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Abstract. Zeros and the pole of the Riemann zeta function ζ(s) corre-

spond to simple poles of the logarithmic derivative f(s) = d

ds
ln ζ(s). In

Re{s} > 1 the function f(s) has an absolutely convergent sum expression

f(s) = −

∞
∑

j=1

ln(pj)p
−s
j (1− p−s

j )−1

and an analytic continuation to the complex plane except for a discrete

set of simple poles in the area Re{s} ≤ 1. Close to a pole sk the function

f(s) is rk/(s−sk)+finite terms. Omitting the finite terms, we can evaluate

this function into a Taylor series at the x-axis point x > 1. The absolute

values of the coefficients of the Taylor series of each pole decrease as x−i

for some i > 0 as a function of x. The absolute values of the coefficients

of the Taylor series of f(s) decrease as a negative exponent of x when x

grows. That means that all terms aix
−i, ai ∈ IR, are cancelled by other

terms in f(s) when x → ∞. These other terms must contain terms −aix
−i.

Such terms arise only from poles. It follows that in the sum of all poles

of f(s), at the point x, poles must cancel other poles when x → ∞. The

poles of f(s) in Re{s} ≥ 1 and Re{s} ≤ 0 are known. They are the only

poles that give a negative coefficients of x−j , j > 0, while the remaining

poles, the non-trivial zeros of ζ(s), give positive coefficients. It is shown

that the poles of f(s) cancel when x → ∞ if and only if every pole sk at

0 < Re{sk} < 1 satisfies Re{s} = 1

2
, i.e., the Riemann Hypothesis is true.
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Let pj, j = 1, 2, . . ., denote the primes in the increasing order. The Riemann

zeta function ζ(s) has the expressions

ζ(s) =

∞
∏

j=1

(1− p−s
j )−1 =

∞
∑

k=1

1

ks
. (1)

The infinite product and the sum converge absolutely if Re{s} > 1. See e.g. [1]

for basic properties of zeta. The function ζ(s) satisfies for Re{s} > 1 the equation

ζ(s)−1ζ′(s) =
d

ds
ln ζ(s) = −

d

ds

∞
∑

j=1

ln(1− p−s
j )

= −
∞
∑

j=1

ln(pj)p
−s
j (1− p−s

j )−1. (2)

As ζ(s) is analytic in the complex plane with the exception of s = 1, the function

f(s) = ζ′(s)ζ(s)−1 =
d

ds
ln ζ(s) (3)

is analytic in the complex plane with the exception of points where ζ(s) = 0

or s = 1. In Re{s} > 1 the function f(s) has the absolutely convergent sum

expression

f(s) = −
∞
∑

j=1

ln(pj)p
−s
j (1− p−s

j )−1. (4)

Since ζ(s∗) = ζ(s)∗, the poles of f(s) that are not on the x-axis appear in pole

pairs (sk, s
∗

k), where s∗k is a complex conjugate of sk ∈ IC. Expressing ζ(s) as a

Taylor series centered at a zero sk of ζ(s), derivating to get ζ′(s), and dividing

gives f(s) in (3). Similarly, at the pole s = 1 expressing ζ(s) as a power series,

derivating to get ζ′(s), and dividing yields f(s). This operation shows that all

poles of f(s) are first-order poles: close to a pole sk, where Im{sk} > 0, f(s) has

an expression of the form

f(s) =
rk

s− sk
+ f1,k(s) (5)
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and close to the pole s∗k, f(s) of the form

f(s) =
rk

s− s∗k
+ f2,k(s). (6)

If ζ(s) has a pole at sk then rk is a negative integer, while if ζ(s) has a zero, then

rk is a positive integer. The functions f1,k(s) and f2,k(s) are analytic close to sk

and s∗k respectively. If the pole is at the x-axis, there is only one pole of the type

(5) with Im{sk} = 0.

Let us consider a function g(s) that is analytic at s0 and at all points s where

Re{s} > 1. Let us assume that g(s) has first-order poles at some points sk ∈ IC,

k ∈ K, 0 6∈ K. K is an index set and can be taken as integers. It can be finite

or infinite. We ignore the analytic part of a pole (5) and the term pole function

at sk is used as a name of the function rk/(s − sk). Let t = x−1. We calculate

the t-function in the following way: we expand g(s) into a Taylor series at the

point s0 and z1 is the parameter of the Taylor series. We consider |z1| small and

there is a radius of convergence as g(s) is analytic at s0. Then we set z2 = x− z1

and consider |z2| as small. This gives a Taylor series of g(s) at x, with a negative

parameter −z2. As g(s) is analytic at s0 + x = x, the Taylor series converges in

some radius. Then we set z1 = z2 = 0 and insert t = x−1. Setting z1 = 0 at

the Taylor series at s0 we get g(s0), and setting z2 = 0 at the Taylor series at x

we get g(x). Inserting t = x−1 we get g(t−1), which will be called the t-function

of g(s). There are several reasons for defining the procedure of evaluating the

t-function in this way. One is that the coefficients of the Taylor series at s0 and x

have a conversion formula, thus if we have a convergent series expression for g(s)

at x, then we can calculate the Taylor series at s0. We do not need an analytic

continuation of g(s) to the whole complex plane. Another, and more important,

reason for using the Taylor series in the definition is that in this way we get the

correct sign of t-functions of the poles in the negative x-axis, as is seen in Lemma

4. The reason for changing the variable x to t = x−1 is that for poles the t-function
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has positive powers of t and we can write recursion formulas in Lemma 2 with

O(t2) and t → 0. The t-functions of functions of the form ce−ax, which appear

in (4), are not power series with positive powers of t. If we formally expand e−ax

into a power series of x and then set t = x−1, we get negative powers of t. When

x → ∞ such a power series diverges. This means that functions of the form ce−ax

cannot be understood as power series of t with positive powers. They can only be

understood as functions of x. They appear as x-dependent coefficients of positive

powers of t. In Lemma 1 we prove that the coefficients of the positive powers

of t decrease to zero when x → ∞. This means that all coefficients of positive

powers of t need not be numbers. They can be x-dependent coefficients, functions

of x. Such coefficients are used in the following way: assume that the x-dependent

coefficient of tj, j > 0, coming from one set of poles does not decrease to zero

when x → ∞. Then the sum of x-dependent or fixed coefficients of tj from the

other sets of poles must partially cancel this coefficient so that the sum decreases

to zero when x → ∞. Since t = x−1 one may wonder if the positive powers of

t are well defined or if x-dependent coefficients should be expanded as powers of

t. Should we do so, then it is unclear what are positive powers of t and what

are x-dependent coefficients. There is no such confusion in the proof. Only one

x-dependent coefficient is needed in the proof Theorem 1. Other coefficients that

are needed in the proof of Theorem 1 are fixed real numbers. The x-dependent

coefficient that is needed is C(x), which is derived in Lemma 4. We show in

Lemma 4 that C(x) is a valid x-dependent coefficient and cannot be understood

as a power series of t. Let us calculate the t-function of a pole function. We write

s− sk = (s− s0)− (sk − s0) = z1 − (sk − s0) = x− z2 − (sk − s0). (7)

Let the index set K be finite. At the point s0 + x the set k of pole functions of

g(s) is
∑

k∈K

rk
s− sk

=
∑

k∈K

rk
x− z2 − (sk − s0)

. (8)
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Let ak = sk − s0, z2 = 0 and x = l−1. Then

∑

k∈K

rk
s− sk

= x
∑

k∈K

rk
1− akt

(9)

is a function of t, the t-function of a set of pole functions of g(s). The t-functions

have values on the x-axis and the area that we are interested in is when x → ∞.

In this proof t-functions are always real. Expanding (9) as a power series of x

gives, assuming we can change the summation order

t
∑

k∈K

rk
1− akt

= t

∞
∑

i=0

ti
∑

k∈K

rka
i
k. (10)

The series for each pole function converges when t = x−1 is sufficiently small and

when K is finite, there is a convergence radius for the whole sum. Infinite sets K

appear in this proof only in Lemma 4 and in Lemma 2 in two equations, (32) and

(34). In Lemma 4 divergent sums are mentioned as an impossible case and are

discarded. In (32) and (34) there is no sum over the powers of t. These equations

only give a coefficient of a power of x, and this coefficient can be infinite, as is

mentioned in (22) and (43). In Theorem 1 it is shown that the sums (32) and (34)

converge.

The absolute value of the coefficient of the power of x−i−1 for a pole function

for sk in (10) is |rkaik|. Unless each coefficient of each positive power of t = x−1

decreases to zero when x → ∞, the function of t for one pole decreases along

the x-axis as a hyperbolic term ax−i−1, a ∈ IR, for some i ≥ 0 when x grows. If

the absolute value of each coefficient of each power of t in the sum of all poles of

g(s) does not go to zero as x → ∞, then the sum of the t-functions of the poles

decreases along the x-axis as a hyperbolic term ax−i−1, a ∈ IR, for some i ≥ 0

when x grows. Let us assume that we have the inequality

|g(s0 + x)| < e−bx|g(s0)| (11)
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for some b > 0. This means that the the absolute values of the coefficients of the

Taylor series at s0+x decrease as fast or faster than e−bx as a function of x. This

is faster than the decrease of any function ax−i−1. Let us assume that g(s) has

a pole with rk = −1 at s = 1. It yields the t-function −t(1 − t)−1. Why does

g(s) not have positive powers of t when x → ∞ and decrease as ax−i−1 for some

a ∈ IR and i ≥ 0? Obviously some other terms of g(s) cancel these positive powers

of t. We formulate this phenomenon into a lemma for g(s) = f(s) in (3).

Lemma 1. The absolute value of the coefficient of each positive power of

x in the t-function of the sum of the poles of f(s) in (3), when evaluated at x

decreases to zero when x grows to infinity.

Proof. The limit of ζ(s) can be determined from the series expression

ζ(s) =

∞
∑

k=1

k−s (12)

which converges when Re{s} > 1. Letting s be real and growing to infinity leaves

only the first term of the sum. Thus, the limit is one. It follows that the limit of

ζ′(s) is zero when s → ∞ and s is real. By derivating the series expression of ζ(s)

we notice that in Re{s} > 1 in (13), which we satisfy by requiring s0 > 1 and

x ≥ 0, holds

|ζ′(s0 + x)| = |
∞
∑

k=2

− ln(k)k−s0−x| < e− ln(2)x|ζ′(s0)|. (13)

As lims→∞ ζ(s) = 1 and f(s) = ζ(s)−1ζ′(s), we have the inequality

|f(s0 + x)| < e−ax|f(s0)| (14)

for some a with 0 < a < ln(2) and s0 = 0. Thus, f(s) in (3) is a function where

the absolute values of the coefficients of the power series of t at x >> 1, decrease

exponentially as a function of x. This implies that coefficients c of terms cxj ,
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j > 0, c ∈ IR, go to zero when x → ∞. Let Re{s} > 1, we define f1,0 = 0 and

f1,m(s) = −
m
∑

j=1

ln(pj)p
−s
j (1 − p−s

j )−1. (15)

For a finite m the function f1,m(s) is analytic everywhere. When m → ∞ the

sequence f1,m(s) converges to f(s) in Re{s} > 1. The difference f2,m(s) = f(s)−

f1,m(s) contains all poles of f(s) for every finite m. When m → ∞ and Re{s} > 1

the sequence f2,m(s) converges to zero. There cannot remain any analytic term of

f(s) in this limit, because the term is zero in Re{s} > 1 and thus must be zero in

the whole complex plane. This means that every analytic term of f(s) is contained

in f1,m(s) form ≥ m1 ifm1 is sufficiently large.What remains in the limit function

f2,m(s) is the sum of the poles of f(s). The limit function f2,m(s), m → ∞, is

not analytic for Re{s} ≤ 1, and it is zero for Re{s} > 1. In Lemma 2 we only

get recursion formulas for the coefficients of powers of t for pole functions of f(s).

These recursion equations are O(t2), thus they become exact only when t → ∞,

i.e., x → ∞. This is why we only look at the cancellation of pole functions at x →

∞. The t-function fs,m(t−1) = f2,m(x) = f(x)− f1,m(x) decreases exponentially

as a function of x when x → ∞. If any f1,m(x) partially cancels any terms ctj ,

j > 0, c ∈ IR, there is the first index m when f1,m(x) partially cancels such terms.

Then the set of the poles of f2,m−1(x) = f(x) − f1,m−1(x) must be different, or

some pole has a different residue rk than in the function f2,m(x) = f(x)−f1,m(x).

Yet, both fs,m(s) and fs,m−1(s) have the same poles as f(s) and with the same

residues. This is so because f1,m(s) does not have poles. Therefore only t-functions

of pole functions can cancel t-functions of other pole functions when x >> 1. As

f(s) does not have any positive powers tj when x → ∞, this means that the

t-functions of the sum of the poles of f(s) cancel when x → ∞ so well that every

positive power tj vanishes. So well is expressed by the condition in Lemma 1.

Comment: The reason why the everywhere analytic part of f(s) does not

cancel terms ctj , c ∈ IR, j > 0, is because the poles of f(s) are always in f2,m(s).



8

It is true that an everywhere analytic function g(s) cannot have finitely many

additive terms ctj . The t-function of g(s) is g(t−1). If x = 0, the parameter t

becomes infinite, but the value of g(t−1) is finite for every x as g(s) is analytic

everywhere. Terms tj , j > 0, become infinite at x = 0, thus the t-function of g(s)

cannot contain finitely many additive terms ctj , j > 0, c ∈ IR. However, it is

not true that everywhere analytic functions cannot contain a convergent infinite

series or t or grow as ctj when x → ∞. For that we need additional conditions.

Let us consider a function g(s) that can cancel a term (xj)−1 and what remains is

h(x) = (xj)−1 − g(s). We assume that h(x) satistifes x2jh(x) → 0 when x → ∞,

h(x) → ∞ when x → −∞, and h(x) > 0. The exponential terms in f(s) in

Re{s} > 1 in (4) have these properties. By direct calculation

g(s) =
1

axj
− h(x) =

1

axj + b(x)
(16)

where a ∈ IR, a 6= 0, j > 0 is an integer and

b(x) =
a2x2jh(x)

1− axjh(x)
(17)

giving the inverse relation

h(x) =
b(x)

axj(axj + b(x))
. (18)

Let a > 0. Let x → −∞, then h(x) → ∞ and

b(x) = −axj axjh(x)

axjh(x) − 1
. (19

Then axjh(x) − 1 < axjh(x), thus b(x) < −axj , meaning that axj + b(x) < 0.

Let x → ∞, then x2jh(x) → 0, so b(x) → 0 and axj + b(x) > 0. There must be

a value x giving axj + b(x) = 0. Let a < 0. Let x → −∞, then h(x) → ∞ and

b(x) = −axj axjh(x)
axjh(x)−1 . Then axjh(x)− 1 > axjh(x), thus b(x) > −axj , meaning
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that axj+b(x) > 0. Let x → ∞, then x2jh(x) → 0, so b(x) → 0 and axj+b(x) < 0.

There must be a value x giving axj + b(x) = 0. Thus, for any a ∈ R the function

g(x) has a pole and it is not everywhere analytic, but if h(x) does not satisfy the

required conditions, g(s) can be analytic everywhere. Consequently, it can also

be possible to have a convergent infinite series of powers of t in an everywhere

analytic function.

The function f(s) in (3) has the following poles in Re{s} > 0:

(i) There is a pole with r = −1 at s = 1.

(ii) There is a set A of pole pairs f(s) at sk and s∗k where sk has a nonzero

imaginary part, and the r-value rk is positive. We know of sk is that 0 < Re{sk} <

1, and that that there exist poles sk with the real part 1
2 .

(iii) There may be a set A1 of poles sk,1 of f(s) with rk,1 a positive integer,

the pole sk,1 is real and 0 < sk,1 < 1. No such pole is known.

Inserting s = s0 + l, s0 = 0, t = x−1 to the expression of a pole (5) on the

t-axis gives the function (we omit the analytic function part in (5))

rk
s− sk

=
rk

s0 + l − sk
=

rk
l − sk

= x−1 rk
1− skx−1

=
trk

1− skt
(20)

where sk is a real number. For a pole pair in the positive and negative y-axis the

equation (18) takes the form

rk
s− sk

=
trk

1− (1 + iαk)akt
(21)

r

s− s∗k
=

trk
1− (1− iαk)akt

.

Here ak = Re{sk} and αk = a−1
k Im{sk} is chosen positive by numbering the pole

pairs.
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Lemma 2. The sum of the functions of t of the forms (20)-(21) for the poles

of f(s) in Re{s} > 0 gives for x → ∞ a function of t of the form

b1t+ b2t(1− t)−1 (22)

if and only if the Riemann Hypothesis is true, b1 and b2 are finite x-dependent

coefficients of the powers of t with values in reals, or both are infinite.

Proof. Let sk, s
∗

k be a pole pair in the set A. The two functions for a pole pair in

(21) have a real sum:

trk
1− ak(1 + iαk)t

+
trk

1− ak(1− iαk)t
= trk

2(1− akt)

1− 2akt+ (1 + α2
k)(akt)

2
. (23)

We expand the sum S:

S =
2(1− akt)

1− 2akt+ α2
k(akt)

2
=

2− 2akt

1 + α2
k(akt)

2

1

1− 2aktγ
−1
k

(24)

where we have written γk = 1 + α2
k(akt)

2. Thus

S =
2− 2akt

γk

∞
∑

i=0

(2aktγ
−1
k )i. (25)

Defining βk,i = (2ak)
iγ−i−1

k we get

S = 2
∞
∑

i=0

βk,it
i − 2ak

∞
∑

i=0

βk,it
i+1 =

∞
∑

i=0

2βk,it
i − 2ak

∞
∑

i=1

βk,i−1t
i

= 2βk,0 +
∞
∑

i=1

(2βk,i − 2akβk,i−1)t
i. (26)

We will derive a recursion equation. It comes directly from the definitions of γk

and βk,i. For i > 0

2βk,i − 2akβk,i−1 = 2
(2ak)

i−1

γi
k

(2akγ
−1
k − ak) (27)
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=
(2ak)

i

γi+1
k

(2− γk) = βk,i(2− γk).

This gives an equation for every i > 0

2βk,i − 2akβk,i−1 = 2βk,i − γkβk,i. (28)

Inserting γk = 1 + (αkakx)
2 yields for i > 0

2akβk,i−1 = γkβk,i = βk,i + t2(αkak)
2βk,i. (29)

For every k when l >> 1 and thus for 0 < t = x−1 << 1 and i > 0 holds

2akβk,i−1 = γkβk,i = βk,i +O(t2). (30)

The coefficient of the the power ti, i > 0, is

2βk,i − 2akβk,i−1 = βk,i +O(t2). (31)

The result (31) can be inserted to (26) to show that the coefficient of ti+1, i > 0,

in the power series of the sum of poles (ii) is

∑

k∈K

rk(2βk,i − 2akβk,i−1) =
∑

k∈K

rkβk,i +O(t2). (32)

For each k, when x → 0 and i > 0, holds by (31)

βk,i = 2akβk,i−1. (33)

Assume that the Riemann Hypothesis is true. Then every ak = Re{sk} = 1
2

for (sk, s
∗

k) ∈ A and A1 is empty. As every ak = 1
2 , the recursion equation (33)

yields βk,i+1 = βk,i for every k and i > 0 when x → ∞. The power series of t

for i > 1 is of the form tβk,1(t + t2 + t3 + · · ·) = βk,1t(1 − t)−1. The coefficient
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βk,1 is real and positive. The pole at s = 1 yields the function −t(1 − t)−1. The

recursion equation for βk,j is βk,i = (2ak/γk)βk,i−1. As 2ak = 1 and since γk ≥ 1,

this implies that βk,i−1 ≥ βk,i for all i > 0. Recursion (29) for ak = 1
2 shows that

for every i > 0 the value βk,i is the same when t → 0. Let

βi =
∑

k∈K

rkβi,k , i ≥ 0. (34)

The sum βi, i ≥ 0, of l is positive and real and it depends on x. The sum can be

finite or infinite. Since γk → 1 when t → 0, βi is the same for every i ≥ 0. Thus,

the function of x given by poles of the type (ii) is

β0t+ β0t(1− t)−1. (35)

Adding the pole at s = 1 with the t-function −t(1− t)−1 we get the function (22)

as in the claim.

Assume that the Riemann Hypothesis is false. Then either A1 is not empty

or at least for one a pole pair (sk, s
∗

k) in A the number ak is not 1
2 . Assume that

A1 is not empty. At a zero ζ(s) has a Taylor series with some convergence radius,

therefore zeros do not have a concentration point in 0 < Re{s} < 1 at the x-axis.

It follows that there can only be finitely many poles of type (iii). The function of

x from the sum of the finite set K of indices k in A1 is a finite sum of functions

of form (20):
∑

k∈K

trk
1− skt

= t
∞
∑

j=0

(

∑

k∈K

rk(sk)
j

)

tj . (36)

This sum cannot be of the type b1 + bt(1− t)−1 because the poles sk of the type

(iii) have 0 < sk < 1 and rk positive integer. We would need

∑

k∈K

rk(sk)
2 =

∑

k∈K

rk(sk)
j (37)
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for all j > 2, but this is impossible if any rk is nonzero. Poles of the type (ii) have

positive values of rk and the sum of functions of the form (21) for a pole pair is

a positive function of t. These poles cannot cancel the function coming from (iii)

if A1 is nonempty. Thus, if A1 is nonempty, the sum of the functions of t of the

form (20)-(21) for the poles of f(s) in Re{s} > 0 is not of the form (22).

Assume that A1 is empty, but at least for one a pole pair (sk, s
∗

k) in A the

number ak is not 1
2 . The functional equation, proven by Riemann,

ζ(s) = 2sπs−1 sin(2−1πs)Γ (1 − s)ζ(1 − s) (38)

shows that if there exists a zero s0 = x0 + iy0 of ζ(s) with 0 < x0 < 1
2 then there

exists a zero of ζ(s) at a symmetric point in 1
2 < x < 1. This implies that we can

find sk′ such that 2ak′ > 1. If (22) holds, and because the pole at s = 1 yields

the function −t(1− t)−1 = −t− t2 − t3 − . . ., the function coming from the pole

pairs in A must be of the type c1t+ c2(t
2+ t3+ . . .). where c1, c2 are non-negative

and real. c2 must be finite since only t-functions from pole pairs in A can cancel

the t-function −t(1− t)−1 from the pole at s = 1 and by Lemma 1 t-functions of

poles cancel when x → ∞. Indeed, c2 = 1 is the only possibility. Let K be the

set of indices of pole pairs in A. As c2 is finite, the sum over K in the left side of

(32) is finite if (22) holds. Summing the coefficients of the powers ti from i = 2 to

i = i1 + 1 gives an equation where the coefficients of tj , j > 1, of the pole pairs

(ii) must equal the coefficients of c2(t
2 + t3 + . . .) to the degree of O(t2):

c2i1 =

i1+1
∑

i=2

c2 =

i1+1
∑

i=2

∑

k∈K

rkβk,i +O(t2). (39)

We have the recursion

βk,i = 2akβk,i−1 +O(t2). (40)
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For ak′ this recursion gives

βk′,i = βk′,1(2ak′)i +O(t2). (41)

Notice that βk,i is positive by its definition, and that rk = 1 and 0 < ak < 1 for

poles of the type (ii). Inserting this equation to (39) yields

c2i1 =

i1+1
∑

i=2

∑

k∈K

rkβk,i +O(t2) ≥ βk′,1(2ak′)i1 +O(t2). (42)

The right side in (42) grows as βk′,1(2ak′)i1 as a function of i1 while the left side

is linear in i1. This is a contradiction since 2ak′ > 1. Thus, (22) does not hold if

the Riemann Hypothesis is false.

Lemma 3. The Riemann Hypothesis is true if and only if the sum of the

functions of t of the form (20)-(21) for the poles of f(s) in Re{s} ≤ 0 gives a

function of t of the form

−b1t− b2t(1− t)−1 (43)

in the limit x → ∞. Here b1 and b2 are finite x-dependent coefficients of the

powers of t with values in reals, or both are infinite.

Proof. By Lemma 1 poles of f(s) must cancel when x → ∞. Lemma 2 shows that

if the Riemann Hypothesis holds, the poles of f(s) can cancel only if the sum of

the functions of t of the form (20)-(21) for the poles of f(s) in Re{s} ≤ 0 gives a

function of t of the form (43). If the Riemann Hypothesis is false, the poles still

must cancel by Lemma 1. Then Lemma 2 shows that the sum of the functions of

t of the form (20)-(21) for the poles of f(s) in Re{s} ≤ 0 does not give a function

of t of the form (43).

It remains to see what the poles of f(s) in Re{s} ≤ 0 give as a function of

t. The zeros of ζ(s) in the area Re{s} ≤ 0 are the so called trivial zeros at even
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negative integers. They come from the formula

ζ(−n) = (−1)n
Bn+1

n+ 1
(44)

where Bm = 0 if m > 1 is odd. Zeta does not have a zero at s = 0. These zeros

of ζ(s) are the poles of f(s) in Re{s} ≤ 0. From the functional equation (38) we

can deduce that the trivial zeros are zeros of sin(2−1πs) and therefore first-order

zeros. Thus, at a point sk = −2k, k > 0 integer, the function f(s) has a first-order

pole with the r-value rk = 1.

Lemma 4. The poles of f(s) in Re{s} ≤ 0 give a function of −tC(x),

C(x) > 0, when x → ∞. It is of the form (43).

Proof. The pole function at sk = −2k, k > 0, is

rk
s− sk

=
1

s+ 2k
. (45)

At x the pole function is

rk
x− sk

=
1

x+ 2k
= x−1 1

i + 2kx−1
. (46)

The t-function at x is thus

t
1

1 + 2kt
= t

∞
∑

i=0

(2kt)i. (47)

When |2kt| < 1 the sum converges, but there is a problem: (47) gives a positive

t-function for each pole sk = −2k. If so, then the only negative t-function is

−t(1− t)−1 from s = 1. Then t-functions of poles cannot cancel because Lemma

2 shows that β0 > 0 in (35) and cannot be cancelled by −t(1 − t)−1. Zeta has

zeros with ak = 1/2, thus K 6= ∅ in (34). If the poles sk = −2k give a positive

x-function, it is tC(x) as the proof later shows, thus −t(1−t)−1 must be cancelled

by pole pairs of A. The term ax remains. It follows that (47) is not the correct
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way: the contribution from a pole sk = −2k must have negative terms. In order

to get the correct form we calculate the t-function as described before by first

expanding the pole function to a Taylor series at s0 = 0 where s = s0 + z1, then

setting z1 = 0 and seeing what the function is, and then inserting z1 = x− z2 to

a Taylor series at s0 + x = x, setting z2 = 0, and finally inserting t = x−1. So, let

us do this: we set s = s0 + z1 and assign s0 = z1 = 0 in (46). Then

1

s+ 2k
=

1

s0 + z1 + 2k
=

−1

s0 + z1 − 2k
=

−1

s− 2k
(48)

corresponding to a pole at 2k evaluated at s0 = 0 with r = −1. A pole with r = 1

at the negative x-axis at the place sk = −2k gives the same t-function as a pole

with r = −1 at the positive x-axis at the place sk = 2k. The pole functions of the

poles of f(s) at sk = −2k is negative. When a pole at sk = −2k is evaluated at

x we first evaluate it at s0 = 0

rk
s− sk

=
1

s0 + z1 + 2k
=

−1

−s0 − z1 − 2k
=

−1

s0 + z1 − 2k
. (48)

Then we set z1 = x − z2, and then consider |z2| << 1 in the function −1/(s0 +

x− z2 − 2k). When s0 = z2 = 0, the t-function is −1/(x− 2k) = −t/(1− 2kt) is

similar to the t-function from a pole with r = −1 placed at 2k. The contribution is

negative. Thus, the way to evaluate the t-function of g(s) is not simply changing

x = t−1 in g(x). The sign may be taken both ways for poles on the negative

x-axis. Only one of these ways is correct. Any finite sum of poles sk = −2k can

be evaluated at s0 + x and the sum is a negative contribution, but the sum of all

poles sk = −2k
∞
∑

k=1

−1

x− 2k
(50)

diverges at every point x. We cannot evaluate all these poles at x by directly

evaluating a pole at s0 + x and then summing over k. Let us still look deeper

at the problem. The sum of all poles s = −2k at s0 = 0 is obtained by setting
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z1 = 0. We get the negative of the sum

∞
∑

k=1

1

2k
. (51)

This sum can be calculated. Using the facts that ζ(s) has a simple pole at s = 1

ζ(s) =
a

s− 1
+ g(s) (52)

where g(s) is analytic at s = 1 and that lims→1(s− 1)ζ(s) = 1, so a = 1, we can

write

ζ(1) = lim
s→1

1 + (s− 1)g(1)

s− 1
= lim

s→1

1

s− 1
= lim

s→0

1

s
(53)

This result gives
∞
∑

k=1

1

2k
=

1

2

∞
∑

k=1

1

k1
=

1

2
ζ(1) = lim

s→0

1

2

1

s
. (54)

Thus, the sum of the poles at sk = −2k appears as a simple pole when evaluated

at s0 = 0. The pole has a negative r-value with r = −1 at s0 = 0. However, it is

not a simple pole. A simple pole with r = −1/2 is at s0 = 0

−1

2

1

s− s0
=

−1

2

1

z1
(55)

where s0 = z1 = 0. It is evaluated at s0 + x by writing z1 = x − z2 and the

t-function is obtained by setting z2 = 0

−1

2

1

x− z2
=

−1

2
x−1 = −

1

2
t. (56)

This pole is finite for every x > 0, but the sum of the poles sk = −2k is infinite

at every finite x. Indeed, the sum of poles in Re{s} ≤ 0 can be presented as a

simple pole in any point s0 + x

lim
s→1

1

s− 1
= lim

s→x

1

s− x
. (57)
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The infinity lims→s0 −0.5/(s− s0) is not caused by the pole being physically at

s0, the infinity comes because the sum of the numbers 1/(x+ 2k) is infinite.

Clearly, something is wrong in taking the limit in (57) and summing to infinity

at (50). By Lemma 1 the sum of the t-functions of the poles of f(s) goes to

zero if x → ∞. If the t-functions from the poles −2k is infinite everywhere, the

sum cannot go to zero. It is either infinite or undefined when x → ∞. That is,

adding the t-functions of other poles one by one keeps the sum at negative infinity,

while adding the t-functions of other poles to positive infinity gives infinity minus

infinity. As the sum is not infinite, we cannot calculate it by summing any partial

sum to infinity. The problem is in taking a limit or an infinite sum that gives a

function that is infinite everywhere. We can compare the situation to taking a

limit m → ∞ of the functions

f1,m(s) = −
m
∑

j=1

ln(pj)p
−s
j (1− p−s

j )−1 (58)

when s is real and 0 < s < 1. The functions are finite sums and analytic every-

where. The limit function is infinite at each point s real 0 < s < 1 and it does not

converge to f(s), though in Re{s} > 1 the limit converges to f(s). From Lemma

1 follows that in the sum of poles of f(s) at s = x the absolute value of the

coefficient of every power of t decreases to zero when x → ∞. Thus, the function

of t at s0 + x for the poles sk = −2k must be a function of x that decreases to

zero when x → ∞. The limit (57) and the infinite sum (46) do not give f(s).

The sum of the poles sk = −2k must be evaluated differently. All poles sk = −2k

cannot be evaluated at x at the same time because the sum diverges. We can only

evaluate at each given x > 0 such a subset of poles that the sum gives a finite

number when evaluated at x. All poles have to be evaluated at x at some point

as the sum of all poles of f(s) should be zero at x → ∞. Thus, we must include

more poles when x grows until all poles are included when x → ∞. The choice of

which subsums of poles are included for each x cannot influence the result. We



19

will make a convenient choice for these sums: let us choose a suitable growing

function N(x) and include the subsum of poles sk = −2k satisfying k ≤ N(x). A

finite sum up to N(x) can be evaluated at x, and when N(x) increases with x, all

poles −2k are included in the finite sum when k ≤ N(x). The function N(x) is a

piecewise constant function. We start from the fact that a pole sk = −2k, r = 1,

appears in s0 = 0 as a pole at sk = 2k with rk = −1. Thus,

N(x)
∑

k=1

r

s− sk
=

N(x)
∑

k=1

−1

s0 + z1 − 2k
. (59)

Inserting s0 = 0 and z1 = x− z2 gives

=

N(x)
∑

k=1

−1

x− z2 − 2k
. (60)

Evaluating at x we consider |z2| << 1. Setting z2 = 0 we have the sum at x as

N(x)
∑

k=1

−1

x− 2k
= −x−1

N(x)
∑

k=1

1

1− 2kx−1
(61)

and writing t = x−1 we get

= −t

N(x)
∑

k=1

1

1− 2kx−1
= −tC(x). (62)

In case this calculation looks strange, let us explain that it is not stating that the

positive entity in the left side of (59) is the negative entity in (62). In (59) the

set of poles is evaluated at 0 and in (62) at x. Compare the calculation with a

calculation of a pole r/(s− 1), r > 0. At s = s0 + z1, s0 = 0, z1 = 0, the pole is

r

z1 − 1
=

r

−1
= −r (63)
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but when evaluated at x we first insert z1 = x− z2 and then set z2 = 0:

r

x− z1 − 1
=

r

x− 1
= x−1 r

1− x−1
= tr/(1− t). (64)

Negative −r at 0 changes to positive tr/(1 − t) at x. The function C(x) is an

x-dependent coefficient of the power t. By Lemma 1 the coefficients of the power

series of t decrease to zero when x grows to infinity. Thus, the coefficients are

functions of x. As t = x−1 we may ask if a coefficient, like C(x), should be

expressed as a power series of t. If this can be done, then we cannot say that C(x)

is a coefficient of the power one of t. It turns out that we cannot do so. Though

formally we can express

C(x) = C(x(t)) =
∞
∑

j=0

tj
N(x)
∑

k=1

(2k)j , (65)

this is not a valid expression of the power series of t. The reason is that for any

selected index k the coefficient of tj grows to infinity when j grows. By Lemma

1 the coefficients of all positive powers of t for f(s) must go to zero as x → ∞.

Therefore, if for poles in Re{s} ≤ 0 coefficients of powers of tj go to infinity when

j grows, the same must happen for some poles in Re{s} > 0, as poles must cancel

when x → ∞. From (20) we see that for poles of type (iii) this cannot happen:

sk is between zero and one and there are only finitely many poles of type (iii).

For the pole at s = 1 this also cannot happen: every coefficient of a power tj is

−1 in −t(1 − t)−1. Pole pairs of type (ii) can give coefficients for tj that grow

with j, and they also give a series of x where the coefficents decrease with j. The

coefficients that grow with j are obtained for any pole pair of the type (ii) that

has ak > 1
2 , see (38). For any finite index set the coefficient of tj is smaller than

2j times the size of the index set. There is in a symmetric place another pole

that has ak < 1
2 . The coefficient for tj in for these poles in the finite index set is

smaller than the size of the index set. For a finite kmax the coefficient of tj in the
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subset k ≤ kmax in the series for C(x) is smaller than −(2kmax)
j . The coefficient

of tj in the sum of these three sets goes to minus infinity when j grows to infinity

for any fixed finite index set Ki and any fixed finite limit kmaxi
. Therefore it is

not possible to select a sequence of finite index sets (Ki)i → K and a sequence

of finite limits (kmaxi
)i → ∞ and take them together to an infinite index set K

and infinite limit lim kmaxi
= ∞ so that all powers of tj cancel. Thus, pole pairs

do not cancel the powers of t from the power series of C(x). Therefore, the poles

in Re{s} ≤ 0 cannot give a power series of t where the coefficients of tj grow to

infinity when j → ∞. C(x) is not a power series of x with several different powers

of t. It is a coefficient of the first power t, and it depends on x. It is a piecewise

continuous function of x as it jumps when a new pole is added to the sum. The

function −tC(x) is of the type (43). Therefore Lemma 3 implies that the other

poles give a contribution as in (22). The variable t is real, every rk is real, and

every sk on the x-axis is real. The sum of the poles of a pole pair is real. Thus,

every t-function is real. Therefore C(x) is real. As a finite sum of t-functions for

poles −2k the t-function −tC(x) is negative, thus C(x) > 0.

Theorem 1. All zeros of ζ(s) in 0 < Re{s} < 1 have the real part 1
2 .

Proof. The t-function from the pole at s = 1 is −t(1 − t)−1. Other poles of f(s)

must cancel this contribution because f(s) does not have positive powers of t when

x → ∞. As this contribution is negative, it can only be cancelled by the poles

of A1 and the pole pairs of A. The poles at sk = −2k yield negative t-functions

and they cannot cancel negative coefficients of positive powers of t. From Lemma

2 we notice that this contribution can be cancelled if A1 is empty and β0 = 1

in (35) when x → ∞. In this case every ak = 1/2 for pole pairs in A and the

Riemann Hypothesis is true. If β0 = when x → ∞, (35) shows that there remains

the term β0t = t. This term must vanish in the sum of poles when x → ∞. The

only poles that are left to cancel this term are the poles at sk = −2k. Therefore,

the t-function coming from these poles must be −t. In Lemma 4 we derived two
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expressions for the t-function of the poles sk = −2k. One expression is infinite

at every point x and this expression is not correct since f(s) is not infinite at

every point x. The other expression from Lemma 4 is −tC(x), C(x) > 0. The t-

function −tC(x) can give −t. Thus, if the Riemann Hypothesis is true C(x) → 1

when x → ∞. All poles cancel when x → ∞. Notice that the only x-dependent

coefficient is C(x).

Consider the possibility that the Riemann Hypothesis is false. Also in this case

we need the pole pairs that cancel −t(1 − t)−1. They are the same pole pairs as

in the case the Riemann Hypothesis is true. They cancel −t(1 − t)−1, but leave

the t-function t. Thus, the poles sk = −2k must cancel this function, as these

poles are the only poles left yielding a negative t-function. We did not prove in

Lemma 4 that there are no more than two possible expressions for the t-function

coming from the poles sk = −2k, but the expression −tC(x) contains all poles

sk = −2k when N(x) grows. If there were positive contributions from any pole

in A1 or any pole pair in A that does not have ak = 1
2 , then at some finite x the

set k ≤ N(x) must include indices of poles sk = −2k that partially cancel these

positive t-functions, i.e., partially cancel coefficients of powers j > 1 of t. This is

not the case: for all values of x the sum of sk = −2k poles up to k ≤ N(x) gives

−tC(x). Thus, there are no other positive contributions than t, which −tC(x)

must cancel. This means that A1 is empty and ak for all pole pairs in A is 1
2 .

That is, Lemma 3 shows that if the Riemann Hypothesis is false, the t-function

for the poles sk = −2k cannot be as in Lemma 4. Thus, the Riemann Hypothesis

is true. Notice that also here C(x) is the only x-dependent coefficient that needs

to be considered.

The rest of the proof of this theorem is checking if there is any obvious con-

tradiction. In this solution β0 = 1, C(x) → 1 when x → ∞, and that the absolute

values of the coefficients of all powers of t go to zero when x → ∞. Let us see if

there is an obvious contradiction in these requirements.
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Can

βi =
∑

k∈K

rkβk,i (66)

have the value 1 in the limit x → ∞ for all i ≥ 0? Because t → 0, the values of

αk = a−1
k Im{sk} must grow to infinity with k. The set A is necessarily infinite.

We renumber the poles of (ii) so that (αk) is a growing sequence and the sum

k ∈ K is the sum from k = 1 to infinity. Since ak = 1
2 for every k in K we can

evaluate

βk,i = (2ak)
iγ−i−1

k =

(

1

1 + 0.25(αkx)2

)i+1

. (67)

Let x >> 1 be fixed. If αk >> l = t−1, then βk,i is close to zero. This means that

large values of αk contribute very little to the power series of t at x. The sum in

(66) can be finite and in the limit when x → ∞ the number βi can be 1. There is

no obvious contradiction.

Can C(x) in (62)

C(x) =

N(x)
∑

k=1

1

1− 2kx−1
=

N(x)
∑

k=1

x

x− 2k
(68)

converge to 1 when x → ∞? It may appear that this must be impossible as

each term in (68) approaches 1 when x grows. It can. C(x) s a growing function

as it grows at each addition of a pole at some point xk and also between the

additions. From (54) we see that if x = 0 the function C(0) for the sum of

all poles is 1/2. Let us select an integer nM so that for the sum up to nM ,

C(0) = (1−M−1)/2. The tail, sum from nm +1 to infinity, is M−1/2. From (57)

we notice that the tail has the same value at each point xk > 0 as at x = 0.

At the point xk we add one pole to C(x). Thus, the addition at xk to C(x) is

less than M−1/2. Let us add [M ] poles at points x1, . . . , x[M ], xi > xi+1. Then

C(x[M ]) < (1 −M−1)/2 + [M ]M−1/2 ≤ 1 −M−1/2. If we add a[M ] points, the

upper limit is (1 + a)/2. We cannot say what the limit is, but as 0 < C(x) and

a growing function, it converges to a limit or to infinity. This limit can be 1.
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Notice how the problem that each term is at least one in (68) is solved. In the

limit nM → ∞ all poles are added at x = 0. They do not give the same t-function

when evaluated at x as a simple pole at s = 0, but a similar one. They give−tC(x)

instead of −t/2. There is no obvious contradiction with C(x) → 1 as x → ∞.

The convergence of the coefficients of the powers of t to zero in the sum of all

poles when x grows is O(t2) for the coefficient of each power i > 1 of ti separately.

For the power one of t we get the result that convergence as at least O(t) is

possible. The term β0 converges to β1 as O(t2) since every βk,i = βk,i−1 +O(t2).

Each βi converges to 1 asO(t2). The contribution from the poles at−2k is−tC(x).

The sum −tC(x) − t + 2β0x can go to zero at least as fast as O(t). There is no

obvious contradiction.

Theorem 1 is the Riemann Hypothesis. For basic facts of the Riemann zeta

function see standard works, like [1]. The history and background of the Riemann

Hypothesis are well described in the book [2].
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