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Abstract. Multi Expression Programming (MEP) is a Genetic 
Programming (GP) variant that uses linear chromosomes for 
solution encoding. A unique MEP feature is its ability of 
encoding multiple solutions of a problem in a single 
chromosome. These solutions are handled in the same time 
complexity as other techniques that encode a single solution in a 
chromosome. In this paper MEP is used for evolving digital 
circuits. MEP is compared to Cartesian Genetic Programming 
(CGP) – a technique widely used for evolving digital circuits – 
by using several well-known problems in the field of electronic 
circuit design. Numerical experiments show that MEP 
outperforms CGP for the considered test problems. 
 
 

1. Introduction 
 
The problem of evolving digital circuits has been intensely 
analyzed in the recent past [4, 8, 10, 11, 12, 18]. A 
considerable effort has been spent on evolving very 
efficient (regarding the number of gates) digital circuits. J. 
Miller, one of the pioneers in the field of the evolvable 
digital circuits, used a special technique called Cartesian 
Genetic Programming (CGP) [9, 12] for evolving digital 
circuits. CGP architecture consists of a network of gates 
(placed in a grid structure) and a set of wires connecting 
them. For instance this structure has been used for 
evolving digital circuits for the multiplier problem [12]. 
The results [12] shown that CGP was able to evolve digital 
circuits better than those designed by human experts. 

In this paper, we use Multi Expression Programming 
(MEP)1 [13, 14, 15, 16] for evolving digital circuits. MEP 
is a Genetic Programming (GP) [6, 7] variant that uses 
linear chromosomes of fixed length. A unique feature of 
MEP is its ability of storing multiple solutions of a 
problem in a single chromosome. Note that this feature 
does not increase the complexity of the MEP decoding 
process when compared to other techniques storing a 
single solution in a chromosome. It has been documented 
[13, 16], that MEP performs significantly better than other 
competitor techniques (such as Genetic Programming, 
Cartesian Genetic Programming, Gene Expression 
Programming [6] and Grammatical Evolution [17]) for 
some well-known problems such as symbolic regression 
and even-parity [6]. 

In this paper we present the way in which MEP may be 
efficiently applied for evolving digital circuits. We show 
the way in which multiple digital circuits may be stored in 
a single MEP chromosome and the way in which the 

                                                           
1 MEP source code is available at https://github.com/mepx  

fitness of this chromosome may be computed by traversing 
the MEP chromosome only once.  

Several numerical experiments are performed with 
MEP for evolving arithmetic circuits. The results show that 
MEP significantly outperforms CGP for the considered test 
problems. 

The paper is organized as follows. In section 2, the 
problem of designing digital circuits is presented. Section 
3 briefly describes the Cartesian Genetic Programming 
technique. The Multi Expression technique is presented in 
section 4. The way in which digital circuits are encoded in 
a MEP chromosome is presented in subsection 4.5. Several 
numerical experiments are performed in section 5. 

 

2. Problem statement 
 
The problem that we are trying to solve in this paper may 
be briefly stated as follows: 
 
Find a digital circuit that implements a function given by 

its truth table. 
 

The gates that are usually used in the design of digital 
circuits along with their description are given in Table 1. 
 
# Function # Function 
0 0 10 ba ⊕  
1 1 11 ba ⊕  
2 a  12 ba +  
3 b  13 ba +  
4 a  14 ba +  
5 b  15 ba +  
6 ba ⋅  16 cbca ⋅+⋅  
7 ba ⋅  17 cbca ⋅+⋅  
8 ba ⋅  18 cbca ⋅+⋅  
9 ba ⋅  19 cbca ⋅+⋅  
Table 1. Function set (gates) used in numerical experiments. 
Some functions are independent on the input (functions 0 and 1), 
other depend on only one of the input variables (functions 2-5), 
other functions depend on two input variables (functions 6-15) 
and the other functions depends on three input variables 
(functions 16-19). These functions are taken from [12]. 
 

Symbols used to represent some of the logical gates are 
given in Figure 1. 
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Figure 1. The symbols used to represent some of the logical 
gates in Table 1 (OR is function 12, AND is function 6, XOR is 
function 10 and MUX is function 16). In some pictures a small 
circle may appear on these symbols indicating the negation 
(inversion) of the respective results. 
 

The MUX gate may be also represented using 2 ANDs 
and 1 OR. However some modern devices use the MUX 
gate as an atomic device in that all other gates are 
synthesized using this one [9]. 

Gates may also be represented using the symbols given 
in Table 2. 
 
Gate Representation 
AND ⋅ 
OR + 
XOR ⊕ 
NOT − 
Table 2. Representation of some functions given in Table 1. 
 

3. Cartesian Genetic Programming 
 

Cartesian Genetic Programming (CGP) [9, 12] is a GP 
technique that encodes chromosomes in graph structures 
rather than standard GP trees. The motivation for this 
representation is that the graphs are more general than the 
tree structures, thus allowing the construction of more 
complex computer programs. 

CGP is Cartesian in the sense that the graph nodes are 
represented in a Cartesian coordinate system. This 
representation was chosen due to the node connection 
mechanism, which is similar to GP mechanism. A CGP 
node contains a function symbol and pointers towards 
nodes representing function parameters. Each CGP node 
has an output that may be used as input for another node. 

Each CGP program (graph) is defined by several 
parameters: number of rows (nr), number of columns (nc), 
number of inputs, number of outputs, and number of 
functions. The nodes interconnectivity is defined as being 
the number (l) of previous columns of cells that may have 
their outputs connected to a node in the current column 
(the primary inputs are treated as node outputs). 

CGP chromosomes are encoded as strings by reading 
the graph columns top down and printing the input nodes 
and the function symbol for each node.  

An example of CGP program is depicted in Figure 2. 
 

 
Figure 2. A CGP program for 1-bit adder problem. 
 

In Figure 2, a gate array representation of a one-bit 
adder is given. A, B, and Cin are the binary inputs. The 
outputs Sum and Cout are the binary outputs. Sum 
represents the sum bit of the addition of A+B+Cin, and 
Cout the carry bit. The chromosome representation of the 
circuit in Figure 2 is the following (function symbols are 
given in bold): 

 
0 1 0 10 0 0 2 6 3 2 1 10 0 2 3 16 6 5. 

 
Evolutionary algorithm used in [12] to evolve digital 

circuits is a simple form of (1+λ)-ES [2], where λ was set 
to 4. This algorithm seems to perform very well in 
conjunction to CGP representation. However, a Genetic 
Algorithm (GA) [6, 19] may also be used as underlying 
mechanism for CGP. 
 

4. Multi Expression Programming 
 

In this section, Multi Expression Programming is 
briefly described.  
 
4.1. MEP Algorithm 
 

Standard MEP algorithm uses steady state [19] as its 
underlying mechanism. MEP algorithm starts by creating a 
random population of individuals. The following steps are 
repeated until a stop condition is reached. Two parents are 
selected using a selection procedure. The parents are 
recombined in order to obtain two offspring. The offspring 
are considered for mutation. The best offspring replaces 
the worst individual in the current population if the 
offspring is better than the worst individual.  

The algorithm returns as its answer the best 
expression evolved along a fixed number of generations. 

 
4.2. MEP Representation 

 
MEP genes are represented by substrings of a variable 

length. The number of genes per chromosome is constant. 
This number defines the length of the chromosome. Each 
gene encodes a terminal or a function symbol. A gene 
encoding a function includes pointers towards the function 
arguments. Function arguments always have indices of 
lower values than the position of that function in the 
chromosome. 
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This representation is similar to the way in which C 
and Pascal compilers translate mathematical expressions 
into machine code [1]. 

The proposed representation ensures that no cycle 
arises while the chromosome is decoded (phenotypically 
transcripted). According to the proposed representation 
scheme the first symbol of the chromosome must be a 
terminal symbol. In this way only syntactically correct 
programs (MEP individuals) are obtained. 

 
Example 

We employ a representation where the numbers on the 
left positions stand for gene labels. Labels do not belong to 
the chromosome, they being provided only for explanation 
purposes. 

For this example we use the set of functions F = {+, *}, 
and the set of terminals T = {a, b, c, d}. An example of 
chromosome using the sets F and T is given below: 

 
1: a 
2: b 
3: + 1, 2 
4: c 
5: d 
6: + 4, 5 
7: * 3, 6 
 
4.3. Decoding MEP Chromosomes and the 
Fitness Assignment Process 
 

In this section it is described the way in which MEP 
individuals are translated into computer programs and the 
way in which the fitness of these programs is computed. 

This translation is achieved by reading the 
chromosome top-down. A terminal symbol specifies a 
simple expression. A function symbol specifies a complex 
expression obtained by connecting the operands specified 
by the argument positions with the current function 
symbol. 

For instance, genes 1, 2, 4 and 5 in the previous 
example encode simple expressions formed by a single 
terminal symbol. These expressions are: 

 
E1 = a, 
E2 = b, 
E4 = c, 
E5 = d, 

 
Gene 3 indicates the operation + on the operands 

located at positions 1 and 2 of the chromosome. Therefore 
gene 3 encodes the expression: 

 
E3 = a + b. 
 

Gene 6 indicates the operation + on the operands 
located at positions 4 and 5. Therefore gene 6 encodes the 
expression: 

 
E6 = c + d. 

 
Gene 7 indicates the operation * on the operands 

located at position 3 and 6. Therefore gene 7 encodes the 
expression: 
 
E7 = (a + b) * (c + d). 
 

E7 is the expression encoded by the whole 
chromosome. 

There is  neither practical nor theoretical evidence 
that one of these expressions is better than the others. 
Moreover, Wolpert and McReady [20, 21] proved that we 
cannot use the search algorithm’s behavior so far for a 
particular test function to predict its future behavior on that 
function. This is why each MEP chromosome is allowed to 
encode a number of expressions equal to the chromosome 
length. Each of these expressions is considered as being a 
potential solution of the problem.  

The value of these expressions may be computed by 
reading the chromosome top down. Partial results are 
computed by dynamic programming [3] and are stored in a 
conventional manner. 

As MEP chromosome encodes more than one problem 
solution, it is interesting to see how the fitness is assigned. 

Usually the chromosome fitness is defined as the 
fitness of the best expression encoded by that 
chromosome. 

For instance, if we want to solve symbolic regression 
problems the fitness of each sub-expression Ei may be 
computed using the formula: 
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where ok,i is the obtained result by the expression Ei for the 
fitness case k and wk is the targeted result for the fitness 
case k. In this case the fitness needs to be minimized. 

The fitness of an individual is set to be equal to the 
lowest fitness of the expressions encoded in chromosome: 
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When we have to deal with other problems we compute 

the fitness of each sub-expression encoded in the MEP 
chromosome and the fitness of the entire individual is 
given by the fitness of the best expression encoded in that 
chromosome.  

 
4.4. Search Operators 
 

Search operators used within MEP algorithm are 
crossover and mutation. Considered search operators 
preserve the chromosome structure. All offspring are 
syntactically correct expressions.  

 
Crossover 
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By crossover two parents are selected and are 
recombined. For instance, within the uniform 
recombination the offspring genes are taken randomly 
from one parent or another. 
 
Example 

Let us consider the two parents C1 and C2 given below. 
The two offspring O1 and O2 are obtained by uniform 
recombination as follows: 

 
Parents               Offspring 

C1 C2  O1 O2 
1: b 
2: * 1, 1 
3: + 2, 1 
4: a 
5: * 3, 2 
6: a 
7: - 1, 4 

1: a 
2: b 
3: + 1, 2 
4: c 
5: d 
6: + 4, 5 
7: * 3, 6 

 1: a 
2: * 1, 1 
3: + 2, 1 
4: c 
5: * 3, 2 
6: + 4, 5 
7: - 1, 4 

1: b 
2: b 
3: + 1, 2 
4: a 
5: d 
6: a 
7: * 3, 6 

 
Mutation 
 

Each symbol (terminal, function of function pointer) in 
the chromosome may be target of mutation operator. By 
mutation some symbols in the chromosome are changed. 
To preserve the consistency of the chromosome its first 
gene must encode a terminal symbol. 

 
Example 

Consider the chromosome C given below. If the 
boldfaced symbols are selected for mutation an offspring 
O is obtained as follows: 
 

C O 
1: a 
2: * 1, 1 
3: b 
4: * 2, 2 
5: b 
6: + 3, 5 
7: a 

1: a 
2: * 1, 1 
3: + 1, 2 
4: * 2, 2 
5: b 
6: + 1, 5 
7: a 

 
4.5. MEP for Evolving Digital Circuits 

 
In this section we describe the way in which Multi 

Expression Programming may be efficiently used for 
evolving digital circuits. 

Each circuit has one or more inputs (denoted by NI) 
and one or more outputs (denoted NO). In section 4.4 we 
present the way in which is the fitness of a chromosome 
with a single output is computed. When multiple outputs 
are required for a problem, we have to choose NO genes 
which will provide the desired output (it is obvious that the 
genes must be distinct unless the outputs are redundant). 

In CGP, the genes providing the program’s output are 
evolved just like all other genes. In MEP, the best genes in 
a chromosome are chosen to provide the program’s 
outputs. When a single value is expected for output we 
simply choose the best gene (see section 4.3, formulas (1) 

and (2)). When multiple genes are required as outputs we 
have to select those genes which minimize the difference 
between the obtained result and the expected output.  

We have to compute first the quality of a gene (sub-
expression) for a given output: 
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where ok,i is the obtained result by the expression (gene) Ei 
for the fitness case k and wk,q is the targeted result for the 
fitness case k and for the output q. The values f(Ei, q) are 
stored in a matrix (by using dynamic programming [3]) for 
latter use (see formula (4)). 

Since the fitness needs to be minimized, the quality of 
a MEP chromosome is computed by using the formula: 
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In equation (4) we have to choose numbers i1, i2, …, 

iNO in such way to minimize the program’s output. For this 
we shall use a simple heuristic which does not increase the 
complexity of the MEP decoding process: for each output 
q (1 ≤ q ≤ NO) we choose the gene i that minimize the 
quantity f(Ei, q). Thus, to an output is assigned the best 
gene (which has not been assigned before to another 
output). The selected gene will provide the value of the qth 
output. 

 
Remark:  
i. Formulas (3) and (4) are the generalization of 

formulas (1) and (2) for the case of multiple outputs 
of a MEP chromosome. 

ii. The complexity of the heuristic used for assigning 
outputs to genes is O(NG ⋅ NO) where NG is the 
number of genes and NO is the number of outputs. 

iii.  We may use another procedure for selecting the 
genes that will provide the problem’s outputs. This 
procedure selects, at each step, the minimal value in 
the matrix f(Ei, q) and assign the corresponding gene 
i to its paired output q. Again, the genes already used 
will be excluded from the search. This procedure will 
be repeated until all outputs have been assigned to a 
gene. However, we did not used this procedure 
because it has a higher complexity – 
O(NO⋅log2(NO)⋅NG) − than the previously described 
procedure which has the complexity O(NO⋅NG). 

 

5. Numerical Experiments 
 

In this section, several numerical experiments 
with MEP for evolving digital circuits are performed. For 
this purpose several well-known test problems [12] are 
used. 
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For reducing the chromosome length and for 
preventing input redundancy we keep all the terminals on 
the first positions of the MEP chromosomes. 

For assessing the performance of the MEP algorithm 
three statistics are of high interest:  

i. the relationship between the success rate and the 
number of genes in a MEP chromosome, 

ii. the relationship between the success rate and the 
size of the population used by the MEP algorithm.  

iii. the computation effort. 
 
The success rate is computed using the equation (5). 
 

.
runsofnumbertotalThe

runssuccessfulofnumberThe
rateSuccess = (5) 

 
The method used to assess the effectiveness of an 

algorithm has been suggested by Koza [6]. It consists of 
calculating the number of chromosomes, which would 
have to be processed to give a certain probability of 
success. To calculate this figure one must first calculate 
the cumulative probability of success P(M, i), where M 
represents the population size, and i the generation 
number. The value R(z) represents the number of  
independent runs required for a probability of success 
(given by z) at generation i. The quantity I(M, z, i) 
represents the minimum number of chromosomes which 
must be processed to give a probability of success z, at 
generation i. The formulae are given by the equation (6), 
(7) and (8). Ns(i) represents the number of successful runs 
at generation i, and Ntotal , represents the total number of 
runs: 
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Note that when z = 1.0 the formulae are invalid (all 
runs successful). In the tables and graphs of this paper z 
takes the value 0.99. 

In the numerical experiments performed in this paper 
the number of symbols in a MEP chromosome is usually 
larger than the number of symbols in a CGP chromosome 
because in a MEP the problem’s inputs are also treated as a 
normal gene and in a CGP the inputs are treated as being 
isolated from the main CGP chromosome. Thus, the 
number of genes in a MEP chromosome is equal to the 
number of genes in CGP chromosome + the number of 
problem’s inputs. 

 
5.1. Two Bit Multiplier 
 

The two-bit multiplier [12] implements the binary 
multiplication of two two-bit numbers to produce a 
possible four-bit number. The training set for this problem 
consist of 16 fitness cases, each of them having 4 inputs 
and 4 outputs. 

Several experiments for evolving a circuit that 
implements the two-bit multiplier are performed. In the 
first experiment we want to compare the computation 
effort spent by CGP and MEP for solving this problem. 
Gates 6, 7 and 10 (see Table 1) are used in this experiment. 

The parameters of CGP are given in Table 3 and the 
parameters of MEP are given in Table 4.  

 
Parameter Value 
Number of rows 1 
Number of columns 10 
Levels back 10 
Mutation  3 symbols / chromosome 
Evolutionary scheme (1+4) ES 
Table 3. Parameters of the CGP algorithm. 
 
Parameter Value 
Code length 14 (10 gates + 4 inputs) 
Crossover Uniform 
Crossover probability 0.9 
Mutation  3 symbols / chromosome 
Selection Binary Tournament 
Table 4. Parameters of the MEP algorithm. 
 

One hundred runs of 150000 generations are performed 
for each population size. Results are given in Table 5. 
 
Population 
size 

Cartesian Genetic 
Programming 

Multi Expression 
Programming 

∆ 

2 148808 53352 178.91 
3 115224 111600 3.24 
4 81608 54300 50.29 
5 126015 59000 113.58 
6 100824 68850 46.44 
7 100821 39424 155.73 
8 96032 44160 117.46 
9 108036 70272 53.73 
10 108090 28910 273.88 
12 115248 25536 351.31 
14 117698 26544 343.40 
16 120080 21216 465.98 
18 145854 17820 718.48 
20 120100 21120 468.65 
25 180075 23500 666.27 
30 162180 19440 734.25 
40 216360 16000 1252.25 
50 225250 13250 1600.00 
Table 5. Computation effort spent for evolving two-bit 
multipliers for different population sizes. CGP results are taken 
from [12]. The difference ∆ (last column) is shown as a 
percentage considering the values of MEP as a baseline. Results 
are averaged over 100 runs. 
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From Table 5 it can be seen that MEP outperforms 
CGP for all considered population sizes. The differences 
range from 3.24% (for 3 individuals in the population) up 
to 1600% (for 50 individuals in the population). From this 
experiment we also may infer that large populations are 
better for MEP than for CGP. The computational effort 
decrease for MEP as the population size is increased. 

We are also interested in computing the relationship 
between the success rate and the chromosome length and 
the population size.  

The number of genes in each MEP chromosome is set 
to 20 genes when the relationship between the success rate 
and the population size is analyzed. When the relationship 
between the success rate and the population size is 
analyzed a population consisting of 20 MEP chromosomes 
is used. Gates 6, 7 and 10 are used in this experiment. 
Other MEP parameters are given in Table 4. 

Results are depicted in Figure 3. 
From Figure 3 it can be seen that MEP is able to find a 

correct digital circuit in many runs. A population 
consisting of 90 individuals with 20 genes yields a success 
rate of 100% (see Figure 3(b)) and a population with 20 
individuals with 85 genes yields a success rate of 92% (see 
Figure 3(a)). 

From Figure 3(a) we may infer that larger MEP 
chromosomes are better than the shorter ones. The 
minimum number of gates for this circuit is 7. This number 
has been achieved by Miller during his numerical 
experiments (see [12]). A MEP chromosome implementing 
Miller’s digital circuit has 11 genes (the actual digital 
circuit + 4 input genes). From Figure 3(a) we can see that, 
for a MEP chromosome with 11 genes, only 6 correct 
solutions have been evolved. As the chromosome length 
increases the number of correct solutions evolved by also 
increases. If the chromosome has more than 21 genes the 
success rate never decreases below than 70%.  

Even if the chromosome length is larger than the 
minimum required (11 genes) the evolved solutions 
usually have no more than 14 genes. This is due to the 
multi expression ability of MEP which acts like a provider 
of variable length chromosomes [13]. The length of the 
obtained circuits could be reduced by adding another 
feature to our MEP algorithm. This feature has been 
suggested by C. Coello in [4] and it consists of a 
multiobjective fitness function. The first objective is to 
minimize the differences between the expected output and 
the actual output (see formulas (3) and (4)). The second 
objective is to minimize the number of gates used by the 
digital circuit. Note that he first objective is more 
important than the second one. We also have to modify the 
algorithm. Instead of stopping the MEP algorithm when an 
optimal solution (regarding the first objective) is found we 
continue to run the program until a fixed number of 
generations have been elapsed. In this way we hope that 
also the number of gates (the second objective) will be 
minimized. 
 

 
Figure 3. The relationship between the success rate of the MEP 
algorithm and (a) number of genes in a chromosome, (b) the 
number of individuals in population. Results are averaged over 
100 runs. 
 
 
5.2. Two Bit Adder with Carry 
 

A more complex situation is the Two Bit Adder with 
Carry problem [12]. The circuit implementing this 
problem adds 5 bits (two numbers represented using 2 bits 
each and a carry bit) and gives a three-bit number 
representing the output.  

The training set consists of 32 fitness cases with 5 
inputs and 3 outputs.  

The relationship between the success rate and the 
chromosome length and the population size is analyzed for 
this problem. 

When the relationship between the success rate and the 
population size is analyzed the number of genes in each 
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MEP chromosome is set to 20 genes. When the 
relationship between the success rate and the population 
size is analyzed a population consisting of 20 MEP 
chromosomes is used. Gates 10 and 16 (see Table 1) are 
used in this experiment (as indicated in [12]). Other MEP 
parameters are given in Table 4. Results are depicted in 
Figure 4. 

 

 
Figure 4. The relationship between the success rate of the MEP 
algorithm and (a) number of genes in a chromosome, (b) the 
number of individuals in population. Results are averaged over 
100 runs. 
 

From Figure 4 it can be seen that MEP is able solve 
this problem very well. When the number of genes in a 
MEP chromosome is larger than 30 in more than 80 cases 
(out of 100) MEP was able to find a perfect solution (see 
Figure 4(a)). After this value, the success rate does not 
increase significantly. A population with 270 individuals 

yields over 90 (out of 100) successful runs (see Figure 
4(b)). 

This problem is more difficult than the two-bit 
multiplier even if we used a smaller function set (functions 
10 and 16) that the set used for the multiplier (function 6, 7 
and 10). 

 

6. Conclusions and further work 
 

In this paper Multi Expression Programming has been 
used for evolving digital circuits. It has been shown the 
way in which multiple digital circuits may be encoded in 
the same chromosome and the way in which MEP 
chromosomes are read only once for computing their 
quality. There was no human input about how the circuits 
should be designed, just a measurement of the degree to 
which a given circuit achieves the desired response. 

Several numerical experiments for evolving digital 
circuits have been performed. The circuits evolved during 
the numerical experiments are for the Two-bit Multiplier 
and the Two-bit Adder with Carry problems. These 
problems are well-known benchmark instances used for 
assessing the performance of the algorithms evolving 
digital circuits. 

The results of the numerical experiments show that 
MEP outperforms CGP on some of the considered test 
problems. In some cases the MEP is better than CGP with 
more than one order of magnitude. 

Even if MEP and CGP have some things in common 
there are some decisive aspects that make them different. 
Some of these aspects are listed in Table 6. 
 
Multi Expression 
Programming 

Cartesian Genetic 
Programming 

Encodes multiple solutions 
of a problem in a single 
chromosome. The process 
of decoding a MEP 
chromosome has the same 
complexity as the CGP 
decoding process. 

Encodes a single solution of 
a problem in a 
chromosome. 

The problem’s outputs are 
chosen as the best among 
the possible outputs. 

The problem’s outputs are 
subject to evolution. 

Chromosomes are strings of 
genes. A unique parameter 
is needed for expressing the 
chromosome length and 
shape: the chromosome 
length. 

Chromosomes are matrices 
which are then linearized. 
However, two parameters 
are needed for expressing a 
chromosome: the number of 
rows and the number of 
columns. 

Problem’s inputs are stored 
in chromosome. 

The problem’s inputs are 
not stored in chromosome. 

Table 6. The differences between Multi Expression 
Programming and Cartesian Genetic Programming. 
 

The differences presented in Table 6 show a significant 
advantage to the MEP algorithm over the CGP. 
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Further numerical experiments with Multi Expression 
Programming will be focused on evolving digital circuits 
for other interesting problems (such as three-bit and four-
bit multipliers). 
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