
 1

Evolving Digital Circuits using Multi Expression Programming

Mihai Oltean and Crina Groşan
Department of Computer Science

Babeş-Bolyai University, Kogălniceanu 1
Cluj-Napoca, 3400, Romania

{moltean, cgrosan}@nessie.cs.ubbcluj.ro

Abstract. Multi Expression Programming (MEP) is a Genetic
Programming (GP) variant that uses linear chromosomes for
solution encoding. A unique MEP feature is its ability of
encoding multiple solutions of a problem in a single
chromosome. These solutions are handled in the same time
complexity as other techniques that encode a single solution in a
chromosome. In this paper MEP is used for evolving digital
circuits. MEP is compared to Cartesian Genetic Programming
(CGP) – a technique widely used for evolving digital circuits –
by using several well-known problems in the field of electronic
circuit design. Numerical experiments show that MEP
outperforms CGP for the considered test problems.

1. Introduction

The problem of evolving digital circuits has been intensely
analyzed in the recent past [4, 8, 10, 11, 12, 18]. A
considerable effort has been spent on evolving very
efficient (regarding the number of gates) digital circuits. J.
Miller, one of the pioneers in the field of the evolvable
digital circuits, used a special technique called Cartesian
Genetic Programming (CGP) [9, 12] for evolving digital
circuits. CGP architecture consists of a network of gates
(placed in a grid structure) and a set of wires connecting
them. For instance this structure has been used for
evolving digital circuits for the multiplier problem [12].
The results [12] shown that CGP was able to evolve digital
circuits better than those designed by human experts.

In this paper, we use Multi Expression Programming
(MEP)1 [13, 14, 15, 16] for evolving digital circuits. MEP
is a Genetic Programming (GP) [6, 7] variant that uses
linear chromosomes of fixed length. A unique feature of
MEP is its ability of storing multiple solutions of a
problem in a single chromosome. Note that this feature
does not increase the complexity of the MEP decoding
process when compared to other techniques storing a
single solution in a chromosome. It has been documented
[13, 16], that MEP performs significantly better than other
competitor techniques (such as Genetic Programming,
Cartesian Genetic Programming, Gene Expression
Programming [6] and Grammatical Evolution [17]) for
some well-known problems such as symbolic regression
and even-parity [6].

In this paper we present the way in which MEP may be
efficiently applied for evolving digital circuits. We show
the way in which multiple digital circuits may be stored in
a single MEP chromosome and the way in which the

1 MEP source code is available at https://github.com/mepx

fitness of this chromosome may be computed by traversing
the MEP chromosome only once.

Several numerical experiments are performed with
MEP for evolving arithmetic circuits. The results show that
MEP significantly outperforms CGP for the considered test
problems.

The paper is organized as follows. In section 2, the
problem of designing digital circuits is presented. Section
3 briefly describes the Cartesian Genetic Programming
technique. The Multi Expression technique is presented in
section 4. The way in which digital circuits are encoded in
a MEP chromosome is presented in subsection 4.5. Several
numerical experiments are performed in section 5.

2. Problem statement

The problem that we are trying to solve in this paper may
be briefly stated as follows:

Find a digital circuit that implements a function given by

its truth table.

The gates that are usually used in the design of digital
circuits along with their description are given in Table 1.

Function # Function
0 0 10 ba ⊕
1 1 11 ba ⊕
2 a 12 ba +
3 b 13 ba +
4 a 14 ba +
5 b 15 ba +
6 ba ⋅ 16 cbca ⋅+⋅
7 ba ⋅ 17 cbca ⋅+⋅
8 ba ⋅ 18 cbca ⋅+⋅
9 ba ⋅ 19 cbca ⋅+⋅
Table 1. Function set (gates) used in numerical experiments.
Some functions are independent on the input (functions 0 and 1),
other depend on only one of the input variables (functions 2-5),
other functions depend on two input variables (functions 6-15)
and the other functions depends on three input variables
(functions 16-19). These functions are taken from [12].

Symbols used to represent some of the logical gates are
given in Figure 1.

 2

Figure 1. The symbols used to represent some of the logical
gates in Table 1 (OR is function 12, AND is function 6, XOR is
function 10 and MUX is function 16). In some pictures a small
circle may appear on these symbols indicating the negation
(inversion) of the respective results.

The MUX gate may be also represented using 2 ANDs
and 1 OR. However some modern devices use the MUX
gate as an atomic device in that all other gates are
synthesized using this one [9].

Gates may also be represented using the symbols given
in Table 2.

Gate Representation
AND ⋅
OR +
XOR ⊕
NOT −
Table 2. Representation of some functions given in Table 1.

3. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [9, 12] is a GP
technique that encodes chromosomes in graph structures
rather than standard GP trees. The motivation for this
representation is that the graphs are more general than the
tree structures, thus allowing the construction of more
complex computer programs.

CGP is Cartesian in the sense that the graph nodes are
represented in a Cartesian coordinate system. This
representation was chosen due to the node connection
mechanism, which is similar to GP mechanism. A CGP
node contains a function symbol and pointers towards
nodes representing function parameters. Each CGP node
has an output that may be used as input for another node.

Each CGP program (graph) is defined by several
parameters: number of rows (nr), number of columns (nc),
number of inputs, number of outputs, and number of
functions. The nodes interconnectivity is defined as being
the number (l) of previous columns of cells that may have
their outputs connected to a node in the current column
(the primary inputs are treated as node outputs).

CGP chromosomes are encoded as strings by reading
the graph columns top down and printing the input nodes
and the function symbol for each node.

An example of CGP program is depicted in Figure 2.

Figure 2. A CGP program for 1-bit adder problem.

In Figure 2, a gate array representation of a one-bit
adder is given. A, B, and Cin are the binary inputs. The
outputs Sum and Cout are the binary outputs. Sum
represents the sum bit of the addition of A+B+Cin, and
Cout the carry bit. The chromosome representation of the
circuit in Figure 2 is the following (function symbols are
given in bold):

0 1 0 10 0 0 2 6 3 2 1 10 0 2 3 16 6 5.

Evolutionary algorithm used in [12] to evolve digital

circuits is a simple form of (1+λ)-ES [2], where λ was set
to 4. This algorithm seems to perform very well in
conjunction to CGP representation. However, a Genetic
Algorithm (GA) [6, 19] may also be used as underlying
mechanism for CGP.

4. Multi Expression Programming

In this section, Multi Expression Programming is
briefly described.

4.1. MEP Algorithm

Standard MEP algorithm uses steady state [19] as its
underlying mechanism. MEP algorithm starts by creating a
random population of individuals. The following steps are
repeated until a stop condition is reached. Two parents are
selected using a selection procedure. The parents are
recombined in order to obtain two offspring. The offspring
are considered for mutation. The best offspring replaces
the worst individual in the current population if the
offspring is better than the worst individual.

The algorithm returns as its answer the best
expression evolved along a fixed number of generations.

4.2. MEP Representation

MEP genes are represented by substrings of a variable

length. The number of genes per chromosome is constant.
This number defines the length of the chromosome. Each
gene encodes a terminal or a function symbol. A gene
encoding a function includes pointers towards the function
arguments. Function arguments always have indices of
lower values than the position of that function in the
chromosome.

 3

This representation is similar to the way in which C
and Pascal compilers translate mathematical expressions
into machine code [1].

The proposed representation ensures that no cycle
arises while the chromosome is decoded (phenotypically
transcripted). According to the proposed representation
scheme the first symbol of the chromosome must be a
terminal symbol. In this way only syntactically correct
programs (MEP individuals) are obtained.

Example

We employ a representation where the numbers on the
left positions stand for gene labels. Labels do not belong to
the chromosome, they being provided only for explanation
purposes.

For this example we use the set of functions F = {+, *},
and the set of terminals T = {a, b, c, d}. An example of
chromosome using the sets F and T is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

4.3. Decoding MEP Chromosomes and the
Fitness Assignment Process

In this section it is described the way in which MEP
individuals are translated into computer programs and the
way in which the fitness of these programs is computed.

This translation is achieved by reading the
chromosome top-down. A terminal symbol specifies a
simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified
by the argument positions with the current function
symbol.

For instance, genes 1, 2, 4 and 5 in the previous
example encode simple expressions formed by a single
terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands

located at positions 1 and 2 of the chromosome. Therefore
gene 3 encodes the expression:

E3 = a + b.

Gene 6 indicates the operation + on the operands
located at positions 4 and 5. Therefore gene 6 encodes the
expression:

E6 = c + d.

Gene 7 indicates the operation * on the operands

located at position 3 and 6. Therefore gene 7 encodes the
expression:

E7 = (a + b) * (c + d).

E7 is the expression encoded by the whole
chromosome.

There is neither practical nor theoretical evidence
that one of these expressions is better than the others.
Moreover, Wolpert and McReady [20, 21] proved that we
cannot use the search algorithm’s behavior so far for a
particular test function to predict its future behavior on that
function. This is why each MEP chromosome is allowed to
encode a number of expressions equal to the chromosome
length. Each of these expressions is considered as being a
potential solution of the problem.

The value of these expressions may be computed by
reading the chromosome top down. Partial results are
computed by dynamic programming [3] and are stored in a
conventional manner.

As MEP chromosome encodes more than one problem
solution, it is interesting to see how the fitness is assigned.

Usually the chromosome fitness is defined as the
fitness of the best expression encoded by that
chromosome.

For instance, if we want to solve symbolic regression
problems the fitness of each sub-expression Ei may be
computed using the formula:

,)(
1

,∑
=

−=
n

k
kiki woEf (1)

where ok,i is the obtained result by the expression Ei for the
fitness case k and wk is the targeted result for the fitness
case k. In this case the fitness needs to be minimized.

The fitness of an individual is set to be equal to the
lowest fitness of the expressions encoded in chromosome:

).(min)(i
i

EfCf = (2)

When we have to deal with other problems we compute

the fitness of each sub-expression encoded in the MEP
chromosome and the fitness of the entire individual is
given by the fitness of the best expression encoded in that
chromosome.

4.4. Search Operators

Search operators used within MEP algorithm are
crossover and mutation. Considered search operators
preserve the chromosome structure. All offspring are
syntactically correct expressions.

Crossover

 4

By crossover two parents are selected and are
recombined. For instance, within the uniform
recombination the offspring genes are taken randomly
from one parent or another.

Example

Let us consider the two parents C1 and C2 given below.
The two offspring O1 and O2 are obtained by uniform
recombination as follows:

Parents Offspring

C1 C2 O1 O2
1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

 1: a
2: * 1, 1
3: + 2, 1
4: c
5: * 3, 2
6: + 4, 5
7: - 1, 4

1: b
2: b
3: + 1, 2
4: a
5: d
6: a
7: * 3, 6

Mutation

Each symbol (terminal, function of function pointer) in
the chromosome may be target of mutation operator. By
mutation some symbols in the chromosome are changed.
To preserve the consistency of the chromosome its first
gene must encode a terminal symbol.

Example

Consider the chromosome C given below. If the
boldfaced symbols are selected for mutation an offspring
O is obtained as follows:

C O
1: a
2: * 1, 1
3: b
4: * 2, 2
5: b
6: + 3, 5
7: a

1: a
2: * 1, 1
3: + 1, 2
4: * 2, 2
5: b
6: + 1, 5
7: a

4.5. MEP for Evolving Digital Circuits

In this section we describe the way in which Multi

Expression Programming may be efficiently used for
evolving digital circuits.

Each circuit has one or more inputs (denoted by NI)
and one or more outputs (denoted NO). In section 4.4 we
present the way in which is the fitness of a chromosome
with a single output is computed. When multiple outputs
are required for a problem, we have to choose NO genes
which will provide the desired output (it is obvious that the
genes must be distinct unless the outputs are redundant).

In CGP, the genes providing the program’s output are
evolved just like all other genes. In MEP, the best genes in
a chromosome are chosen to provide the program’s
outputs. When a single value is expected for output we
simply choose the best gene (see section 4.3, formulas (1)

and (2)). When multiple genes are required as outputs we
have to select those genes which minimize the difference
between the obtained result and the expected output.

We have to compute first the quality of a gene (sub-
expression) for a given output:

,),(
1

,,∑
=

−=
n

k
qkiki woqEf (3)

where ok,i is the obtained result by the expression (gene) Ei
for the fitness case k and wk,q is the targeted result for the
fitness case k and for the output q. The values f(Ei, q) are
stored in a matrix (by using dynamic programming [3]) for
latter use (see formula (4)).

Since the fitness needs to be minimized, the quality of
a MEP chromosome is computed by using the formula:

.),(min)(
1,...,2,1
∑
≤

=
=

NOq

q
qi

NOiii
qEfCf (4)

In equation (4) we have to choose numbers i1, i2, …,

iNO in such way to minimize the program’s output. For this
we shall use a simple heuristic which does not increase the
complexity of the MEP decoding process: for each output
q (1 ≤ q ≤ NO) we choose the gene i that minimize the
quantity f(Ei, q). Thus, to an output is assigned the best
gene (which has not been assigned before to another
output). The selected gene will provide the value of the qth
output.

Remark:
i. Formulas (3) and (4) are the generalization of

formulas (1) and (2) for the case of multiple outputs
of a MEP chromosome.

ii. The complexity of the heuristic used for assigning
outputs to genes is O(NG ⋅ NO) where NG is the
number of genes and NO is the number of outputs.

iii. We may use another procedure for selecting the
genes that will provide the problem’s outputs. This
procedure selects, at each step, the minimal value in
the matrix f(Ei, q) and assign the corresponding gene
i to its paired output q. Again, the genes already used
will be excluded from the search. This procedure will
be repeated until all outputs have been assigned to a
gene. However, we did not used this procedure
because it has a higher complexity –
O(NO⋅log2(NO)⋅NG) − than the previously described
procedure which has the complexity O(NO⋅NG).

5. Numerical Experiments

In this section, several numerical experiments
with MEP for evolving digital circuits are performed. For
this purpose several well-known test problems [12] are
used.

 5

For reducing the chromosome length and for
preventing input redundancy we keep all the terminals on
the first positions of the MEP chromosomes.

For assessing the performance of the MEP algorithm
three statistics are of high interest:

i. the relationship between the success rate and the
number of genes in a MEP chromosome,

ii. the relationship between the success rate and the
size of the population used by the MEP algorithm.

iii. the computation effort.

The success rate is computed using the equation (5).

.
runsofnumbertotalThe

runssuccessfulofnumberThe
rateSuccess = (5)

The method used to assess the effectiveness of an

algorithm has been suggested by Koza [6]. It consists of
calculating the number of chromosomes, which would
have to be processed to give a certain probability of
success. To calculate this figure one must first calculate
the cumulative probability of success P(M, i), where M
represents the population size, and i the generation
number. The value R(z) represents the number of
independent runs required for a probability of success
(given by z) at generation i. The quantity I(M, z, i)
represents the minimum number of chromosomes which
must be processed to give a probability of success z, at
generation i. The formulae are given by the equation (6),
(7) and (8). Ns(i) represents the number of successful runs
at generation i, and Ntotal , represents the total number of
runs:

.
)(

),(
totalN

iNs
iMP = (6)

.
),(1log(

)1log(
)(









−
−=

iMP

z
ceilzR (7)

.)(),,(izRMziMI ⋅⋅= (8)

Note that when z = 1.0 the formulae are invalid (all
runs successful). In the tables and graphs of this paper z
takes the value 0.99.

In the numerical experiments performed in this paper
the number of symbols in a MEP chromosome is usually
larger than the number of symbols in a CGP chromosome
because in a MEP the problem’s inputs are also treated as a
normal gene and in a CGP the inputs are treated as being
isolated from the main CGP chromosome. Thus, the
number of genes in a MEP chromosome is equal to the
number of genes in CGP chromosome + the number of
problem’s inputs.

5.1. Two Bit Multiplier

The two-bit multiplier [12] implements the binary
multiplication of two two-bit numbers to produce a
possible four-bit number. The training set for this problem
consist of 16 fitness cases, each of them having 4 inputs
and 4 outputs.

Several experiments for evolving a circuit that
implements the two-bit multiplier are performed. In the
first experiment we want to compare the computation
effort spent by CGP and MEP for solving this problem.
Gates 6, 7 and 10 (see Table 1) are used in this experiment.

The parameters of CGP are given in Table 3 and the
parameters of MEP are given in Table 4.

Parameter Value
Number of rows 1
Number of columns 10
Levels back 10
Mutation 3 symbols / chromosome
Evolutionary scheme (1+4) ES
Table 3. Parameters of the CGP algorithm.

Parameter Value
Code length 14 (10 gates + 4 inputs)
Crossover Uniform
Crossover probability 0.9
Mutation 3 symbols / chromosome
Selection Binary Tournament
Table 4. Parameters of the MEP algorithm.

One hundred runs of 150000 generations are performed
for each population size. Results are given in Table 5.

Population
size

Cartesian Genetic
Programming

Multi Expression
Programming

∆

2 148808 53352 178.91
3 115224 111600 3.24
4 81608 54300 50.29
5 126015 59000 113.58
6 100824 68850 46.44
7 100821 39424 155.73
8 96032 44160 117.46
9 108036 70272 53.73
10 108090 28910 273.88
12 115248 25536 351.31
14 117698 26544 343.40
16 120080 21216 465.98
18 145854 17820 718.48
20 120100 21120 468.65
25 180075 23500 666.27
30 162180 19440 734.25
40 216360 16000 1252.25
50 225250 13250 1600.00
Table 5. Computation effort spent for evolving two-bit
multipliers for different population sizes. CGP results are taken
from [12]. The difference ∆ (last column) is shown as a
percentage considering the values of MEP as a baseline. Results
are averaged over 100 runs.

 6

From Table 5 it can be seen that MEP outperforms
CGP for all considered population sizes. The differences
range from 3.24% (for 3 individuals in the population) up
to 1600% (for 50 individuals in the population). From this
experiment we also may infer that large populations are
better for MEP than for CGP. The computational effort
decrease for MEP as the population size is increased.

We are also interested in computing the relationship
between the success rate and the chromosome length and
the population size.

The number of genes in each MEP chromosome is set
to 20 genes when the relationship between the success rate
and the population size is analyzed. When the relationship
between the success rate and the population size is
analyzed a population consisting of 20 MEP chromosomes
is used. Gates 6, 7 and 10 are used in this experiment.
Other MEP parameters are given in Table 4.

Results are depicted in Figure 3.
From Figure 3 it can be seen that MEP is able to find a

correct digital circuit in many runs. A population
consisting of 90 individuals with 20 genes yields a success
rate of 100% (see Figure 3(b)) and a population with 20
individuals with 85 genes yields a success rate of 92% (see
Figure 3(a)).

From Figure 3(a) we may infer that larger MEP
chromosomes are better than the shorter ones. The
minimum number of gates for this circuit is 7. This number
has been achieved by Miller during his numerical
experiments (see [12]). A MEP chromosome implementing
Miller’s digital circuit has 11 genes (the actual digital
circuit + 4 input genes). From Figure 3(a) we can see that,
for a MEP chromosome with 11 genes, only 6 correct
solutions have been evolved. As the chromosome length
increases the number of correct solutions evolved by also
increases. If the chromosome has more than 21 genes the
success rate never decreases below than 70%.

Even if the chromosome length is larger than the
minimum required (11 genes) the evolved solutions
usually have no more than 14 genes. This is due to the
multi expression ability of MEP which acts like a provider
of variable length chromosomes [13]. The length of the
obtained circuits could be reduced by adding another
feature to our MEP algorithm. This feature has been
suggested by C. Coello in [4] and it consists of a
multiobjective fitness function. The first objective is to
minimize the differences between the expected output and
the actual output (see formulas (3) and (4)). The second
objective is to minimize the number of gates used by the
digital circuit. Note that he first objective is more
important than the second one. We also have to modify the
algorithm. Instead of stopping the MEP algorithm when an
optimal solution (regarding the first objective) is found we
continue to run the program until a fixed number of
generations have been elapsed. In this way we hope that
also the number of gates (the second objective) will be
minimized.

Figure 3. The relationship between the success rate of the MEP
algorithm and (a) number of genes in a chromosome, (b) the
number of individuals in population. Results are averaged over
100 runs.

5.2. Two Bit Adder with Carry

A more complex situation is the Two Bit Adder with
Carry problem [12]. The circuit implementing this
problem adds 5 bits (two numbers represented using 2 bits
each and a carry bit) and gives a three-bit number
representing the output.

The training set consists of 32 fitness cases with 5
inputs and 3 outputs.

The relationship between the success rate and the
chromosome length and the population size is analyzed for
this problem.

When the relationship between the success rate and the
population size is analyzed the number of genes in each

 7

MEP chromosome is set to 20 genes. When the
relationship between the success rate and the population
size is analyzed a population consisting of 20 MEP
chromosomes is used. Gates 10 and 16 (see Table 1) are
used in this experiment (as indicated in [12]). Other MEP
parameters are given in Table 4. Results are depicted in
Figure 4.

Figure 4. The relationship between the success rate of the MEP
algorithm and (a) number of genes in a chromosome, (b) the
number of individuals in population. Results are averaged over
100 runs.

From Figure 4 it can be seen that MEP is able solve
this problem very well. When the number of genes in a
MEP chromosome is larger than 30 in more than 80 cases
(out of 100) MEP was able to find a perfect solution (see
Figure 4(a)). After this value, the success rate does not
increase significantly. A population with 270 individuals

yields over 90 (out of 100) successful runs (see Figure
4(b)).

This problem is more difficult than the two-bit
multiplier even if we used a smaller function set (functions
10 and 16) that the set used for the multiplier (function 6, 7
and 10).

6. Conclusions and further work

In this paper Multi Expression Programming has been
used for evolving digital circuits. It has been shown the
way in which multiple digital circuits may be encoded in
the same chromosome and the way in which MEP
chromosomes are read only once for computing their
quality. There was no human input about how the circuits
should be designed, just a measurement of the degree to
which a given circuit achieves the desired response.

Several numerical experiments for evolving digital
circuits have been performed. The circuits evolved during
the numerical experiments are for the Two-bit Multiplier
and the Two-bit Adder with Carry problems. These
problems are well-known benchmark instances used for
assessing the performance of the algorithms evolving
digital circuits.

The results of the numerical experiments show that
MEP outperforms CGP on some of the considered test
problems. In some cases the MEP is better than CGP with
more than one order of magnitude.

Even if MEP and CGP have some things in common
there are some decisive aspects that make them different.
Some of these aspects are listed in Table 6.

Multi Expression
Programming

Cartesian Genetic
Programming

Encodes multiple solutions
of a problem in a single
chromosome. The process
of decoding a MEP
chromosome has the same
complexity as the CGP
decoding process.

Encodes a single solution of
a problem in a
chromosome.

The problem’s outputs are
chosen as the best among
the possible outputs.

The problem’s outputs are
subject to evolution.

Chromosomes are strings of
genes. A unique parameter
is needed for expressing the
chromosome length and
shape: the chromosome
length.

Chromosomes are matrices
which are then linearized.
However, two parameters
are needed for expressing a
chromosome: the number of
rows and the number of
columns.

Problem’s inputs are stored
in chromosome.

The problem’s inputs are
not stored in chromosome.

Table 6. The differences between Multi Expression
Programming and Cartesian Genetic Programming.

The differences presented in Table 6 show a significant
advantage to the MEP algorithm over the CGP.

 8

Further numerical experiments with Multi Expression
Programming will be focused on evolving digital circuits
for other interesting problems (such as three-bit and four-
bit multipliers).

References

[1] A. Aho, R. Sethi, and J. Ullman, Compilers:

Principles, Techniques, and Tools, Addison Wesley,
1986.

[2] T. Bäck, F. Hoffmeister and H.P. Schwefel, A Survey
of Evolutionary Strategies, In Proceedings of the 4th
International Conference on Genetic Algorithms,
edited by R. Belew and L. Booker, Morgan
Kaufmann, San Francisco, CA, pp. 2-9, 1991.

[3] R. Bellman, Dynamic Programming, Princeton,
Princeton University Press, New Jersey, 1957.

[4] C. Coello, E. Alba, G. Luque and A. Aguire,
Comparing different Serial and Parallel Heuristics to
Design Combinational Logic Circuits, In Proceedings
of 2003 NASA/DoD Conference on Evolvable
Hardware, J. Lohn, R. Zebulum, J. Steincamp, D.
Keymeulen, A. Stoica, M.I. Ferguson, pp 3-12, 2003.

[5] C. Ferreira, Gene Expression Programming: a New
Adaptive Algorithm for Solving Problems, Complex
Systems, Vol. 13, pp. 87-129, 2001.

[6] J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992.

[7] J. R. Koza, Genetic Programming II: Automatic
Discovery of Reusable Programs, MIT Press,
Cambridge, MA, 1994.

[8] J. F. Miller and P. Thomson, Aspects of Digital
Evolution: Evolvability and Architecture. In
Proceedings of the Parallel Problem Solving from
Nature V, A. E. Eiben, T. Bäck, M. Schoenauer, and
H-P Schwefel (Editors), pp. 927–936, Springer, 1998.

[9] J.F. Miller and P. Thomson, Cartesian Genetic
Programming. In Proceedings of the 3rd International
Conference on Genetic Programming (EuroGP2000),
R. Poli, J.F. Miller, W. Banzhaf, W.B. Langdon, J.F.
Miller, P. Nordin, T.C. Fogarty (Eds.), LNCS 1802,
Springer-Verlag, Berlin, pp. 15-17, 2000.

[10] J. F. Miller, P. Thomson, and T. Fogarty, Designing
Electronic Circuits using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study. In Genetic
Algorithms and Evolution Strategies in Engineering
and Computer Science, D. Quagliarella, J. Periaux, C.
Poloni and G. Winter (Editors), pp. 105–131,
Chechester, UK-Wiley, 1997.

[11] J. F. Miller. An Empirical Study of the Efficiency of
Learning Boolean Functions using a Cartesian
Genetic Programming Approach. In Proceedings of
the 1st Genetic and Evolutionary Computation
Conference, W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
(Editors), Vol. 2, pp. 1135–1142, Morgan Kaufmann,
San Francisco, CA, 1999.

[12] J. F. Miller, D. Job and V.K. Vassilev. Principles in
the Evolutionary Design of Digital Circuits - Part I,
Genetic Programming and Evolvable Machines, Vol.
1(1), pp. 7 – 35, Kluwer Academic Publishers, 2000.

[13] M. Oltean and C. Groşan, A Comparison of Several
Linear GP Techniques, Complex Systems, 2004
(Accepted for publication).

[14] M. Oltean and C. Groşan, Evolving Evolutionary
Algorithms using Multi Expression Programming, The
7th European Conference on Artificial Life, September
14-17, 2003, Dortmund, Edited by W. Banzhaf (et al),
 LNAI 2801, pp. 651-658, Springer Berlin, 2003

[15] M. Oltean, Solving Even-Parity Problems with Multi
Expression Programming, Proceedings of the 5th
International Workshop on Frontiers in Evolutionary
Algorithms, The 7th Joint Conference on Information
Sciences, September 26-30, 2003, Research Triangle
Park, North Carolina, Edited by Ken Chen (et. al), pp.
315-318, 2003.

[16] M. Oltean and D. Dumitrescu, Multi Expression
Programming, Journal of Genetic Programming and
Evolvable Machines, Kluwer, second tour of review,
2002, (available at www.mep.cs.ubbcluj.ro).

[17] C. Ryan, J.J. Collins and M. O'Neill, Grammatical
Evolution: Evolving Programs for an Arbitrary
Language, In Proceedings of the First European
Workshop on Genetic Programming, pp. 83-95,
Springer-Verlag, Berlin, 1998.

[18] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M.
Ferguson and V. Duong, Silicon Validation of
Evolution Designed Circuits, In Proceedings of the
2003 NASA/DoD Conference on Evolvable
Hardware, pp. 21-26, 2003.

[19] G. Syswerda, Uniform Crossover in Genetic
Algorithms, In Proceedings of the 3rd International
Conference on Genetic Algorithms, J.D. Schaffer
(Editor), Morgan Kaufmann Publishers, CA, 2-9,
1989.

[20] D.H. Wolpert and W.G. McReady, No Free Lunch
Theorems for Optimization, IEEE Transaction on
Evolutionary Computation, Vol. 1, pp 67-82, 1997.

[21] D.H. Wolpert and W.G. McReady, No Free Lunch
Theorems for Search, Technical Report, SFI-TR-05-
010, Santa Fe Institute, 1995.

