Critical line of nontrivial zeros of Riemann zeta function $\zeta(s)$

José Alcauza *

February, 2022

Abstract

In this paper, we find a curious and simple possible solution to the critical line of nontrivial zeros in the strip $\{s \in \mathbb{C}: 0<\Re(s)<1\}$ of Riemann zeta function $\zeta(s)$. We show that exists $s_{\sigma} \in \mathbb{C}$ such that if $\left\{s_{\sigma}=\sigma+i t:(\sigma \in \mathbb{R}, 0<\sigma<1) ;(\forall t \in \mathbb{R})\right\}$ with i as the imaginary unit, then exactly satisfy: $$
\lim _{s \rightarrow s_{\sigma}} \zeta(s)=\zeta\left(s_{\sigma}\right)=0 \Rightarrow s_{\sigma}=\frac{1}{2}+i t
$$

Therefore, all the nontrivial zeros lie on the critical line $\left\{s \in \mathbb{C}: \Re(s)=\frac{1}{2}\right\}$ consisting of the set complex numbers $\frac{1}{2}+i t$, thus confirming Riemann's hypothesis.

1 Introduction.

There is a large and extensive bibliography on the Riemann zeta function and its zeros, so we will not go into further details of it. Basically, Riemann zeta function is defined for $s \in \mathbb{C}$ with $\Re(s)>1$ by the absolutely convergent infinite series:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

Leonhard Euler already considered this series for real values of s. He also proved that it equals the Euler product:

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

where the infinite product extends over all prime numbers p. However, we can also define the Riemann zeta function Eq.(1) as:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}+\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}} \Rightarrow \zeta(s)=\frac{1}{2^{s}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}+\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{s}}\right)
$$

Which can also be expressed as:

$$
\begin{equation*}
\zeta(s)=\frac{1}{2^{s}}[\zeta(s)+B(s)] \Longleftrightarrow B(s)=\sum_{n=1}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{s}} \tag{2}
\end{equation*}
$$

Thus, by Eq.(2) we can definitely express the Riemann zeta function as:

$$
\begin{equation*}
\zeta(s)=\left(2^{s}-1\right)^{-1} B(s) \tag{3}
\end{equation*}
$$

*alcauza.jose@gmail.com

As is well known, the Riemann zeta function $\zeta(s)$ and the Dirichlet eta function $\eta(s)$ satisfy the relation:

$$
\begin{equation*}
\eta(s)=\left(1-2^{1-s}\right) \zeta(s) \tag{4}
\end{equation*}
$$

Thus, by Eq.(3) we can now express the Dirichlet eta function as:

$$
\begin{equation*}
\eta(s)=\left(\frac{1-2^{1-s}}{2^{s}-1}\right) B(s) \tag{5}
\end{equation*}
$$

2 Proof.

By Eq.(2), Eq.(4) and Eq.(5) we can obtain:

$$
\begin{equation*}
2^{1-s}=1-\frac{\eta(s)}{\zeta(s)}=2^{s} \cdot \frac{\zeta(s)-\eta(s)}{\zeta(s)+B(s)} \quad \Rightarrow \quad 2^{1-2 s}=\frac{\zeta(s)+\left(\frac{2^{1-s}-1}{2^{s}-1}\right) B(s)}{\zeta(s)+B(s)} \tag{6}
\end{equation*}
$$

However, exists $s_{\sigma} \in \mathbb{C}$ such that $\left\{s_{\sigma}=\sigma+i t:(\sigma, t) \in \mathbb{R}\right\}$ with i as the imaginary unit, such that exactly satisfy:

$$
\lim _{s \rightarrow s_{\sigma}} \zeta(s)=\zeta\left(s_{\sigma}\right)=0
$$

Therefore, calculating $\left(\lim _{s \rightarrow s_{\sigma}}\right)$ in Eq.(6), we obtain:

$$
\lim _{s \rightarrow s_{\sigma}}\left(2^{1-2 s}\right)=\lim _{s \rightarrow s_{\sigma}} \frac{\zeta(s)+\left(\frac{2^{1-s}-1}{2^{s}-1}\right) B(s)}{\zeta(s)+B(s)} \Rightarrow 2^{1-2 s_{\sigma}}=\frac{\left(\frac{2^{1-s_{\sigma}}-1}{2^{s_{\sigma}-1}}\right) B\left(s_{\sigma}\right)}{B\left(s_{\sigma}\right)}
$$

However, since $\left[B\left(s_{\sigma}\right) \rightarrow 0 \Longleftrightarrow \zeta\left(s_{\sigma}\right) \rightarrow 0\right]$ by Eq.(3), we obtain an indeterminacy of the type $\frac{0}{0}$. Then by successive applications of the L'hôpital rule until any nth derivative $B^{(n)}\left(s_{\sigma}\right) \neq 0$, that is: $(\forall j<n$: $B^{(j)}\left(s_{\sigma}\right)=0$, we obtain:

$$
2^{1-2 s_{\sigma}}=\frac{\left(\frac{2^{1-s_{\sigma}-1}}{2^{s_{\sigma}-1}}\right) B^{(n)}\left(s_{\sigma}\right)}{B^{(n)}\left(s_{\sigma}\right)} \quad \Rightarrow \quad 2^{1-2 s_{\sigma}}=\frac{2^{1-s_{\sigma}}-1}{2^{s_{\sigma}}-1}
$$

As $s_{\sigma}=\sigma+i t$ then obtaining common factor $2^{-i t}$ in numerator and $2^{i t}$ in denominator of the fraction, we can express:

$$
2^{1-2 s_{\sigma}}=2^{-2 i t} \cdot \frac{2^{1-\sigma}-2^{i t}}{2^{\sigma}-2^{-i t}}
$$

Now, defining $s_{0} \in \mathbb{C}$ such that $s_{0}=\frac{1}{2}+i t$, we can express previous equation as:

$$
\begin{equation*}
2^{2\left(s_{\sigma}-s_{0}\right)}=\frac{2^{\sigma}-2^{-i t}}{2^{1-\sigma}-2^{i t}} \tag{7}
\end{equation*}
$$

Since by definition $s_{\sigma}=\sigma+i t$ and $s_{0}=\frac{1}{2}+i t$ then $2\left(s_{\sigma}-s_{0}\right)=2 \sigma-1$. Thus, developing in trigonometric form $2^{i t}=e^{i t \ln 2}$ and $2^{-i t}=e^{-i t \ln 2}$, we obtain:

$$
\begin{equation*}
2^{(2 \sigma-1)}=\frac{2^{\sigma}-\cos (t \ln 2)+i \operatorname{sen}(t \ln 2)}{2^{1-\sigma}-\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)} \tag{8}
\end{equation*}
$$

since obviously as we know $\cos (-x)=\cos (x)$. Thus, by simplifying we have:

$$
2^{(2 \sigma-1)}=\frac{\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)}{\cos (\operatorname{tln} 2)+i \operatorname{sen}(\operatorname{tln} 2)}
$$

which by application of modulus, that is:

$$
\left|2^{(2 \sigma-1)}\right|=\left|\frac{\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)}{\cos (t \ln 2)+i \operatorname{sen}(\operatorname{tln} 2)}\right| \Rightarrow\left|2^{(2 \sigma-1)}\right|=\frac{|\cos (t \ln 2)-i \operatorname{sen}(t \ln 2)|}{|\cos (t \ln 2)+i \operatorname{sen}(t \ln 2)|}
$$

since for any $\{z \in \mathbb{C}:|z|=|\bar{z}|\}$ we definitely obtain:

$$
\left|2^{(2 \sigma-1)}\right|=1 \quad \Rightarrow \quad 2 \sigma-1=0 \quad \Rightarrow \quad \sigma=\frac{1}{2}
$$

Therefore, since by definition $s_{\sigma}=\sigma+i t$, we obtain that for :

$$
\zeta\left(s_{\sigma}\right)=0 \quad \Rightarrow \quad s_{\sigma}=\frac{1}{2}+i t
$$

Exactly, by Eq.(7) and Eq.(8) for $\sigma=\frac{1}{2}$ we can verify:

$$
\left|2^{2\left(s_{\sigma}-s_{0}\right)}\right|=\frac{\left|\left(2^{\frac{1}{2}}-\cos (t \ln 2)\right)+i \operatorname{sen}(\operatorname{tln} 2)\right|}{\left|\left(2^{\frac{1}{2}}-\cos (t \ln 2)\right)-i \operatorname{sen}(\operatorname{tln} 2)\right|}=1
$$

Thus, since by definition $s_{0}=\frac{1}{2}+i t$, we have:

$$
2\left(s_{\sigma}-s_{0}\right)=0 \quad \Rightarrow \quad s_{\sigma}=s_{0} \quad \Rightarrow \quad s_{\sigma}=\frac{1}{2}+i t
$$

Thus, all the nontrivial zeros lie on the critical line $\left\{s \in \mathbb{C}: \Re(s)=\frac{1}{2}\right\}$ consisting of the set complex numbers $\frac{1}{2}+i t$, thus confirming Riemann's hypothesis.

