)∗ = �∗ ⋆  ∗. (120)

The octonionic norm in Cl+(4, 0) is given by
‖ ‖ = ( e0 ̃) ⋅ e0, (121)

the computation being the same as in (12) and (13) for Cl(1, 3).
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TABLE 6 Multiplication table for Lasenby octonion embedding in Cl(0, 4).

Left
factors

Right factors
1 I�1 I�2 I�3 �1 �2 �3 I

1 1 I�1 I�2 I�3 �1 �2 �3 I
I�1 I�1 −1 I�3 −I�2 −I −�3 �2 �1
I�2 I�2 −I�3 −1 I�1 �3 −I −�1 �2
I�3 I�3 I�2 −I�1 −1 −�2 �1 −I �3
�1 �1 I −�3 �2 −1 −I�3 I�2 −I�1
�2 �2 �3 I −�1 I�3 −1 −I�1 −I�2
�3 �3 −�2 �1 I −I�2 I�1 −1 −I�3
I I −�1 −�2 −�3 I�1 I�2 I�3 −1

8.2 Octonionic products in Cl(0, 4)
We denote the orthonormal basis of ℝ0,4 by

{e0, e1, e2, e3}, e20 = e21 = e22 = e23 = −1. (122)

The even subalgebra Cl+(0, 4) has therefore the basis (now I is central)

{1, I�1 = e23, I�2 = e31, I�3 = e12, �1 = e10, �2 = e20, �3 = e30, I = e0123}, (123)

with (k = 1, 2, 3)

Ĩ = I, I2 = 1, �2k = −1, (I�k)2 = −1, �1�2 = I�3, etc., I�1I�2 = I�3, etc.. (124)

The Pauli spinor part (isomorphic to quaternions)

 + = 1
2
( + (e20)e0 e0) =

1
2
( − e0 e0), (125)

commuting with e0 has the basis
{1, I�1, I�2, I�3}, (126)

and the (dual) non-Pauli spinor part
 − = 1

2
( − (e20)e0 e0) =

1
2
( + e0 e0), (127)

anti-commuting with e0 has the basis
{�1, �2, �3, I = −�1�2�3}. (128)

We now use the Ansatz for the octonion product as

 ⋆ � =  +�+ − �̃− − + �− + +  −�̃+, (129)

where we note the sign difference of the second term with (8). Based on (129), we obtain the following multiplication table Table
6 . A visualization diagram for this octonionic multiplication in Cl(0, 4) is shown in Fig. 6 . Note that the multiplication table
shows that the first two terms in (129) result in Pauli spinors, whereas the last two terms result in non-Pauli spinors, respectively.
The octonion conjugation in Cl(0, 4), an anti-involution, is given by

 ∗ =  ̃+ −  −, ( ⋆ �)∗ = �∗ ⋆  ∗. (130)

The octonion norm in Cl+(0, 4) is given by
‖ ‖ = −( e0 ̃) ⋅ e0, (131)

the computation being the same as in Section 4 for Cl(3, 1).
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FIGURE 6 Illustration of basis elements of Cl(0, 4) under the octonionic product (129) in Table 6 . Fano plane depiction
adapted from Steve Phelps21.

8.3 Octonionic products in Cl(2, 2)
As already explained in Remark 3, the even subalgebra Cl+(2, 2) isomorphic to Cl(2, 1)may not permit to embed an octonionic
product. But we can instead simply take away one vector of positive square from the basis of ℝ2,2, e.g. by removing e1 and are
left with {e0, e2, e3} and vector squares

e20 = −e32 = −e23 = 1, (132)
i.e. a basis for ℝ1,2. By relabeling the basis vectors

e′0 = e0, e′1 = e2, e′2 = e3, (133)

we can then apply the octonion embedding of Section 6 for obtaining an octonion product in the subalgebra ofCl(2, 2), generated
by {e0, e2, e3}.
Because by (133), it would only be a trivial basis element relabeling exercise applied to Section 6, we omit to restate for

Cl(ℝ1,2) ≅ Cl({e0, e2, e3}) ⊂ Cl(2, 2) the octonionic product (101), the octonion conjugation (102) and the octonionic norm
(103).

9 CONCLUSIONS

In this paper we have studied A. Lasenby’s embedding of octonion multiplication in space-time algebra Cl(1, 3)16,17 and
extended it to all Clifford geometric algebras Cl(p, q) of dimensions n = p + q = 3, 4 of three and four dimensional quadratic
spaces ℝp,q . A notable exception proved to be Cl(2, 1), where the lack of a subalgebra isomorphic to quaternions appears to be
the essential barrier. This also means that for the case of Cl(2, 2) we are not able to simply use the even subalgebra, but instead
need to exclude one basis vector of positive square. In all cases we gave multiplication tables and Fano plane diagrams, and
specified the octonion conjugate which enables the computation of the octonion norm as a scalar in geometric algebra (via the
scalar-, or the inner product). For Cl(3, 0)we additionally studied explicitly the octonionic product non-associativity in terms of
the multivector grade parts of the multivector factors involved, showed how to obtain the multivector product of geometric alge-
bra from the octonion product, and how to express the octonionic product using (complex) biquaternions (easiest for numeric
and symbolic software implementations) or complex two by two matrices. A summary of the results is compiled in Table 7 . In
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TABLE 7 Summary of octonion embeddings in Cl(p, q), p + q = n = 3, 4. Algebra = Clifford geometric algebra selected for
embedding, Pauli spinor  +, non-Pauli spinor  −, Conj. = octonion conjugation equivalent, Product = octonionic product, M.
Tb. = multiplication table, F. Dg. = Fano plane diagram, Norm = octonion norm computed in Clifford geometric algebra, Sc.=
section on the respective Clifford geometric algebra in this paper.  ̃ means reversion,  Clifford conjugation, pr( ) principal
reverse and ⟨ ⟩ scalar part, respectively. Section 3 additionally includes embeddings for (complex) biquaternions and Pauli
matrix algebra.

Algebra (non)Pauli spinors Conj. Product  ⋆ � M. Tb. F. Dg. Norm Sc.

Cl(3, 0)  + ∈ Cl+(3, 0),
 + −  −  +�+ + �− − + �− + +  −�+ Tb. 1 Fig. 1 ⟨  ̃⟩ 3

 − ∈ Cl−(3, 0)

Cl(2, 1) No implementation found 7

Cl(1, 2)  + ∶ {1, e2, e3, e23},  + −  −  +�+ + �− − + �− + +  −�+ Tb. 4 Fig. 4 ⟨ pr( )⟩ 6
 − ∶ {e1, e31, e12, I}

Cl(0, 3)  + ∈ Cl+(0, 3),
 ̃+ −  −  +�+ + �̃− − + �− + +  −�̃+ Tb. 3 Fig. 3 ⟨  ⟩ 5

 − ∈ Cl−(0, 3)

Cl+(4, 0)  ± = 1
2
( ± e0 e0)  ̃+ −  −  +�+ − �̃− − + �− + +  −�̃+ Tb. 5 Fig. 5 ( e0 ̃) ⋅ e0 8.1

Cl+(3, 1)  ± = 1
2
( ∓ e0 e0)  ̃+ −  −  +�+ + �̃− − + �− + +  −�̃+ Tb. 2 Fig. 2 −( e0 ̃) ⋅ e0 4

Cl(2, 2) Use subalgebra Cl(1, 2) ≅ Cl({e0, e2, e3}) ⊂ Cl(2, 2) as in Sec. 6 8.3

Cl+(1, 3)  ± = 1
2
( ± e0 e0)  ̃+ −  −  +�+ + �̃− − + �− + +  −�̃+ Tb. 1 Fig. 1 ( e0 ̃) ⋅ e0 2

Cl+(0, 4)  ± = 1
2
( ∓ e0 e0)  ̃+ −  −  +�+ − �̃− − + �− + +  −�̃+ Tb. 6 Fig. 6 −( e0 ̃) ⋅ e0 8.2

space-time algebra there is an immediate interest in the use of the Lasenby octonion embedding for elementary particle physics
modeling, an approach which can now be extended to a wide range of Clifford algebras.
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