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Abstract: In this article linear transformations of coordinates to a superluminal inertial reference frame are 

presented. Even if there is no need to use imaginary numbers to maintain c invariant, these functions are just intended 

as a mathematical curiosity not necessarily having a real physical meaning. Possible applications to our world, if any, 

are left to the reader. 
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1. INTRODUCTION 

Since the birth of special relativity, inertial reference frames travelling faster than light have never 

been considered part of physics because the Lorentz transformations are not defined when v > c. 

However, that did not prevent the growth of a huge literature attempting to extend the physical 

principles and the mathematical framework of Einstein’s theory to the superluminal domain. In ref.[1] 

and ref.[2] for example, the Superluminal Lorentz Transformations in one spatial dimension are given. 

On the other hand, real reference structures have three spatial dimensions and so, in this case, the 

Superluminal Lorentz Transformations will be represented by the four following equations: 

[1] tazayaxas 4321 iiiii +++=  

where (x,y,z,t) are the space time coordinates of the laboratory frame R, si (i = 1,…,4) are the space 

time coordinates (xs,ys,zs,ts) of the superluminal inertial reference frame Rs , while aij (i,j = 1,…,4) are 

constants such that the three basic kinematic conditions given in section 2 characterizing the 

transformations of coordinates to a superluminal inertial reference frame are satisfied. Now every time 

it is searched for the values of the constants aij , it is discovered that imaginary numbers are needed to 

satisfy the three basic kinematic conditions. In other words, this means that the problem does not have 

any physical solution. 

At this point, if we want to find a real result the only way is to delete some condition to be satisfied. 

Since the main scope is to give the correct description of a physical problem, we will begin changing 

the mathematical framework commonly used to illustrate it. In particular, we will begin from changing 

equations [1]. In fact, the structure of equations [1] tries to extend into the superluminal domain the 

pseudo metrics defined in special relativity. Discharging this mathematical condition, we will see in 

section 4 that it is possible to write linear superluminal transformations of coordinates satisfying the 

three basic kinematic conditions given in section 2. All of that is achieved by introducing a 

mathematical representation of time in the faster-than-light inertial reference frame different from the 

one commonly used as illustrated in section 3. Pay attention to the fact that we are not changing the 
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physical quantity time, but we are just changing the mathematical object representing it. In fact, to 

change this basic mechanical quantity one should know first what time really is. 

In conclusion, before to define the inertial reference frames in section 2 the reader must keep in mind 

that only kinematics is considered in this paper. Other fields of physics such as dynamics and 

electromagnetism have not been taken into account. 

 

2. INERTIAL REFERENCE FRAMES 

First of all we begin giving the physical definition of an inertial reference frame. To do that we will 

take the suggestions provided in ref.[3] as framework. 

In physics a reference frame is a real structure supporting an observer and the instruments needed for 

the experimentation. Among these structures there are some more suitable because one can easily have 

at his/her disposal objects at rest in them. For example, the objects of furniture are usually at rest in a 

room and so this latter one should be preferred to a cabin of a ship in a storm. Obviously, there are 

many ways to find structures where objects at rest can be easily obtained. In fact, just rotate or 

translate which means that the room above ours or on another side of a building can be a good choice 

alike. However, the experimental observation suggests that the family of suitable structures is wider. 

More precisely, there are structures where one can easily have at his/her disposal objects at rest but in 

uniform motion with respect to other proper structures. For example, the compartment of a train 

travelling regularly could be another suitable structure along with the rooms of a building.  

Hence, we can say that an inertial reference frame is a real structure where one can easily have at 

his/her disposal objects at rest or in uniform motion. Anyway, another property holds in these real 

structures. In fact, it has been verified that in these latter ones the propagation of light is isotropic and 

uniform. 

In conclusion, we can say that an inertial reference frame is a real structure where one can easily have 

at his/her disposal objects at rest or in uniform motion and the light in vacuum is seen to propagate at 

constant speed c in every direction. 

Now, after having defined an inertial reference frame qualitatively, let us begin with a quantitative 

approach. We consider the objects at rest in our reference frame. By the use of a suitable instrument, 

typically a meter, we can measure the mutual distances between them. Then, given a unit of measure 

for the length, we can assign to each couple of objects a real number representing their distance. The 

mathematical framework adequately describing this kind of relations is the Euclidean geometry. Since 

we are living in a three-dimensional space, the proper choice is ℝ3
 . 

At this point, we have to take into account another feature encountered when observing our world. In 

fact, there are physical systems that keep certain properties practically unaltered like an object at rest 

which is always in the same position, but there are also physical systems changing their properties 

periodically like a pendulum always returning in the same position with the same velocity during its 

motion. Hence, using these periodic systems we can build clocks. By referring to the periodic behavior 

of a chosen clock, given a unit of measure and an origin, it is possible to represent the indications of 

the clock by the physical quantity called time. This is a practical definition of time, while its real 

nature is a problem that has been affecting scientists and philosophers for thousands of years without 

reaching a final answer. Obviously, the final answer will not be found here. Much more humbly, just 

to give a meaning and a background to the words used here, we will suppose that in an inertial 



reference frame the time is something that flows perpetually and smoothly in one unreal direction 

(forward or backwards). 

At this point, we have that the geometric representation of an inertial reference frame is given by a 

spatial origin, a Cartesian tern and a unit of measure for the length along with a time origin, a time axis 

and a unit of measure for the time. 

Since we are considering simultaneously the position of an object in a spatial reference structure 

represented by a point in ℝ3 and the time marked by a clock represented by a point on the time axis, it 

is natural to switch from ℝ3 to ℝ4 to provide a geometric representation of an inertial reference frame. 

Remember that this geometric representation is the best our mathematical tools allows us to do 

because there is a deep qualitative difference between space and time. In fact, it is nonsense affirming 

that the time axis has any geometric relation with the space axes, for example it is perpendicular to 

them, since it is like comparing temperature and mass just because they are represented by a real 

number.  

Keeping in mind that and the previous discussion and definitions, we have that the transformation of 

coordinates between our inertial reference frame R (our laboratory frame) and another subluminal 

inertial reference frame Rc is a function from ℝ4 to ℝ4 such that: 

1)  Rc moves at constant speed v < c in R ; 

2) uniform motions in R are turned into uniform motions in Rc or, in other words, uniform motions 

remain uniform motions;  

3) uniform motions in R such that w = c are turned into uniform motions in Rc such that wc = c, 

namely the speed of light c is invariant. 

Instead, we have that the transformation of coordinates between our inertial reference frame R and a 

superluminal inertial reference frame Rs is a function from ℝ4 to ℝ10 such that: 

I) Rs moves at constant speed v > c in R ; 

II) uniform motions in R are turned into uniform motions in Rs ; 

III) uniform motions in R such that w = c are turned into uniform motions in Rs such that ws = c . 

In this case, the time marked by a clock is no longer represented by a point on the time axis, but it will 

be represented by a point in ℝ7
 . This topic will be explained and clarified in great detail in the next 

section. 

At this point, it is clear that the inverse transformation of coordinates from Rs to R  does not have the 

same form of the transformation of coordinates from R to Rs because the first goes from ℝ10 to ℝ4 and 

the latter goes from ℝ4 to ℝ10
 .  

This highlights the fact that the subluminal observer, us in a common room used as a laboratory, and 

the superluminal observer, an astronaut on a starship travelling faster than light for example, are not 

equivalent because they are not experiencing the same physics (readers interested in this topic can take 

a look at ref.[4]).  

However, also the subluminal observers do not seem to be equivalent even if the Lorentz 

transformations have the same form when going from R to Rc and from Rc to R . In fact, considering 

equivalent subluminal observers we obtain that the time in Rc will flow slower than in R  in the same 

way the time in R  flows slower than in Rc providing a not usable physical result. Hence, if we want a 

single and well-defined number to compare with experimental measurements we have to suppose that 

all the subluminal observers are not equivalent (readers interested in this topic can take a look at 

section 5 in ref.[5]). 



 

3. VECTOR TIME 

We consider a function from ℝ4 to ℝ7 which associates to every point (x,t) of the inertial reference 

frame R the vector time ts of the inertial reference frame Rs travelling at v > c in R.  

Using a concise notation the vector time ts has the following form: 
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where v = (vx,vy,vz) is the superluminal speed of Rs in R, while x0 is the initial position at t = 0 . 

More precisely the seven components of the vector time are given by the functions: 
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Let us notice that the initial position x0 depends on the motion in R taken into account. For example, 

given a uniform motion of constant velocity w, we have to give the position x0 at t = 0 to select the one 

we are interested in between the infinite straight lines in ℝ3 having the same direction. So, the vector 

time in Rs corresponding to t = 0 in R is ts = 0 whatever the motion x(t) in R we are considering because 

it is x(0) = x0 . Also the trivial case of a point at rest in R , x(t) = x0 for every t ϵ ℝ , is included. 

Now, since the reading of a clock provides a single result and not seven numbers, by using the vector 

time ts defined in equation [2] we can derive the time ts measured by the clocks of the superluminal 

inertial reference frame Rs . In fact, we have:  
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Let us notice that the first two terms of the sums in the above equalities are the length in ℝ3 of the 

three-dimensional vectors obtained from the components of the vector time (ts1,ts2,ts3) and (ts4,ts5,ts6) 

respectively given in equation [3].  

Furthermore, for simplicity and without loss of generality, equation [4] has been defined such that the 

origin of time in Rs corresponds to the origin of time in R . In other words, ts = 0 for t = 0 whatever the 

motion in R we are observing. The trivial case of a point at rest in R is included as well. If this is not 

the case, namely the origin of time in Rs does not correspond to the origin of time in R, then you can 

add to the two equalities of equation [4] a suitable constant term ts0 ≠ 0 . 

At this point, we consider a uniform motion in R such that x = x0 + w t where 0 ≤ w < +∞. In this case, 

equation [4] becomes: 
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 or, being ǀwǀ = w, 
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Since ǀtǀ = t for t ≥ 0 and ǀtǀ = − t for t < 0, we finally obtain for t ϵ ℝ: 
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Now, considering that it is ǀa − bǀ ≥ ǀaǀ − ǀbǀ for any two vectors a,b ϵ ℝ3, it follows:  
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Hence, for every w ϵ ℝ3 in equation [5] it will be dts\ dt > 0 meaning that the time goes forward in Rs as 

well. For example, we consider a clock travelling at superluminal velocity v in the reference frame R 

or, correspondingly, at rest in the reference frame Rs . Using equation [5] we have: 
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where we can also see that the time in Rs flows more quickly that in R when v > 2c, at the same rate 

when v = 2c and more slowly when c < v < 2c. On the other hand, if one multiplies each component of 

the vector time ts given in equation [3] for k > 0, it follows that the time in Rs flows more quickly that 

in R when v > c (k + 1) k 
−1, at the same rate when v = c (k + 1) k 

−1 and more slowly when the 

superluminal speed is in the range c < v < c (k + 1) k 
−1.  



If the signs in the two equalities of equation [4] are reversed, (−,+,−) instead of (+,−,+) and (+,−,−) 

instead of (−,+,+), it follows that for every w ϵ ℝ3 in equation [5] it will be dts\ dt < 0 and so the time 

will go backwards in Rs . 

Likely someone has already noticed that equation [2] is linear in the variables (x,t), while equation [4] 

is not. Since we rely on equation [4] to define the time ts measured in the superluminal reference frame 

Rs , one can think that the vector time ts defined in equation [2] is just a trick to introduce a fake 

linearity. But this is not the case as it can be understood by the very elementary example given in 

Appendix A.   

Hence, in conclusion, given a motion in R we have to establish the vector time along the corresponding 

trajectory in Rs to know, by using equation [4], the corresponding readings provided by the clocks of 

the superluminal inertial reference frame. 

 

4. SUPERLUMINAL TRANSFORMATIONS OF COORDINATES 
 

We consider the following transformations of coordinates from our laboratory reference frame R to a 

reference frame Rs : 
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where v is such that v > c, while ts is the vector time in Rs . These functions will be called SLT 

(Superluminal Lorentz Transformations). 

Now we verify that the transformations of coordinates SLT, equation [7] and equation [8], satisfy the 

properties IIII given in section 2 which define the transformations of coordinates to a superluminal 

inertial reference frame. 

First,  xs ϵ Rs we obtain from relation [7] the equation of motion x = xs + v t in R. This means that the 

reference frame Rs translates rigidly in R at constant speed v satisfying in this way property I. In 

particular, the two structures overlap for t = 0 .  

Then, we consider a uniform motion in R such that x = x0 + w t where 0 ≤ w < +∞. Substituting into the 

transformations SLT this motion will be seen in Rs as: 
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where dt / dts is the inverse of the derivative with respect to t of equation [5] . Because v, w and c are 

constants, it follows that uniform motions in R are transformed into uniform motions in Rs satisfying in 

this way property II. 

Finally, if the uniform motion is such that w = c, equation [9] becomes: 
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At this point, let us verify that ws = c as well satisfying in this way property III. In fact, we have: 
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In conclusion, we have shown that the functions SLT are the transformations of coordinates to a 

superluminal inertial reference frame. Moreover, these functions are a family of transformations of 

coordinates because multiplying both xs and ts for the same constant k > 0 the fundamental properties 

continue to be satisfied. 

At the end of this section, we consider the simplest case defined by v = (v,0,0) and w = (± c,0,0). When 

w = (c,0,0) from equation [10] we get: 
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and wys = wzs = 0 . This result is in agreement with the fact that the inertial reference frame Rs travels 

faster than light and so the superluminal observer will see the light standing back and losing ground.  

Instead when w = (− c,0,0) from equation [10] we have: 
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and again wys = wzs = 0 . Finally, if the time goes backwards in Rs as already discussed in section 3, 

then equation [10] will be multiplied by −1 giving for w = (± c,0,0) the result ws = (c,0,0) in agreement 

with the fact that the processes should be seen reversed in the superluminal inertial reference frame. 

5. CONCLUSIONS 
 

As shown in section 4, the transformations of coordinates SLT have been built to agree with the 

observed kinematic properties typical of real structures defined as inertial reference frames (in the 

hypothesis that an inertial reference frame can really travels faster than light). However, this does not 



mean that the transformations SLT are correctly describing reality. In fact, not everything coming out 

from mathematics is physics. If it were not so, it would be like to invent a new word and then pretend 

that the corresponding object shows up out of nowhere by magic.  

For this reason, the functions SLT should be regarded as just being a mathematical curiosity. 

Applications to the real world, if any, are left to the reader. 
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APPENDIX A 

TRAVELLING STARSHIPS 

We suppose to have a starship, the starship VV Cephei, going from the space base 0 located in the 

origin O of the reference frame R to the space base 2 located in the point x2 . The starship leaves the 

space base 0 at t0 = 0 and reaches its final destination at time t2 moving along a straight path at constant 

speed w2 = x2\ t2 .  

Now we suppose to have another starship, the starship Vega, leaving the space base 0 at t0 = 0 and 

reaching the space base 2 at the same time t2 but along a different path from the one followed by the 

starship VV Cephei. More precisely, first the starship Vega reaches the space base 1 located in the 

point x1 at time t1 < t2 moving along a straight path at constant speed w1 = x1\ t1 . Then the starship Vega 

leaves the space base 1 at time t1 and reaches the space base 2 at time t2 moving along a straight path at 

constant speed wa = (x2 − x1)\ ( t2 − t1) .  

At this point, the superluminal observer in Rs will have to see the two starships arriving to the space 

base 2 at the same time ts2 . Instead using directly equation [4] given in section 3, bypassing in this way 

the vector time, in general the previous condition is not verified giving rise to an unphysical situation. 

To show that we consider the data in Table 1. 
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wax\ c − 1.3 

vy\ c 1.5 w2y\ c 1.1 w1y\ c 0.7 way\ c 3.1 

vz\ c 1.4 w2z\ c 0.8 w1z\ c 0.3 waz\ c 3.3 

v \ c 3.0 w2\ c 1.4 w1\ c 0.9 wa\ c 4.7 

 t0 0 t0 0 t0 = t1 5000 

t2 6000 t1 5000 t2 6000 

 

Table 1 – The velocities in the table are in units of c, while the times are given in seconds. 

 

Putting this data into equation [4] with x0 = 0, or equivalently into equation [5] in this case, we get that 

the superluminal observer will see the starship VV Cephei reaching the space base 2 at: 
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For the other path instead, using again equation [4] (or equivalently equation [5]) with x0 = 0 , first we 

obtain that the superluminal observer will see the starship Vega reaching the space base 1 at: 
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Then, using equation [4] (or equivalently equation [5]) with x0 = x1 , we have that the starship Vega will 

spend the time in its journey from the space base 1 to the space base 2 equal to: 
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where ta = (t2 − t1) because in this case the origin of time is t1 . In fact, from a practical point of view, 

the observer in R must count the number of periodic changes of the physical properties defining the 

clocks to determine the time spent by the starship Vega in its journey from the space base 1 to the 

space base 2. Since this number does not depend on the previous number of periodic changes occurred 

during the journey of the starship Vega from the space base 0 to the space base 1, in other words this 

number does not depend on t1 , it is natural to take t1 as the origin of time to know how long the second 

fly of the starship Vega lasts.      

Said this, it follows that the superluminal observer will see the starship Vega reaching the space base 2 

at time: 

( ) min218s13104s258510519ttt asss 12 =+=+=  

In conclusion, using equation [4] directly we have that the superluminal observer will see the starship 

VV Cephei in the space base 2 eleven minutes later than the starship Vega instead of seeing them 

arriving at same time as it happens in the reference frame R.   

Now, we suppose that the flowing of time in Rs is no longer described by the evolution of a point along 

an axis (the time axis) but it is described by the evolution of a point in ℝ7
 . Hence, we have to use 

equation [2] first to set the time in Rs and then equation [4] to know the reading provided by the clocks 

in the superluminal inertial reference frame. In this way the preceding unphysical situation is solved. In 

fact, the vector time for the starship VV Cephei when reaching the space base 2 from space base 0 is 

given by (x0 = 0): 
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On the other hand, in a similar way to the one-dimensional time, the vector time corresponding to the 

arrival of the starship Vega in the space base 2 is given by the sum of the vector time corresponding to 

the travel from space base 0 to space base 1 and the vector time corresponding to the travel from space 

base 1 to space base 2. More precisely, it is: 
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where x0 = 0 (t0 = 0) for the vector time t1s , while x0 = x1 and t0 = t1 for the vector time tas . 

At this point, since the two vector times are equal, using equation [4] subsequently it follows that the 

superluminal clocks will provide the same reading when the two starships reach the space base 2 as it 

should be. 


