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1 Introduction

The Collatz Conjecture, also known as the Syracuse Problem, Ulam’s Prob-
lem and Hasse’s Algorithm (although there are many other names) appears
to be, in modern day mathematics, an unsolvable conjecture. Much like
Fermat’s Last Theorem, it is a problem that, at face value, exhibits a very
innocent nature that can be easily explained using elementary mathematics,
unlike perhaps the mathematics required in order to prove or indeed disprove
it. It can be defined like so, performing operations on the positive integer n
dependent on its parity:

C(n) =

{

3n+ 1, if n ≡ 1 (mod 2)

n/2, if n ≡ 0 (mod 2)

The outputs of this function, which is commonly referred to as C(n) and
is what for the rest of the paper I shall refer to the Collatz Function as, is
the main appeal of the conjecture itself and it is what has plagued a great
number of mathematicians over the years. To verbally express this function,
if our starting integer is odd, we multiply it by 3 and add 1, if it is even,
we divide it by 2. We then perform the function to the output of the first
iteration and from this to obtain a list of integers if we keep going. There
exists other papers that have served to summarise the progress made on this
problem however they are primarily aimed at those who are already at a high
level of mathematics see (Lagarias, 2010).
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1.1 The Conjecture Itself

To demonstrate, we may start out with our positive integer n as 7. Sparing
any unnecessary calculation we obtain the following set of integers upon
repetition of the function:

{7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Notice what occurs as we reach the final collection of integers {4, 2, 1} One
may ask why there is even a set at all as it can be tempting at first glance to
assume that this function produces a set of integers that contains infinitely
many terms. To an extent, that is true, however for convenience we recognise
that the final three integers repeat endlessly. To put it in terms of the func-
tion C(n), C(C(C(1))) = 1, that is that C(1) = 4, C(4) = 2 and C(2) = 1. It
is this phenomenon that concerns yet simultaneously fascinates mathemati-
cians alike. So naturally, the conjecture that can be derived, having tested
numerous positive integers, is that if every single positive integer eventually
leads to the {4,2,1 } loop. And so far, there has been no number tested,
despite this function having been carried out for all numbers up to 268, that
is roughly 295 quintillion(Tao, 2020), that has broken this pattern.

1.2 The Aims of this Paper

Most literature concerning maths and moreover problems, conjectures and
theorems like the Collatz Conjecture can be difficult to grasp without exten-
sive background knowledge. It is very easy to get deterred from finding out
more on such complex mathematical ideas when there are a multitude of pre-
requisites to learn, understand and put into practice beforehand. Some may
not have the resources, time or energy to do so. Taking this into account, the
first goal of this paper will be to compound all current and past approaches
in solving the Collatz Conjecture in an easily understandable format. I will
very shortly discuss a bit about its background and will then proceed in Sec-
tion 3 to go over these approaches. From each method then, denoted by their
respective subsections, you can feel free to research more and broaden your
knowledge on specific topics that have been considered and used to attempt
to prove the conjecture. It is safe to say that some may not want to go
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on themselves to work on the Collatz Conjecture and that there are some
who wish to learn about it at its surface. This paper will mainly be aimed
at those who may not know extensively about the advanced mathematics
required to understand the details of approaches but would anyways like to
discover more about the problem for whatever reason. The second aim of
this paper is to justify the need to prove or disprove the Collatz conjecture.
It is great from the perspective of a pure mathematician to dwell on such a
problem but without a clear contribution and meaningfulness to mathemat-
ics as a whole, one can step back from it and question what the purpose is.
I will discuss some potential uses in Section 4, aptly named Relevance and
Potential Uses, and will shed some light as to whether this conjecture is one
that need be shelved for the time being or if it is a feasible problem to solve
given the current mathematical tools we have available. Without any further
delay, let’s move on to the history of the Collatz Conjecture.

2 Early History

Despite the conjecture falling under multiple names, it is the German math-
ematician Lothar Collatz who’s name it takes after. As hinted at previously,
the conjecture has been around for a while and it is generally accepted that
it was spread in the 1950’s at the International Congress of Mathematicians
in Cambridge, Massachusetts. It is here that Collatz shared around the
problem among the mathematicians in attendance with the likes of Shizuo
Kakutani, Stanislaw Ulam and Harold Scott MacDonald Coxeter; most of
whom would work to some degree on the problem thereafter. It is unclear
however as to the exact origin of the conjecture or who created it first as
there have been many contestants to claim it themselves (most notably the
English mathematician Sir Bryan Thwaites). While it was brought to the
attention of other mathematicians in 1950, Collatz allegedly formulated it
in 1937 having studied graph theory, specifically concerning graphical depic-
tions of iterating functions such as C(n), just a couple of years prior and after
having attended the Congress in 1950, in 1952 he then went on to spread it
to another one of his colleagues attributed to the problem: Helmut Hasse,
hence the alternative name Hasse’s algorithm.

By the late 1950’s the problem was still fairly unknown although it had
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spread considerably to other notable institutions e.g Cambridge University.
Due to the problem remaining relatively hidden and the dominant prevailing
’Bourbaki-style’ mathematics, which did not favour solving such problems,
in the 1960’s, as stated by Jeffrey C. Lagarias (Lagarias, 2010) in his works
pertaining to the conjecture, significant publication and literature concerning
it was more or less suspended until the 1970’s. 1972 was the year of its
popularisation with the conjecture being published in a Scientific American
column by Martin Gardner and from there on it has worked its way into
history as one of the most unreachable and unattainable problems in number
theory.

3 Approaches and Partial Results

Now we approach the list of partial results and methods that have tried to
solve this great problem over the years. The list is compiled and assorted
mostly by the names of those who have made attempts bar the first in no
particular order.

3.1 A Heuristic Argument

There is a lot to be said about the nature of the Collatz function and its
outputs. It does not appear follow a strict pattern and as such, the outputs
and the sequences of these outputs have often been labelled as ”Hailstone
Numbers”. This description of their nature alludes to the rapid rise or fall in
value that tends to occur in what is known as a ”Collatz orbit”, referring to
the circulation of numbers that we pass through on our way to 1. It is best
to observe this in action by referring back to Section 1.1 with our example
of our starting integer 7 and one can surmise that this rise and fall becomes
more erratic as we choose larger and larger starting integers. The Heuristic
Argument concerning the Collatz function which although has, to my knowl-
edge, no clear originator, serves to demonstrate that, given successive odd
iterations of the Collatz function, they are expected to decrease each time by
a factor of 3/4. This, while not wholly proving the conjecture, strongly ad-
vocates for its validity. Before we delve into the argument and its derivation,
we must define the function T(n), a simplified model of C(n) that essentially
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skips an unnecessary step in the process as we know that if our initial integer
n is odd, it must undergo 3n + 1 which by a simple proof below is bound
to be even hence we divide it by 2 to give (3n + 1)/2 as our operation for
the odds. This ”shortcut” Collatz function is particularly helpful not only
in expressing the problem in a more simple form but also when it comes to
studying what are known as the parity sequences of a Collatz orbit which
is essentially a list of whether the numbers are odd or even when regarding
outputs of the function.

Assume an odd integer 2k + 1 for a constant k such that k ∈ W .We substitute
2k + 1 into the 3n+1 to give 3(2k + 1) + 1 = 6k + 4. Hence we see that
6k+4 can be expressed as a multiple of 2 or in the form of 2 multiplied by
a constant as 2(3k + 2); the definition of an even number. Below is our
simplified version of C(n).

T (n) =

{

(3n+ 1)/2, if n ≡ 1 (mod 2)

n/2, if n ≡ 0 (mod 2)

What we look to do when trying to prove the Collatz conjecture, with the
assumption that it is true, is to determine whether for any number n, its
sequence pertaining to its orbit converges, at some point, to 1. This is what
is considered the total stopping time and can be expressed as such with
respect to positive integer k such that T k(n) = 1. The positive integer k
can be deemed as the number of ”steps” of calculation required to reach 1
and can be expressed more concisely as σ(n) = k. For our example of the
number 7 we can write, T 16(n) = 7 or σ(7) = 16. With this out of the way,
we make an assumption based on the probability of acquiring an odd or even
number from the operation (3n + 1)/2 where n is an odd integer. We say
that given n as an odd integer, there is a 1/2 likelihood of obtaining an even
number and a 1/2 likelihood of obtaining an odd number. We also assume
that for any given Collatz orbit, the number of evens in the parity sequence
will be k/2 and ditto for the odds. We observe that for odd integer n, the
probability of getting an odd output from (3n + 1)/2 is 1/2, the probability
of obtaining an odd output from this (ie (3n + 1)/4) is 1/2*1/2 = 1/4 and
the probability of gaining an odd output from this is 1/2*1/2*1/2 = 1/8 and
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so on. This is where we can calculate what is known as an expected growth
factor which has been proven to be 3/4. What this essentially boils down to
is evaluating the sum below, you may be able to spot a pattern as to how it
relates.

(

3

2

)0.5 (
3

4

)0.25 (
3

8

)0.125 (
3

16

)0.0625

...

Again, without getting into too much calculation and detail, this sequence
can be represented more concisely as shown below and we split it into two
parts and prove that they both converge. After evaluating each, we multiply
them to give our final answer of 3/4.

∞
∏

i=1

(

3

2i

)
1

2i

=
∞
∏

i=1

(3)
1

2i ·
∞
∏

i=1

(

1

2i

)
1

2i

∞
∏

i=1

(3)
1

2i = 3

∞
∏

i=1

(

1

2i

)
1

2i

=
1

4

∞
∏

i=1

(

3

2i

)
1

2i

=
3

4

This result has been used, with varying success, to predict the number k in
a given Collatz trajectory. Looking back at our initial assumption that T(n)
will take an equal distribution of even and odd numbers, we can create an
equation involving k that we can use to approximate.

(

3

4

)
k

2

n = 1

k, after a bit of calculation involving logarithms, turns out to be proportional
to log(n). Plotting this on a graph yields interesting but near fruitless results
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in an accurate prediction of k. Nevertheless, the table below, with values
taken from the paper: 3n + 1 problem: scope, history and results by T. Ian
Martiny (Martiny, 2015), shows the behaviour of this model and its accuracy.

Initial Integer Actual Value Predicted Value

n σ(n) k
230 − 1 122 145
230 + 1 288 145
320 − 1 98 153
320 + 1 71 153

3.2 Terras, Allouche and Korec

While it should be mentioned that each individual listed in this subsection
has not collaboratively worked on the Collatz Conjecture, their respective
partial results all fall in the same vein. To summarise beforehand, Terras
had shown in his 1976 paper that almost all initial values n on which we
perform our Collatz function T conclusively iterate to a value that is less
than n. Allouche and Korec have improved this result whereby they proved
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that for an initial value n, it iterates to a value less than n0.869 and more
improved to a value that is less than n0.7925 respectively. To begin, we will
look at the initial derivation that Terras made in his paper ”A stopping time
problem on the positive integers” (Terras, 1976).

3.2.1 Terras

Terras initiates his paper by laying out the fundamental theorem he wishes
to prove, as any paper should, which is that the limit of the function below
as k tends to infinity is 0.

F (k) = lim
m→∞

(

1

m

)

#{n ≤ m|χ(n) ≥ k}

lim
k→∞

F (k) = 0

What this function essentially denotes is the probability of, in the range of
specified numbers from 1 to m, choosing a number that has a stopping time
χ(n) greater than the total stopping time k. The # in this case denotes
the cardinality (the number of elements) of the set of numbers from n to
m which meet our given condition. If we prove hence that the limit of this
function with respect to k as k tends to infinity is 0, simply put it says that
the probability of getting a number that has an infinite total stopping time
(i.e a number that disproves the conjecture) is virtually 0. From this we can
derive that *almost all* numbers iterate to a value that is less than their
original. Almost all here is equivalent to saying that for example almost all
numbers are not prime despite us knowing that they exist. The percentage of
primes out of natural numbers tends towards although that isn’t proof that
no primes exist.

To begin to make sense of the method Terras uses to prove this, we first
define function τ(n). This new function can be seen as another way to define
the stopping time of an integer n and is key in proving the existence and
result of the limit. Terras first creates a set denoting the sum of the numbers
in the Collatz orbit according to their parity. If we map the even numbers to
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the value 0 and the odd numbers to 1, we can sum it all to give what Terras
denotes as Si. We then define a function λi(n) as:

λi(n) = 2−i3Si(n)

Without going into too much detail, our new stopping time function τ(n) is
defined hence as equal to k whereby k > 0 if k is the smallest integer such
that λk(n) < 1 (the first instance of when in a given Collatz orbit a number
below the starting integer is reached). Terras proceeds then to show that for
sufficiently large values of n, the τ(n) stopping time function is equivalent to
the χ(n) stopping time function. Having proved this, he then substitutes τ(n)
into our original function F(k). The development of the new stopping time
function is what allows Terras to express the original function in a slightly
different manner and prove that a limit for it even exists. With our condition
now being whether τ > k, Terras proves that you need a certain amount of
odd numbers in the sequence defined below (which is equivalent to τ > k)
for the condition to be met. If we recall from the beginning, we are trying to
prove that the probability of this condition being met is in fact 0. γ in the
below case is equal to ln(2)

ln(3)
and the X(n) function (not to be confused with

stopping time χ(n)) denotes what the parity of a given nth integer is in a
Collatz orbit.

X0(n) +X1(n)...+Xi−1(n) > iγ

Then Terras defines a sequence ǫ which has an arbitrary sequence of odd and
evens (0s and 1s) and then denotes n(a, k) as the number of such defined
sequences which contain specifically a 0s , i.e an a amount of evens. With this
being said, we can now express our original probability F(k) as the number
of sequences that meet the above condition against the total numbers of
sequences which when expressed with respect to n(a,k) looks like this:

F (k) =
k

∑

a=0

n(a, k)/2k
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Terras then shows that n(a, k) can be at most
(

a

k

)

and thus we obtain the
inequality below

F (k) =
k

∑

a=0

n(a, k)/2k ≤
k

∑

a=0

(

a

k

)

/2k

It is at this point that the limit of F(k) can be evaluated with what is known
as the central limit theorem to prove that F(k) converges to 0.

3.2.2 Allouche and Korec

Allouche’s contribution (Allouche, 1978-1979) has been mentioned in the
starter to this section however it is unable to be explained at least by my-
self due to the paper in question written in another language. Nevertheless,
to summarise the paper briefly, Allouche proves that all ”almost all” values
iterate to a value less than n0.869 and also states that not just asymptotic be-
haviour is required in order to determine the periodicity of the function with
periodicity referring to whether there are repeating points in the function
and the intervals between them. The ideas used in Allouche’s paper build on
those used used by Terras in his original proof and so does the subsequent
paper by Ivan Korec (Korec, 1994).

The initial claim to prove in Korec’s paper is that for an arbitrary starting
value y, it without fail iterates at some point in its Collatz orbit to a value
less than y≈0.79.., if and only if Sm(y) < md for a sufficiently large value of
m where Sk(y) denotes for any Collatz orbit of y until term k the number of
the odd numbers, in essence:

Sk(y) = X0(y) +X1(y) +X2(y) + ...Xk−1(y)

The overall theorem to be proved here is that for c > log4 3, the ex-
pression below has an ”asymptotic density” of 1 essentially meaning that
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the probability of picking a value that holds the condition is so high that it
is essentially one hundred percent or 1. N denotes the set of non-negative
integers. The backwards ”E” here is equivalent to the phrase ”there exists”.

Mc = {y ∈ N |(∃n)(T n(y) < yc)}

Another function we need to define in order to complete the proof is U
which operates on variables m and d. In the first claim Korec is proving that
if these conditions in the function below hold, the starting y value iterates
to less than yc.

U(m, d) = #{y ∈ N |0 ≤ y < 2mandSm(y) ≤ md}

Again, # denotes the cardinality of the set. To prove theorem one, we
must effectively prove what is below for a given ǫ greater than 0 and less
than 1. The best case scenario for the below statement is if we consider what
happens if ǫ is itself 0. It would imply that that both sides are equal, in turn
stating that the number of the numbers less than a that iterate to a value
less than yc is equal to a itself.

#{y ∈ Mc|y < a} ≥ (1− ǫ) · a

To put it briefly, Korec forms several inequalities based on the one below.
We know that Tp(y) must be greater than or equal to y/2p since y/2p would
imply that our inital value y was being divided by 2 multiple times which
would be the best possible scenario but very unlikely. If even one of the
numbers in the Collatz orbit of Tp(y) was odd, it would be greater than
y/2p. Note, p < m. From this he obtains the inequality below that where k
= Sm(y).

T p(y) ≥
( y

2p

)

>
m · 2m

2m
= m
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Tm(y) = y ·
T 1(y)

T 0y
·
T 2(y)

T 1y
·
T 3(y)

T 2y
· · ·

Tm(y)

Tm − 1y
< y ·

(

3m+ 1

2m

)k

·

(

1

2

)k

After a bit of algebraic manipulation, we obtain the inequality below which
we can then shorten to the inequality right underneath it for sufficiently large
values of m as m grows quicker than log2 m hence the limit of the expression
would be 0.

k

m
<

c

log2 3
−

1 + 2(1− c) log2 m

m

k

m
<

c

log2 3

Hence we now know that for a large value of m and a and an initial value
y given the conditions m · 2m ≤ y < a and Sm(y) < md, y ∈ Mc. The
next step in this proof is to prove that ”almost all” numbers do this. Korec
splits up the numbers in the bound m · 2m ≤ y < a into ”pairwise disjoint”
sets (denoted by L(a) ) which have 2m integers in each with a small but
negligible remainder at the end which he uses the floor function to get rid
of (e.g 3.1415926... would turn into 3). He then uses a result from Terras’
paper shown below and forms a final inequality to finish the proof.

d >
1

2
, lim
m→∞

U(m, d)

2m
= 1

#{y ∈ Mc|y < a} ≥ L(a) ·U(m, d) ≥
(

1−
ǫ

2

)

·
a

2m
·
(

1−
ǫ

2

)

·2m > (1− ǫ) ·a

If we recall our definition of U(m, d), it is essentially the number of numbers
that iterate to a value less than yc as we just proved and hence L(a) ·U(m, d)
represents the number of numbers in m · 2m ≤ y < a that do so. This
inequality proves theorem one as we know that the very left side of the
inequality is a subset of the list of integers a and is, if we recall from way
back in the beginning, less than a. Considering the limit as epsilon tends to
0, both sides of the inequality if we divide it all by a would be 1 as both sides
would be a. Hence by what is known as the sandwich lemma, whatever is
inbetween also must be equal to 1, and thus the proof is complete.
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3.3 Eliahou

Eliahou’s main result (Eliahou, 1993) sets a lower bound on the lowest pos-
sible cycle length for values above 240 at 17,087,915 which would strongly
suggest that no counter example to the Collatz conjecture exists. He first
considers the below inequality whereby Ω denotes the amount of elements
within a given Collatz orbit, Ω1 represents all of the odd elements within
that orbit, M is the highest value in the orbit and m is the lowest value in
the orbit. This inequality is based on the idea that the proportion of odd
elements in a cycle is effectively equal to 1/log23.

log2(3 +M−1) <
#Ω

#Ω1

< log2(3 +m−1)

He then improves the inequality further with the addition of the variable µ
=(#Ω1) · (

∑

n ∈ Ω1n
−1).

#Ω

#Ω1

< log2(3 + µ)

He then asserts that the product of all terms in a Collatz orbit starting from
n will be the same as the product of all the terms starting from T(n) as the
sequence is cyclical.

∏

n∈Ω

n =
∏

n∈Ω

T (n)

Thus the below statement is inferred.

∏

n∈Ω

T (n)

n
= 1

From which by our definition of T(n) we can substitute and obtain the result
below (we recall from Terras’ paper that k is the stopping time).

∏

n∈Ω1

(3 + n−1) = 2k

k1 is now assigned as the number of odd elements in a Collatz orbit and using
the above result the initial inequality is rephrased.

log2(3 +M−1) <
k

k1
< log2(3 +m−1)
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This can be further simplified whereby the M is removed as 1/M tends to-
wards zero as M increases.

log2(3) <
k

k1
< log2(3 +m−1)

Eliahou then defines functions K(m) and L(m). Let k1 be equal to a variable
l, then the function K(m) denotes the smallest positive integer k for which the
above inequality holds and the function L(m) denotes the smallest positive
integer l for which the above inequality holds. Using the corollary defined
below and the inequality above, a computer is used to calculate the result
that a cycle length must at least be about 17 million elements long.

#Ω ≥ K(minΩ)

#Ω1 ≥ L(minΩ)

3.4 Tao

Tao’s contribution to the Collatz conjecture (Tao, 2019) in late 2019 is the
biggest breakthrough in recent years towards the problem. His main result
in his paper ”Collatz Orbits Attain Almost Bounded Values” states that, for
any given function f(n) such that when n tends to infinity f(n) also tends
to positive infinity, the minimum term within a given Collatz orbit of n will
be less than f(n) for almost all values of n. The methods used to prove this
statement are well beyond the scope of this paper but it is worth noting,
if one were to read and try to understand his proof, that he breaks up the
problem by defining three new functions Syrac, Geom and Log. The Syrac
function which operates on the odd numbers finds the largest odd number
that divides into a given n and the Geom function finds a geometric random
variable of the mean n. The Log function is a random variable that takes in
values of a finite subset of the natural numbers with a logarithmically uniform
distribution. The essence of the paper is treating the Collatz function as a
sort of system much those relating to partial differential equations that model
everyday phenomena. The idea of the paper is to find a set of numbers that
fairly exhibit how the Collatz function behaves for several iterations and then
to extract how many of the numbers reached 1 or close to 1.
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4 Other notable contributions

While the above mentioned are the most well-known and significant, the
papers and results I am about to mention are also of note when it comes
to attempts at tackling the conjecture. To begin, I would like to give credit
to C.J Everett who, independentley of Terras, arrived at the same result as
depicted in his original 1976 paper in his paper ”Iteration of the number
thoeretic function” (Everett, 1977). Heights of Collatz orbits have been
frequently studied and the two main results to stem from this are from Guo-
Gang Gao’s paper ”On consecutive numbers of the same height in the Collatz
problem” (Gao, 1993) and from Lynn. E Garner’s paper ”On heights in the
Collatz 3n + 1 problem”(Garner, 1985). The former proves that for a given
orbit, there exists infinitely many such orbits with the same amount of terms
(ie consecutive integers) and the same total stopping time. The latter proves
that there are infinitely many pairs of neighbouring integers (e.g 3,4) which
when the Collatz function is applied, have the same maxima (heights) and
total stopping time. Parity of our starting integers appears to wildly change
the outputs of the function however Hong Bo Yang’s paper ”About 3X + 1
problem” proves the claim that if there exists an odd integer for which the
Collatz conjecture fails, there must exist infinitely many such odd integers.
A bit more trivial but still to note is the result obtained from Ray P. Steiner’s
paper ”A Theorem on the Syracuse Problem” (Steiner, 1977) which asserts
that the only such ”circuit” (a circuit being a certain number of odd integers
followed by the same number of even integers in an orbit) that exists for
the Collatz function is that of 1,2. A descent in a Collatz orbit is defined
as consecutive term of the sequence being less than the previous. Thomas
Brox’s paper ”Collatz cycles with few descents” (Brox, 2000) proves that
d(C) (the number of descents) must be less than 2log|C| where |C| is the
number of odd elements in the sequence. Further tightening tightening the
criteria for Collatz cycles is Diego Domenici’s ”A few observations on the
Collatz problem” (Dominici, 2009). The main result of this paper is that for
the Collatz conjecture to hold, each of the numbers n in an orbit has to be
able to take the form below:

n =
2m

3l
−

1
∑

k=1

2(bk)

3k

where 1 ≤ l ≤ m− 3and0 ≤b1 < b2 < ... < bl ≤ m− 4

15



Similar, to Steiner’s result, John L. Simons’ ”A simple (inductive) proof
for the non-existence of 2-cycles for the 3x + 1 problem” (Simons, 2007)
shows that there exists no periodic orbits whereby there are two groups of
consecutive odd elements. Lastly, a result of more observation and interest
rather than practicality, Jeffery C. Lagarias and K. Soundararajan’s paper
”Benford’s Law for the 3x + 1 function” (Lagarias & Soundararajan, 2006)
proves that Benford’s law does indeed hold for the majority of starting values
and their respective sequences.

5 Relevance and Potential Uses

The Collatz conjecture has no immediate significance and there is not a huge
sense of urgency to prove nor disprove it. This may be due to change in the
future however as seemingly unrelated areas of maths are linked to it in search
of an answer. Much like the case of Fermat’s Last Theorem, elliptic curves
were not the first resource when working on the problem and the same logic
can be applied to the Collatz conjecture. Despite this, there are some fields
in which the conjecture, if proven, is predicted to have an impact. Ergodic
theory namely is an often understated area of maths that relates to observing
dynamical systems and their outcomes down the line, for example the climate.
This would naturally have links to chaos theory and would provide insight
into how the sensitive dependence on numerical initial inputs for a function in
number theory, such as the Collatz function, could completely change their
orbit/outcome even if the number differed by 1. Links between numbers
which differ by one could be made with respect to their prime factorisations
too. The most significant operation on a given number concerning its prime
factors when applying the Collatz function is adding 1, as multiply by 3
and dividing by 2 do not drastically change much. Aside from expected
advancements in these regions of mathematics, there is not much incentive
currently to pursue a proof other than a modest sum of money and/or an
intellectual challenge. For all we know the Collatz conjecture may be quite
literally unsolvable from our base mathematical axioms (referring to Godel’s
Incompleteness Theorem) but nevertheless it serves as a reminder to the vast
expanse of mathematics that is yet to be explored.
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