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Abstract

In this paper it is shown that the solution enabled by Hilbert that pre-
dicts black holes and an event horizon is �awed both mathematically
and physically. With the correct physical ansatz linking GR theory
with the real physical world, spacetime is shown to be completely reg-
ular outside a point mass, there is no event horizon, observed velocities
do not exceed the speed of light, the e�ective gravitational mass falls
to zero as r → 0, and there is no singularity at the origin.

1 Introduction
Black holes play a major part in the current paradigm in gravitational
physics and cosmology, and the vast majority of mathematicians, as-
trophysicists and cosmologists believe they exist in the universe as a
natural phenomenon. For many scientists the rationale has been fully
established, and they have moved on in their thinking, with no further
consideration of the possibility that they may be a mathematical or
physical artefact caused by false interpretation of theory and its link
with the real physical world. Indeed, there have recently been claims
that black holes have been "observed" by both gravitational wave [1]
and VLBI [2] measurements, but it is not my intention here to show
that those claims are false. It is indeed true to say that the concept
of black holes has captured the imagination of countless scientists and
non-scientists alike, and spawned enormous amounts of theoretical and
experimental work in astrophysics and astronomy.
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Nevertheless, I shall show in this paper that the theoretical founda-
tion for black holes is �awed. Firstly, I shall discuss the steps leading to
the currently accepted solution, and then pinpoint why this paradigm
is wrong. Einstein's general theory of relativity per se is not being
questioned here, only the way it has been interpreted.

2 Theory
2.1 Preamble
The starting point in the story of black holes is a solution using Albert
Einstein's general theory of relativity (GR) [3] for the gravitational
�eld due to a point mass in a vacuum, �rst obtained in 1916 by Karl
Schwarzschild [4]. A year later Droste [5] and Weyl [6] independently
obtained a further variant of the solution. Subsequently, Hilbert [7]
extended Droste and Weyl's solution in such a way that the solution
showed a discontinuity in spacetime that was later interpreted to be an
event horizon obscuring the central mass, which came to be known as
a black hole.

2.2 Spacetime metric and solution
Using polar coordinates the metric line element for a spherically sym-
metric spacetime outside a point at r = 0 may be written:

ds̃2 = c2dt′2 = Ac2dt2 −B dr2 − C dΩ2 (1)

where ds̃ is a spacetime increment, c is the speed of light, dt′ an in-
crement of proper time, dt an increment of coordinate time, dr an
increment of radial distance and dΩ an angular increment given by
dΩ2 = dθ2 + sin2θ dφ2. A,B and C are radially dependent functions
that describe the time, radial and angular spacetime curvature metric
coe�cients, respectively.

Using Lagrangian formalism the radial equation of motion for a free-
falling test object (along a radius with dΩ = 0) may be found from the
geodesic equation in r, and is given by

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 = 0 (2)

where "dot" refers to di�erentiation with respect to proper time t′, and
A′ = dA/dr,B′ = dB/dr.

We don't yet know how A,B and C are related, but using Einstein's
vacuum �eld equations in GR, the following relationships are obtained
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as the solution:

A =
1

B
=

(
1− α

r̃

)
; C = r̃2 (3)

where r̃ is some radial coordinate, de�ned by r̃ =
√

C, which is related
to the (true) radial distance r in an as-yet unspeci�ed way.

Using B = 1/A, it is then straightforward to show that Equation 2
can be "simpli�ed" to read

r̈ +
1

2
c2A′ = 0 (4)

Integration of this expression then gives

A = 1− ṙ2

c2
; B = 1/A (5)

2.3 Weak-�eld approximation
Newton's law of gravitation for a free-falling test object may be written:

a +
GM

r2
= 0 (6)

where a is the classical acceleration, G is Newton's universal gravi-
tational constant, and M is the gravitational mass at the coordinate
origin. This gives the following expression for the free-fall velocity of
an object falling from rest at in�nity:

v =

√
2GM

r
(7)

In order to obtain correspondence between GR and classical physics
in the weak-�eld region where Newton's law holds, the conventional
procedure is then to equate this proper velocity ṙ with v, giving:

A = 1− 2GM

c2r
[weak field approx.] (8)

Strange though it may seem to any rigorous mathematician or physi-
cist not personally involved with black-hole physics, this expression is
then assumed to hold for any value of r, including when it becomes
very small and of the order of magnitude of 2GM/c2. It is then falsely
envisaged by the current scienti�c community that this function A can
become negative as r → 0, and it is this mistake that is used as the
rationale for believing in an event horizon at r = 2GM/c2, with the
point mass M obscured behind it as a black hole. This is certainly
incorrect, as I shall explain in the next section.
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3 The proper velocity
The fallacy arises because the speed of a free-falling object has been
equated with the proper velocity ṙ = dr/dt′, which is de�ned via dis-
tance increments measured in a �at coordinate space (dr), which could
be imagined to be a long way from the gravitational �eld, where space
is not curved, or in a hypothetical frame of reference with the mass
causing gravitation somehow removed, while the time increments dt′

are measured by observing the time on a clock co-moving with the
falling object.

Now consider Newton himself sitting underneath an apple tree, mus-
ing about gravity, when an apple lands on his head. He is essentially
acting as an observer positioned within the gravitational �eld of the
Earth, where - to be accurate about it - space is curved compared to
that at in�nity. The space is approximately �at, when the �eld is weak,
but to ignore the curvature of space in de�ning the observed velocity
is the crucial mistake that leads to the black-hole prediction.

It is therefore correct to identify the proper velocity according to
this observer using a distance increment in terms of the curved radial
space, viz.

√
B dr (not simply dr). We then have for the observed

proper velocity

vobs′ =

√
B dr

dt′
(9)

It is this quantity that should be set equal to the Newtonian expression
for the free-fall velocity. We then have:

√
B dr

dt′
=

√
2GM

r
(10)

which gives
ṙ2 =

1

B
× 2GM

r
(11)

Using Equation 5 and B = 1/A we then obtain

A =
(
1 +

2GM

c2r

)−1

(12)

You will notice that A never becomes negative when r → 0, and it
approximates the conventional solution for r >> 2GM/c2. In addition,
the GR proper velocity may be expressed in the following form

ṙ2 =
2GM

r

(
1 +

2GM

c2r

)−1

(13)
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4 Showing how this is linked to SR
Special relativity (SR) published in 1905 was a forerunner to GR. Both
theories adopt a four-dimensional Minkowski spacetime composed of
three spatial coordinates and one time coordinate of opposite signa-
ture. SR satis�es the principle of relativity of inertial motion, and
is called Lorentz covariant, which means that there is no preferred
reference frame and physical laws remain unchanged under a Lorentz
transformation of the space and time coordinates. On the other hand,
GR is generally covariant, such that its laws remain unchanged in form
under arbitrary or general transformation of the spacetime coordinates,
and the concept of there being no preferred frame is lost. Relating the
two theories is, therefore, problematical. Nevertheless, in this section I
shall use SR to show what it can say about the free-fall of a test object,
even though it was not really conceived to do so.

Writing the four-force F̃ as the rate of change of four-momentum
in the co-moving (proper) frame, we have:

F̃ =
dp̃

dt′
=

(
iP

c
, ~F

)
(14)

where P is power, given by P = dE/dt′, and E is the energy. We then
write

F̃ .ds̃ =
(

iP

c
, F

)
.(ic dt, dr) = −P dt + F dr = 0 (15)

for conservation of energy. Now rearrange this as

P dt = F dr (16)

and then we may write

dE

dt′
dt = −GmM

r2
dr (17)

where the term F on the right is Newton's law for the gravitational
force, and m is the rest mass of the free-falling test object. This expres-
sion represents the di�erential gain in kinetic energy balanced against
the di�erential loss in potential energy. From the metric of SR we have

dt′2 = dt2 − dr2

c2
(18)

or
dt′

dt
=

√
1− v2

c2
=

1

γ
(19)
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which gives
γ dE = −GmM

r2
dr (20)

A factor γ has appeared because we transformed from proper to coor-
dinate frame. Next, in SR, the gain in kinetic energy may be expressed
as

E = γmc2 −mc2 = (γ − 1)mc2 (21)
so that

dE = mc2dγ (22)
We then have

γ dγ = −GM

c2

dr

r2
(23)

which on integration from r = ∞ to r gives

v2 =
2GM

r

(
1 +

2GM

c2r

)−1

(24)

This equation describes how the observed speed v of a free-falling
object changes with distance r from the gravitational mass M . When
r is large, the classical expression, v2 = 2GM/r, is recovered, but as
r decreases, the velocity lags behind the classical result, and never
exceeds c.

Note that this is identical to the expression I obtained above for the
proper velocity in GR.

5 Discussion
I included the previous section in order to demonstrate that the proper
velocity I obtained using GR (Equation 13) now contains the correct
ingredients of relativistic mechanics. The factor before the bracket is
the classical expression, while the factor inside the brackets describes
how in SR the velocity is modi�ed by the increase in relativistic mass
or, entirely equivalently, by the curvature of space in GR.

Writing α = 2GM/c2, we may express this result as

ṙ2

c2
=

α

r

(
1 +

α

r

)−1

=
α

(r + α)
(25)

We also have
A =

(
1 +

α

r

)−1

=
r

(r + α)
(26)
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Also, from the GR solution we have

A =
1

B
=

(
1− α

r̃

)
=

(
1 +

α

r

)−1

(27)

which gives
r̃ = r + α (28)

This now shows how the radial coordinate r̃ is related to the radial
distance r. Importantly, r̃ is never smaller than α, which means that
the function (1 − α/r̃) never becomes negative, so black holes do not
occur and there is no event horizon.

Hilbert [7] �rst extended the solution in Equation 3 to values of
r̃ < α, and this became the accepted rationale for allowing black holes.
This was justi�ed historically on grounds of physical equivalence, in
that changing the coordinates in GR should not alter the physics, since
the theory is supposed to be generally covariant. However, Stephen
Crothers [8] and Leonard Abrams [9] subsequently showed that the
coordinate change also changed the limits of the spacetime manifold
and therefore that Hilbert's extension to r̃ < α was incorrect from a
pure mathematical point of view.

In my analysis above, I have proved from a physical point of view
that Hilbert's extension allowing r̃ → 0 is incorrect, since from Equa-
tion 28 r̃ can never be less than α, since r ≥ 0 and α is a positive real
quantity.

The solution I have proposed is one of an in�nite set of solutions
that satisfy Einstein's �eld equations of GR for the vacuum outside
a point mass [8]. It was mentioned in a paper by Brillouin [10], but
he did not develop it in the way I have. Schwarzschild himself never
predicted black holes, but rather forced the possible discontinuity in
the function (1 − α/r̃) to be at the origin of coordinates by judicious
choice of the radial coordinate r̃, with r̃ = (r3 + α3)1/3, which is just
one solution belonging to the in�nite set of solutions.

Taking the free-fall velocity in Equation 24 and calculating the ob-
served acceleration gives

a = v
dv

dr
= −1

2
c2 α

(r + α)2
(29)

We see that for small r the free-fall acceleration does not increase (neg-
atively) as 1/r2 as r → 0, but is retarded, and reaches a constant value
a0 given by

a0 = −1

2

c2

α
[r → 0] (30)

7



This means that gravity is modi�ed and does not diverge when r → 0.
From these equations we may de�ne an e�ective mass Meff , and write

Meff

M
=

(
1 +

α

r

)−2

(31)

which is unity for large r and goes to zero as r → 0.

6 Conclusion
Hilbert's solution should only be regarded as an approximation valid
for r >> α, and not used when r is of the order of α or less. Replacing
it with a solution �rst used by Brillouin, which I have developed here,
not only satis�es Einstein's vacuum �eld equations and agrees with
all predictions from GR - except those relating to black-hole horizon
physics - but also enables a description of the behaviour valid at all r,
even in the strong-�eld region - and then there is no horizon in space-
time. The solution predicts that the velocity of a free-falling test object
does not exceed the speed of light c, but behaves in a way intuitively
expected from the kinematics of special relativity in conjunction with
the principle of conservation of energy. It has been demonstrated that
the proper velocity of GR is equivalent to the coordinate velocity of
SR, which clears up a few issues with understanding the link between
GR and SR. Furthermore, since the e�ective gravitational mass falls o�
to zero as r → 0, this removes the singularity that is otherwise deemed
to be present at the coordinate origin.
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