Evolving Digital Circuitsusing Multi Expression Programming

Mihai Oltean and Crina Grosan
Department of Computer Science
Babe-Bolyai University, Koglniceanu 1
Cluj-Napoca, 3400, Romania
{moltean, cgrosan}@nessie.cs.ubbcluj.ro

Abstract. Multi Expression Programming (MEP) is a Genetic
Programming (GP) variant that uses linear chromesoifior
solution encoding. A unique MEP feature is its iapilof
encoding multiple solutions of a problem in a singl
chromosome. These solutions are handled in the sime
complexity as other techniques that encode a sisalgion in a
chromosome. In this paper MEP is used for evoluligjtal
circuits. MEP is compared to Cartesian Genetic Riogning
(CGP) — a technique widely used for evolving digiacuits —

by using several well-known problems in the fiefdetectronic
circuit design. Numerical experiments show that MEP
outperforms CGP for the considered test problems.

1. Introduction

The problem of evolving digital circuits has beatensely
analyzed in the recent past [4, 8, 10, 11, 12, ¥8].
considerable effort has been spent on evolving very
efficient (regarding the number of gates) digitatuwits. J.
Miller, one of the pioneers in the field of the bxable
digital circuits, used a special technique calleatt€sian
Genetic Programming (CGP) [9, 12] for evolving thdji
circuits. CGP architecture consists of a networlkgafes
(placed in a grid structure) and a set of wiresneating
them. For instance this structure has been used for
evolving digital circuits for the multiplier probie [12].
The results [12] shown that CGP was able to evdiggal
circuits better than those designed by human expert

In this paper, we use Multi Expression Programming
(MEP)! [13, 14, 15, 16] for evolving digital circuits. NFE
is a Genetic Programming (GP) [6, 7] variant thaésu
linear chromosomes of fixed length. A unique featof
MEP is its ability of storing multiple solutions ad
problem in a single chromosome. Note that thisufieat
does not increase the complexity of the MEP deapdin
process when compared to other techniques storing a
single solution in a chromosome. It has been doobede
[13, 16], that MEP performs significantly betteathother
competitor techniques (such as Genetic Programming,
Cartesian Genetic Programming, Gene Expression
Programming [6] and Grammatical Evolution [17]) for
some well-known problems such as symbolic regressio
and even-parity [6].

In this paper we present the way in which MEP may b
efficiently applied for evolving digital circuitdVe show
the way in which multiple digital circuits may btred in
a single MEP chromosome and the way in which the

1 MEP source code is availablehdtps://github.com/mepx

fitness of this chromosome may be computed by tsavg
the MEP chromosome only once.

Several numerical experiments are performed with
MEP for evolving arithmetic circuits. The resultsosv that
MEP significantly outperforms CGP for the considetest
problems.

The paper is organized as follows. In section 2, th
problem of designing digital circuits is present&gction
3 briefly describes the Cartesian Genetic Programgmi
technique. The Multi Expression technique is presin
section 4. The way in which digital circuits areceded in
a MEP chromosome is presented in subsection 4J/&r&e
numerical experiments are performed in section 5.

2. Problem statement

The problem that we are trying to solve in this gramay
be briefly stated as follows:

Find a digital circuit that implements a function given by
itstruth table.

The gates that are usually used in the designgifadli
circuits along with their description are givenTiable 1.

Function # Function

0 0 10 alb

1 1 11 aDE

2 a 12 a+b

3 b 13 a+b

4 a 14 a+b

5 b 15 a+b

6 alb 16 alC+blc
! alb 7 alt+blc
8 alb 18 alcC+blc
° alb 19 laE+ble

Table 1. Function set (gates) used in numerical experisne
Some functions are independent on the input (fonstD and 1),
other depend on only one of the input variablesdfions 2-5),

other functions depend on two input variables (fioms 6-15)

and the other functions depends on three inputabbas

(functions 16-19). These functions are taken fragj.[

Symbols used to represent some of the logical gates
given in Figure 1.

ﬁ@#&

AND XOR

Figure 1. The symbols used to represent some of the logical
gates in Table 1 (OR is function 12, AND is funati®, XOR is
function 10 and MUX is function 16). In some piasra small
circle may appear on these symbols indicating tlegation
(inversion) of the respective results.

The MUX gate may be also represented using 2 ANDs
and 1 OR. However some modern devices use the MUX
gate as an atomic device in that all other gates ar
synthesized using this one [9].

Gates may also be represented using the symbasa giv
in Table 2.

Gate Representation
AND [

OR +

XOR O

NOT -

Table 2. Representation of some functions given in Table 1

3. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [9, 12] is a GP
technique that encodes chromosomes in graph stesctu
rather than standard GP trees. The motivation fiis t
representation is that the graphs are more getiaalthe
tree structures, thus allowing the construction nudre
complex computer programs.

CGP is Cartesian in the sense that the graph remges
represented in a Cartesian coordinate system. This
representation was chosen due to the node connectio
mechanism, which is similar to GP mechanism. A CGP
node contains a function symbol and pointers toward
nodes representing function parameters. Each CGIR no
has an output that may be used as input for anathc.

Each CGP program (graph) is defined by several
parameters: number of rows,), number of columnsnf),
number of inputs, number of outputs, and number of
functions. The nodes interconnectivity is definsdbaing
the numberl} of previous columns of cells that may have
their outputs connected to a node in the currehinco
(the primary inputs are treated as node outputs).

CGP chromosomes are encoded as strings by reading
the graph columns top down and printing the inpades
and the function symbol for each node.

An example of CGP program is depicted in Figure 2.

A D
0 — 10 = 10
1 _— _— _Cnut
&
n - XoR |3 g - XOR |5
B 1
sum
e T 5
Cin 2 g _| | — L —
2 = AND |4 3 — MUX | &

Figure 2. A CGP program for 1-bit adder problem.

In Figure 2, a gate array representation of a ahe-b
adder is givenA, B, andCin are the binary inputs. The
outputs Sum and Cout are the binary outputsSum
represents the sum bit of the addition AB+Cin, and
Cout the carry bit. The chromosome representation ef th
circuit in Figure 2 is the following (function syrals are
given in bold):

010100026321100231665.

Evolutionary algorithm used in [12] to evolve dalit
circuits is a simple form of (IM-ES [2], where\ was set
to 4. This algorithm seems to perform very well in
conjunction to CGP representation. However, a Genet
Algorithm (GA) [6, 19] may also be used as undewyi
mechanism for CGP.

4. Multi Expression Programming

In this section, Multi Expression Programming is
briefly described.

4.1. MEP Algorithm

Standard MEP algorithm uses steady state [19]sas it
underlying mechanism. MEP algorithm starts by ¢ngga
random population of individuals. The following p$eare
repeated until a stop condition is reached. Twempigrare
selected using a selection procedure. The parems a
recombined in order to obtain two offspring. Théspfing
are considered for mutation. The best offspringaess
the worst individual in the current population ifiet
offspring is better than the worst individual.

The algorithm returns as its answer the best
expression evolved along a fixed number of genamnati

4.2. MEP Representation

MEP genes are represented by substrings of a lariab
length. The number of genes per chromosome is @aonst
This number defines the length of the chromosonaehE
gene encodes a terminal or a function symbol. Aegen
encoding a function includes pointers towards tivefion
arguments. Function arguments always have indides o
lower values than the position of that function thre
chromosome.

This representation is similar to the way in which
and Pascal compilers translate mathematical expressions
into machine code [1].

The proposed representation ensures that no cycle
arises while the chromosome is decoded (phenotipica
transcripted). According to the proposed represiemta
scheme the first symbol of the chromosome must be a
terminal symbol. In this way only syntactically oect
programs (MEP individuals) are obtained.

Example

We employ a representation where the numbers on the
left positions stand for gene labels. Labels dobsbdng to
the chromosome, they being provided only for exatim
purposes.

For this example we use the set of functibrs {+, *},
and the set of terminalt = {a, b, ¢, d}. An example of
chromosome using the sétsandT is given below:

* 4+ Q0 4+ 0O

4.3. Decoding MEP Chromosomes and the
Fitness Assignment Process

In this section it is described the way in which ME
individuals are translated into computer programd tne
way in which the fitness of these programs is cowegbu

This translation is achieved by reading the
chromosome top-down. A terminal symbol specifies a
simple expression. A function symbol specifies eplex
expression obtained by connecting the operandsfigukec
by the argument positions with the current function
symbol.

For instance, genes 1, 2, 4 and 5 in the previous
example encode simple expressions formed by aesingl
terminal symbol. These expressions are:

o

oo
oo T

ymmm

Gene 3 indicates the operation + on the operands
located at positions 1 and 2 of the chromosomerefbie
gene 3 encodes the expression:

E3 =a+h.
Gene 6 indicates the operation + on the operands
located at positions 4 and 5. Therefore gene 6dawthe

expression:

Es=c+d.

Gene 7 indicates the operation * on the operands
located at position 3 and 6. Therefore gene 7 ezxdie
expression:

E;=(@+b)*(c+d).

E; is the expression encoded by the whole
chromosome.

Thereis neither practical nor theoretical evidenc
that one of these expressions is better than therst
Moreover, Wolpert and McReady [20, 21] proved tivat
cannot use the search algorithm’s behavior so daraf
particular test function to predict its future beioa on that
function. This is why each MEP chromosome is alldwee
encode a number of expressions equal to the chamms
length. Each of these expressions is considerdztiag a
potential solution of the problem.

The value of these expressions may be computed by
reading the chromosome top down. Partial results ar
computed by dynamic programming [3] and are stamel
conventional manner.

As MEP chromosome encodes more than one problem
solution, it is interesting to see how the fitnesassigned.

Usually the chromosome fithess is defined as the
fithness of the best expression encoded by that
chromosome.

For instance, if we want to solve symbolic regressi
problems the fithess of each sub-expresdtmmay be
computed using the formula:

f(E)= é\om -, 1)

whereoy; is the obtained result by the expresdipifor the
fitness case& and w is the targeted result for the fitness
casek. In this case the fitness needs to be minimized.
The fitness of an individual is set to be equathe
lowest fitness of the expressions encoded in chsome:

f(C)=min f (E). @)

When we have to deal with other problems we compute
the fithess of each sub-expression encoded in tE M
chromosome and the fitness of the entire individisal
given by the fitness of the best expression encaueklat
chromosome.

4.4. Search Operators

Search operators used within MEP algorithm are
crossover and mutation. Considered search operators
preserve the chromosome structure. All offspring ar
syntactically correct expressions.

Crossover

By crossover two parents are selected and are
recombined. For instance, within the uniform
recombination the offspring genes are taken rangoml
from one parent or another.

Example

Let us consider the two parer@ig andC, given below.
The two offspringO; and O, are obtained by uniform
recombination as follows:

Parents Offspring

C C, (o)} 0O,

1:b 1:a 1:a 1:b
2:*1,1 2:b 2:*1,1 2:b
3:+2,1 3:+1,2 3:+2,1 3:+1,2
4:a 4.c 4.c 4:a
5:%3,2 5:d 5:*3,2 5:d
6:a 6:+4,5 6:+4,5 6:a
7:-1,4 7:*3,6 7:-1,4 7:*3,6
Mutation

Each symbol (terminal, function of function pointer
the chromosome may be target of mutation oper#&pr.
mutation some symbols in the chromosome are changed
To preserve the consistency of the chromosomeiris f
gene must encode a terminal symbol.

Example

Consider the chromosom€ given below. If the
boldfaced symbols are selected for mutation anpdfig
O is obtained as follows:

C (@]
1l:a 1:a
2:*%1,1 2:*%1,1
3:b 3:+1,2
4:*2, 2 4:.%2,2
5:b 5:b
6:+3,5 6:+1,5
7:a 7.a

4.5. MEP for Evolving Digital Circuits

In this section we describe the way in which Multi
Expression Programming may be efficiently used for
evolving digital circuits.

Each circuit has one or more inputs (denotedNby
and one or more outputs (denofe®). In section 4.4 we
present the way in which is the fitness of a chreome
with a single output is computed. When multiple puts
are required for a problem, we have to chod&egenes
which will provide the desired output (it is obvthat the
genes must be distinct unless the outputs are dagin

In CGP, the genes providing the program’s outpat ar
evolved just like all other genes. In MEP, the lggsies in
a chromosome are chosen to provide the program’s
outputs. When a single value is expected for outpeit
simply choose the best gene (see section 4.3, fam{()

and (2)). When multiple genes are required as dsitpe
have to select those genes which minimize the reiffee
between the obtained result and the expected output

We have to compute first the quality of a gene {sub
expression) for a given output:

i|0k,i _Wk,q|! 3)
k=1

f(E,q) =

whereoy; is the obtained result by the expression (g&ne)
for the fitness cask andwq is the targeted result for the
fithess casé and for the output. The valued(E;, q) are
stored in a matrix (by using dynamic programminp f&r
latter use (see formula (4)).

Since the fitness needs to be minimized, the quafit
a MEP chromosome is computed by using the formula:

gq<NO
fC)=_min > f(E,.q @
iLi2.INO =1

In equation (4) we have to choose numbers,, ...,
ino in such way to minimize the program’s output. fos
we shall use a simple heuristic which does notsase the
complexity of the MEP decoding process: for eactpuoiu
g (1 £ g £ NO) we choose the geriethat minimize the
quantity f(g;, g). Thus, to an output is assigned the best
gene (which has not been assigned before to another
output). The selected gene will provide the valfithe "
output.

Remark:

i. Formulas (3) and (4) are the generalization of
formulas (1) and (2) for the case of multiple otspu
of a MEP chromosome.

ii. The complexity of the heuristic used for assigning
outputs to genes is QG /NO) where NG is the
number of genes ardO is the number of outputs.

iii. We may use another procedure for selecting the
genes that will provide the problem’s outputs. This
procedure selects, at each step, the minimal value
the matrixf(E;, g) and assign the corresponding gene
i to its paired output. Again, the genes already used
will be excluded from the search. This proceduré wi
be repeated until all outputs have been assigned to
gene. However, we did not used this procedure
because it has a higher complexity -
O(NOIlbg,(NO)MG) - than the previously described
procedure which has the complex@(NOMNG).

5. Numerical Experiments

In this section, several numerical experiments
with MEP for evolving digital circuits are performheFor
this purpose several well-known test problems [48}
used.

For reducing the chromosome length and for
preventing input redundancy we keep all the tertaioa
the first positions of the MEP chromosomes.
For assessing the performance of the MEP algorithm
three statistics are of high interest:
i. the relationship between the success rate and the
number of genes in a MEP chromosome,
ii. the relationship between the success rate and the
size of the population used by the MEP algorithm.
iii. the computation effort.

The success rate is computed using the equation (5)

Thenumber of successful runs .
Thetotal number of runs

Successrate =

The method used to assess the effectiveness of an
algorithm has been suggested by Koza [6]. It com$
calculating the number of chromosomes, which would
have to be processed to give a certain probabdity
success. To calculate this figure one must firétutate
the cumulative probability of succes¥M, i), whereM
represents the population size, andthe generation
number. The valueR(z) represents the number of
independent runs required for a probability of sssc
(given by z) at generationi. The quantityl(M, z i)
represents the minimum number of chromosomes which
must be processed to give a probability of sucezess
generation.. The formulae are given by the equation (6),
(7) and (8)Ns(i) represents the number of successful runs
at generation, andN , represents the total number of
runs:

P(M ’i) = NL(I) (6)
total
. log(Ll-2)
R(2)= Ce”{log(l— P(M ,i)} "

I(M,i,2) =M [R(2)[i. ®)

Note that wherz = 1.0 the formulae are invalid (all
runs successful). In the tables and graphs ofghjgerz
takes the value 0.99.

In the numerical experiments performed in this pape
the number of symbols in a MEP chromosome is uguall
larger than the number of symbols in a CGP chromeso
because in a MEP the problem’s inputs are alsoetless a
normal gene and in a CGP the inputs are treatdibiag)
isolated from the main CGP chromosome. Thus, the
number of genes in a MEP chromosome is equal to the
number of genes in CGP chromosome + the number of
problem’s inputs.

5.1. Two Bit Multiplier

The two-bit multiplier [12] implements the binary
multiplication of two two-bit numbers to produce a
possible four-bit number. The training set for thisblem
consist of 16 fithess cases, each of them havimngpdts
and 4 outputs.

Several experiments for evolving a circuit that
implements the two-bit multiplier are performed. thme
first experiment we want to compare the computation
effort spent by CGP and MEP for solving this proble
Gates 6, 7 and 10 (see Table 1) are used in tperiexent.

The parameters of CGP are given in Table 3 and the
parameters of MEP are given in Table 4.

Parameter Value

Number of rows 1

Number of columns 10

Levels back 10

Mutation 3 symbols / chromosome
Evolutionary scheme (1+4) ES

Table 3. Parameters of the CGP algorithm.

Parameter Value

Code length 14 (10 gates + 4 inputs)
Crossover Uniform

Crossover probability 0.9

Mutation 3 symbols / chromosome
Selection Binary Tournament

Table 4. Parameters of the MEP algorithm.

One hundred runs of 150000 generations are pertbrme
for each population size. Results are given in &&bl

Population | Cartesian Genetic Multi Expression A
size Programming Programming

2 148808 53352 178.91
3 115224 111600 3.24
4 81608 54300 50.29
5 126015 59000 113.58
6 100824 68850 46.44
7 100821 39424 155.73
8 96032 44160 117.46
9 108036 70272 53.73
10 108090 28910 273.88
12 115248 25536 351.31
14 117698 26544 343.40
16 120080 21216 465.98
18 145854 17820 718.48
20 120100 21120 468.65
25 180075 23500 666.27
30 162180 19440 734.25
40 216360 16000 1252.25
50 225250 13250 1600.00

Table 5. Computation effort spent for evolving two-bit
multipliers for different population sizes. CGP ults are taken
from [12]. The differenceA (last column) is shown as a
percentage considering the values of MEP as aibas&esults
are averaged over 100 runs.

From Table 5 it can be seen that MEP outperforms
CGP for all considered population sizes. The déifees
range from 3.24% (for 3 individuals in the popual up
to 1600% (for 50 individuals in the population)oFr this
experiment we also may infer that large populatians
better for MEP than for CGP. The computational effo
decrease for MEP as the population size is inctease

We are also interested in computing the relatignshi
between the success rate and the chromosome landth
the population size.

The number of genes in each MEP chromosome is set
to 20 genes when the relationship between the sscate
and the population size is analyzed. When theiogiship
between the success rate and the population size is
analyzed a population consisting of 20 MEP chromues
is used. Gates 6, 7 and 10 are used in this expetim
Other MEP parameters are given in Table 4.

Results are depicted in Figure 3.

From Figure 3 it can be seen that MEP is ablernod &
correct digital circuit in many runs. A population
consisting of 90 individuals with 20 genes yieldsuacess
rate of 100% (see Figure 3(b)) and a populatiorn \2id
individuals with 85 genes yields a success rat@26éb (see
Figure 3(a)).

From Figure 3(a) we may infer that larger MEP
chromosomes are better than the shorter ones. The
minimum number of gates for this circuit is 7. Thismber
has been achieved by Miller during his numerical
experiments (see [12]). A MEP chromosome implenmenti
Miller's digital circuit has 11 genes (the actudbithl
circuit + 4 input genes). From Figure 3(a) we caa that,
for a MEP chromosome with 11 genes, only 6 correct
solutions have been evolved. As the chromosometieng
increases the number of correct solutions evolwedlbo
increases. If the chromosome has more than 21 gbees
success rate never decreases below than 70%.

Even if the chromosome length is larger than the
minimum required (11 genes) the evolved solutions
usually have no more than 14 genes. This is duthdo
multi expression ability of MEP which acts like eopider
of variable length chromosomes [13]. The lengthttod
obtained circuits could be reduced by adding amothe
feature to our MEP algorithm. This feature has been
suggested by C. Coello in [4] and it consists of a
multiobjective fithess function. The first objeativis to
minimize the differences between the expected dwpd
the actual output (see formulas (3) and (4)). Téeosd
objective is to minimize the number of gates usgdhe
digital circuit. Note that he first objective is neo
important than the second one. We also have tofjntu
algorithm. Instead of stopping the MEP algorithmewtan
optimal solution (regarding the first objective)fdnd we
continue to run the program until a fixed number of
generations have been elapsed. In this way we tge
also the number of gates (the second objectivel) bl
minimized.

100

a0

g0

70

G0

ald

40

Success rate (%)

30

20

10

40 G0 Gl 100

Chromosome length

(&)
i

100 '
gz AVE'W
a0

33
g0
73
Fil

E5 I
ol -f
50 ;

45
40

Success rate (%)

40 G0 g0 100

Population size

(h)
Figure 3. The relationship between the success rate olMER
algorithm and (a) number of genes in a chromosafmg the
number of individuals in population. Results areraged over
100 runs.

5.2. Two Bit Adder with Carry

A more complex situation is théwo Bit Adder with
Carry problem [12]. The circuit implementing this
problem adds 5 bits (two numbers represented sinits
each and a carry bit) and gives a three-bit number
representing the output.

The training set consists of 32 fitness cases wWith
inputs and 3 outputs.

The relationship between the success rate and the
chromosome length and the population size is ardlyar
this problem.

When the relationship between the success rat¢hand
population size is analyzed the number of genesaich

MEP chromosome is set to 20 genes. When the
relationship between the success rate and the gtiqul
size is analyzed a population consisting of 20 MEP
chromosomes is used. Gates 10 and 16 (see Talalee1)
used in this experiment (as indicated in [12]). €dtMEP
parameters are given in Table 4. Results are dmpiict
Figure 4.

100
o BN Aaninibdil
gio

Bl

G0
a0
40 i

30 I

20 ‘
/
i

Success rate (%)

10

1]

0 20 40 G0 g0 100

Chromosome lendgth

(&)

a0 M
&0

-
[}

o
]

Success rate (%)
£ (4]
= =

[)
()
f

[n]
[
|

—
]

(]
=

a0 100 130 200 230 300

Population zize

)]
Figure 4. The relationship between the success rate oMBEE
algorithm and (a) number of genes in a chromosdime the
number of individuals in population. Results areraged over
100 runs.

From Figure 4 it can be seen that MEP is able solve
this problem very well. When the number of genesain
MEP chromosome is larger than 30 in more than 8@sa
(out of 100) MEP was able to find a perfect solut{see
Figure 4(a)). After this value, the success ratesdoot
increase significantly. A population with 270 indiuals

yields over 90 (out of 100) successful runs (segufei
4(b)).

This problem is more difficult than the two-bit
multiplier even if we used a smaller function denttions
10 and 16) that the set used for the multiplien¢fion 6, 7
and 10).

6. Conclusions and further work

In this paper Multi Expression Programming has been
used for evolving digital circuits. It has been whothe
way in which multiple digital circuits may be eneatlin
the same chromosome and the way in which MEP
chromosomes are read only once for computing their
quality. There was no human input abbotv the circuits
should be designed, just a measurement of the elégre
which a given circuit achieves the desired response

Several numerical experiments for evolving digital
circuits have been performed. The circuits evoldadng
the numerical experiments are for theo-bit Multiplier
and the Two-bit Adder with Carry problems. These
problems are well-known benchmark instances used fo
assessing the performance of the algorithms ewglvin
digital circuits.

The results of the numerical experiments show that
MEP outperforms CGP on some of the considered test
problems. In some cases the MEP is better than WiGP
more than one order of magnitude.

Even if MEP and CGP have some things in common
there are some decisive aspects that make thegratif
Some of these aspects are listed in Table 6.

Multi Expression Cartesian Genetic
Programming Programming

Encodes multiple solutionsEncodes a single solution of
of a problem in a singl¢a problem in a
chromosome. The processhromosome.
of decoding a MEH
chromosome has the same
complexity as the CGP
decoding process.

The problem’s outputs aneThe problem’s outputs are
chosen as the best amopgubject to evolution.
the possible outputs.

Chromosomes are strings pfChromosomes are matrices
genes. A unique parametewhich are then linearized.
is needed for expressing thedowever, two parameters
chromosome length andare needed for expressing a
shape: the chromosome | chromosome: thaumber of
length. rows and the number of
columns.

Problem’s inputs are storgdThe problem’s inputs arg
in chromosome. not stored in chromosome.

Table 6. The differences between Multi Expression
Programming and Cartesian Genetic Programming.

The differences presented in Table 6 show a sigifi
advantage to the MEP algorithm over the CGP.

Further numerical experiments with Multi Expression
Programming will be focused on evolving digitalctiits
for other interesting problems (such as threehit our-
bit multipliers).

References

[1] A. Aho, R. Sethi, and J. UllmanCompilers:
Principles, Technigues, and Tools, Addison Wesley,
1986.

[2] T. Back, F. Hoffmeister and H.P. SchwefalSurvey
of Evolutionary Strategies, In Proceedings of the™
International Conference on Genetic Algorithms,
edited by R. Belew and L. Booker, Morgan
Kaufmann, San Francisco, CA, pp. 2-9, 1991.

[3] R. Bellman, Dynamic Programming, Princeton,
Princeton University Press, New Jersey, 1957.

[4] C. Coello, E. Alba, G. Lugue and A. Aguire,
Comparing different Serial and Parallel Heuristics to
Design Combinational Logic Circuits, In Proceedings
of 2003 NASA/DoD Conference on Evolvable
Hardware, J. Lohn, R. Zebulum, J. Steincamp, D.
Keymeulen, A. Stoica, M.I. Ferguson, pp 3-12, 2003.

[5] C. Ferreira,Gene Expression Programming: a New
Adaptive Algorithm for Solving Problems, Complex
Systems, Vol. 13, pp. 87-129, 2001.

[6] J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992.

[71 J. R. Koza, Genetic Programming |l: Automatic
Discovery of Reusable Programs, MIT Press,
Cambridge, MA, 1994,

[8] J. F. Miller and P. ThomsonAspects of Digital
Evolution: Evolvability and Architecture. In
Proceedings of the Parallel Problem Solving from
Nature V, A. E. Eiben, T. Back, M. Schoenauer, and
H-P Schwefel (Editors), pp. 927-936, Springer, 1998

[9] J.F. Miller and P. ThomsonCartesian Genetic
Programming. In Proceedings of the“3nternational
Conference on Genetic Programming (EuroGP2000),
R. Poli, J.F. Miller, W. Banzhaf, W.B. Langdon, J.F
Miller, P. Nordin, T.C. Fogarty (Eds.), LNCS 1802,
Springer-Verlag, Berlin, pp. 15-17, 2000.

[10]J. F. Miller, P. Thomson, and T. Fogarfyesigning
Electronic Circuits using Evolutionary Algorithms.
Arithmetic Circuits:. A Case Sudy. In Genetic
Algorithms and Evolution Strategies in Engineering
and Computer Science, D. Quagliarella, J. Perigux,
Poloni and G. Winter (Editors), pp. 105-131,
Chechester, UK-Wiley, 1997.

[11]J. F. Miller. An Empirical Sudy of the Efficiency of
Learning Boolean Functions using a Cartesian
Genetic Programming Approach. In Proceedings of
the ' Genetic and Evolutionary Computation
Conference, W. Banzhaf, J. Daida, A. E. Eiben, M. H
Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
(Editors), Vol. 2, pp. 1135-1142, Morgan Kaufmann,
San Francisco, CA, 1999.

[12]J. F. Miller, D. Job and V.K. Vassile¥rinciples in
the Evolutionary Design of Digital Circuits - Part 1,
Genetic Programming and Evolvable Machines, Vol.
1(2), pp. 7 — 35, Kluwer Academic Publishers, 2000.

[13]M. Oltean and C. Ggan, A Comparison of Several
Linear GP Techniques, Complex Systems, 2004
(Accepted for publication).

[14]M. Oltean and C. Gwan, Evolving Evolutionary
Algorithms using Multi Expression Programming, The
7" European Conference on Artificial Life, September
14-17, 2003, Dortmund, Edited by W. Banzhaf (et al)
LNAI 2801, pp. 651-658, Springer Berlin, 2003

[15]M. Oltean,Solving Even-Parity Problems with Multi
Expression Programming, Proceedings of the ™5
International Workshop on Frontiers in Evolutionary
Algorithms, The ¥ Joint Conference on Information
Sciences, September 26-30, 2003, Research Triangle
Park, North Carolina, Edited by Ken Chen (et. jpp),
315-318, 2003.

[16]M. Oltean and D. DumitrescuMulti Expression
Programming, Journal of Genetic Programming and
Evolvable Machines, Kluwer, second tour of review,
2002, (available at www.mep.cs.ubbcluj.ro).

[17]C. Ryan, J.J. Collins and M. O'NeilGrammatical
Evolution: Evolving Programs for an Arbitrary
Language, In Proceedings of the First European
Workshop on Genetic Programming, pp. 83-95,
Springer-Verlag, Berlin, 1998.

[18]A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M.
Ferguson and V. DuongSlicon Validation of
Evolution Designed Circuits, In Proceedings of the

2003 NASA/DoD Conference on Evolvable
Hardware, pp. 21-26, 2003.
[19]G. Syswerda, Uniform Crossover in Genetic

Algorithms, In Proceedings of the™3International
Conference on Genetic Algorithms, J.D. Schaffer
(Editor), Morgan Kaufmann Publishers, CA, 2-9,
1989.

[20]D.H. Wolpert and W.G. McReadyNo Free Lunch
Theorems for Optimization, IEEE Transaction on
Evolutionary Computation, Vol. 1, pp 67-82, 1997.

[21]D.H. Wolpert and W.G. McReadyNo Free Lunch
Theorems for Search, Technical Report, SFI-TR-05-
010, Santa Fe Institute, 1995.

