PYTHAGOREAN TRIPLES AND SQUARE PELL NUMBERS
 Julian Beauchamp

Abstract

In this short paper I demonstrate a simple connection between primitive Pythagorean triples of the form $\{X, Y, Z=Y+1\}$ and the squares of the Pell Numbers. I conjecture that when X is equal to one of the numerators of continued fraction convergents to $\sqrt{2}$, then and only then can Y or Z be a square, and only then a square Pell Number.

Introduction

For any primitive Pythagorean triple of the form $(X, Y, Z=Y+1)$, it appears that Y or Z will always, and apparently only be a square Pell number if X is a member of the number sequence (A001333).

Let $a_{(n)}$ be the numerators of continued fraction convergents to $\sqrt{2}$ (A001333), where $a_{(0)}=0$, such that:

$$
a_{(n)}=1,1,3,7,17,41,99,239,577,1393,3363,8119 \ldots
$$

The closed formula for this sequence is:

$$
\frac{(1-\sqrt{2})^{n}+(1+\sqrt{2})^{n}}{2}
$$

Also let $b_{(n)}^{2}$ be the square Pell numbers (A079291), where $b_{(0)}^{2}=0$, such that:

$$
b_{(n)}^{2}=0,1,4,25,144,841,4900,28561,166464,970225,5654884, \ldots
$$

When $X=a_{(n)}(n>1)$, then if n is even, Y is always a square Pell number, and if n is odd, then Z is always a square Pell number. For example:

$$
(3,4,5),(7,24, \mathbf{2 5}),(17, \mathbf{1 4 4}, 145),(41,840,841),(99,4900,4901) \ldots
$$

Thus, when $X=a_{(n)}(n>1)$, then
$(X, Y, Z)=\left(a_{(n)}, b_{(n)}^{2}, b_{(n)}^{2}+1\right)$ when n is even, or:
$(X, Y, Z)=\left(a_{(n)}, b_{(n)}^{2}-1, b_{(n)}^{2}\right)$, when n is odd.
As a closed formula, $(X, Y, Z)=$
$\left(\frac{(1-\sqrt{2})^{n}+(1+\sqrt{2})^{n}}{2}, \frac{\left[(1-\sqrt{2})^{n}+(1+\sqrt{2})^{n}\right]^{2}-4}{8}, \frac{\left[(1-\sqrt{2})^{n}+(1+\sqrt{2})^{n}\right]^{2}+4}{8}\right)$.
I conjecture that Y and Z can only be squares when $X=a_{(n)}(n>1)$.
The Rectory, Village Road, Waverton, Chester Ch3 7QN, UK
Email address: julianbeauchamp47@gmail.com

Date: Jan 2022.
2010 Mathematics Subject Classification. Primary .
Key words and phrases. Pythagorean Triples, Pell Numbers.

