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Abstract. We reveal adjacent real points in the real set using a concise logical
reference. This raises a paradox while the real set is believed as existing and
complete. However, we prove each element in a totally ordered set has adjacent
element(s); there is no densely ordered set. Furthermore, since the natural
numbers can also be densely ordered under certain ordering, the set of natural
numbers, which is involved with each infinite set in ZFC set theory, does not
exist itself.
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Opening Words: A Paradox of “Adjacent” Real Points

It is well known that any two real points are separated by at least their midpoint. So
nobody attempts to find “adjacent” real points. However, they are just there within reach
of everyone.
On X-axis there is a segment, [1, 2], each point x of which is planted with a vertical

segment [0, x]. The rightmost vertical segment is red in color and the horizontal one
on X-axis is transparent whilst the others are green. When standing at the origin and
looking at them (in parallel perspective), a viewer sees an otherwise totally green vertical
“segment” with a red top point. There is no doubt the visible red point is the point 2 of
the vertical segment [0, 2].
Next remove the upper endpoint from each of the vertical segments. Then the same

viewer sees an almost same “segment”. This time the new visible red point is the upper
endpoint of the vertical segment [0, 2), namely, the lower “adjacent” point of the above-
mentioned point 2.
This paradox defends a crucial fact, which may have been otherwise denied or obscured.

1. Introduction

We view Georg Cantor’s theory about infinity with grave suspicion [1], and have waited
for an incisive proof to finally close the book on it. When encounter the paradox of
“adjacent” real points, we are not surprised at all for knowing that the set R is full of
loopholes in the first place [1, sec. 4]. However, further reflection suggests that adjacent
elements are all over a totally ordered set, and as a consequence the set Q, which we
have questioned in [1, Thought Experiment 6.1 ], is illogical. Then the natural desire that
follows is to have the equally questionable set N [1, Thought Experiment 5.2 ] involved.
We achieve the goal via rearranging the natural numbers into a dense pattern, just like

1This is an updated version of the original article . Some known errors have been corrected and Appendix B has been
rewritten.
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2 ADJACENT ELEMENTS IN A TOTALLY ORDERED SET

the rational numbers. The end result is far-reaching, eliminating a long list of paradoxes
about infinity and continuum all at once.
Trivial Declaration. All involved multi-element sets in this paper are totally ordered

(linearly ordered) sets with usual order ≤, each with many elements. In our discussion,
point and number are merely different expressions of the same thing, and we switch
between them for better intuition.

2. Adjacent Elements in a Totally Ordered Set

Because of the paradoxes exposed in [1, sec. 4], we are not astonished at the collapse of
R as a set; instead, considering other paradoxes in [1], we would be disappointed if the
crisis were limited to just the set R.

2.1. Finding an Adjacent Element

Let the universe E be an arbitrarily given set (not necessarily complete or densely ordered)
with total order ≤. For a1, a2 ∈ E with a1 < a2, we call {x ∈ E : a1 ≤ x ≤ a2} an
E-segment and denote it by [a1, a2]E; and call {x ∈ E : a1 ≤ x < a2}, which is denoted
by [a1, a2)E, an E-segment, too.

Side note: If E = {1, 2, 3, . . . , 10}, then [2, 6]E = {2, 3, 4, 5, 6} and [2, 6)E =

{2, 3, 4, 5}, but {2, 3, 5, 6} is not an E-segment.
Since, hereafter, the universal set E is always there and equally applies to both hori-

zontal and vertical directions, the subscript “E” is omitted if there is no ambiguity.
Theorem 2.1.1 In a totally ordered set each element has at least one adjacent ele-

ment. And each element that is neither the least nor greatest one has both an immediate
predecessor and an immediate successor.
Proof. It is sufficient to take the usual order ≤ as an example.
Without loss of fairness, suppose 0, x1, x2 ∈ E with 0 < x1 < x2. (The presence of the

constant 0 is not a must, but it helps us focus on key issues without changing the essence
of the problem.) We just find an adjacent element for x2, and the rest is evident then.
On X-axis there is an E-segment [x1, x2], each point x of which is planted with a

vertical E-segment [0, x]. Thus all the vertical E-segments together cover a vertical range
{y ∈ E : 0 ≤ y ≤ x2}.
Side note: We are not talking about the familiar function f(x) = x.
Step 1: Remove the upper endpoint from each of the vertical E-segments. As a conse-

quence, the vertical range becomes {y ∈ E : 0 ≤ y ≤ x2} \ {x2} = {y ∈ E : 0 ≤ y < x2},
since any two of the vertical E-segments being comparable under proper inclusion (in
terms of the ordinates of their points) determines that the vertical range of all the ver-
tical E-segments is just the same as that of the tallest one. Now, the vertical E-segment
[0, x2) contains all the counterparts of each of [the other vertical ones + their lost upper
endpoints respectively ] and is therefore the unique tallest.
Step 2: Then remove the tallest vertical E-segment, namely, [0, x2). The vertical range

gets a new loss as the vertical E-segment [0, x2) is at least one element taller than each
of the other vertical ones for the above mentioned fact. Hence the new loss is at least one
element.
Finally, to make it clear that the new loss of the vertical range is only one element, we

(return to the initial conditions and) access current ending status through another path.
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2 ADJACENT ELEMENTS IN A TOTALLY ORDERED SET 2.2 The Same Story for R, Q and N

Step I : Limit our horizontal base to [x1, x2) on X-axis, so the vertical E-segment [0, x2]

is dismissed; and the vertical range becomes {y ∈ E : 0 ≤ y ≤ x2} \ {x2} = {y ∈ E :

0 ≤ y < x2}, since in the original vertical range the element x2 is the only one that is

exclusively contributed by the vertical E-segment [0, x2].
Step II : Remove the upper endpoint from each of the vertical E-segments. Here we are

at the ending status again. Let x3 is a newly lost point from the vertical range (that
means x3 ∈ E with x1 ≤ x3 < x2). To show that no element of E is between x3 and
x2, we assume to the contrary there is an element x4 ∈ E such that x3 < x4 < x2. As
x1 < x4 < x2 implies the former existence of the vertical E-segment [0, x4] and, in turn,
the current existence of [0, x4), which contains x3 (for 0 < x3 < x4), we have that the
final vertical range contains x3. But this contradicts x3 being a lost point from the range.
Therefore the assumption about x4 is false; only the lower adjacent element of x2, if exists
in E, may be a newly lost point from the vertical range.
Combining the two paths, we conclude that the latest loss for the vertical range is a

missing of one point, and the point is the lower adjacent element of x2 in E. The final
vertical range is {y ∈ E : 0 ≤ y < x2} \ {the lower adjacent element of x2 in E}.
A corollary immediately follows:
Corollary 2.1.2 No totally ordered set is a densely ordered one.
Aside: It is not that we are blind to the property of a given set, but that a static set

cannot afford the honor of having some properties — not every set in one’s imagination
can really exist. We do not object the concept of “dense”, but it does not apply to a set.
(We express the above procedure more symbolically in Appendix A.)

2.2. The Same Story for R, Q and N

The above reasoning is based on the total ordering on a set (that is, independent of other
special characters of the set), thereby applying to the sets of R and Q. The set R, which
we have questioned in [1, sec. 4] for the suspicious completeness property, is the first to
be trapped this time. Certainly there are many other reals between any two adjacent real
elements found in the given set E, but those in between are not in E (no matter what one
might expect E to be). The set Q has been caught out by a paradox rising from imposing
dense ordering on a set [1, Thought Experiment 6.1 ] (we include a visualized version of
that thought experiment in Appendix B), so it is no wonder that the set Q is trapped
here again. Though there are many other rationals between any two adjacent rational
elements found in the given set E, those others are not in E. That explains the related
paradox of [1, Thought Experiment 6.1 ].
Now it is natural numbers’ turn as they can also be densely ordered (like rationals)

under certain ordering, and we present an illustration below.
Put a decimal point and a 0 after each natural number, then reverse each expanded

natural number (just like reversing a string) to make a pure decimal. Let each of the
decimal fractions represent its original natural number, e.g., 0.01325 represents 52310.
That defines a bijection between natural numbers and positive terminating pure decimals
(in base-10 number system, for instance). When such a terminating decimal is used for
representing a natural number, we call it an N-decimal.
Then we can make use the experience gained from dealing with normal decimals and

notice that the usual ordering ≤ of the N-decimals (when treated as normal decimals) is
a total ordering, and between any two distinct N-decimals there is always another one. It
is easy to throw the N-decimals into trouble by simply emulating [1, Thought Experiment
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6.1 ], which is roughly introduced in Appendix B. Again, the ubiquitous adjacent elements
offer a compelling explanation.
Let the universal set E be the supposed set {0.0 and all N-decimals}, which represents

the supposed set {0 and all natural numbers}, so as to apply the reasoning in Subsection

2.1 mechanically. The adjacent elements emerge in due course, thereby denying the exis-
tence of the supposed set {0.0 and all N-decimals} and in turn the so-called set N behind
it.
Aside: Why do we eagerly disturb an otherwise “peaceful” scene? Because we have

noticed something more than a suspicion that the set of the natural numbers violates the
law of contradiction [1, Thought Experiment 5.2] [1, p. 15, par. 1].
And as a consequence no “infinite set” is tenable in ZFC set theory, since there the “set

of the natural numbers” is the simplest “infinite set” and every “infinite set” contains a
subset equivalent with N. Therefore we conclude:
Theorem 2.2.1 The so-called set N does not exist.
Corollary 2.2.2 There is no such thing as superset of a so-called countably infinite set.
Aside: Such being the case, where does “the set of the natural numbers” come from? So

far as we know, it appears to come from nowhere but has roots in some people’s personal
belief. Later, in axiomatic set theory, it is introduced by the Axiom of Infinity, which
states that there exists an infinite set, or in other words there exists an inductive set.

3. Conclusion

At this point, things become clearer than ever before. A lot of work relating to infinity and
continuum, especially the part following Cantor’s ideas, needs to be rethought completely.
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Appendix

A. Expressing the Procedure in Symbols More

(For more details of the reasoning please refer to Subsection 2.1.)
Let the universe E be an arbitrary given set with total order ≤. We aim to isolate an

adjacent element of a given element.
Without loss of generality, suppose x0, x1, x2 ∈ E with x0 < x1 < x2, and try to find an

adjacent element of x2. (As for the variable x0, we use the constant 0 instead in Subsection

2.1 for a simplified image.)
There is a set of E-segments A = {[x0, x] : x ∈ E and x1 ≤ x ≤ x2}, and all the

E-segments together cover a range
⋃

A = {y ∈ E : x0 ≤ y ≤ x2}.
Step 1: Remove the upper endpoint of each element of A, the stage result is A1 =
{[x0, x) : x ∈ E and x1 ≤ x ≤ x2} and the set A1 covers the range

⋃
A1 = {y ∈ E : x0 ≤

y < x2}; for the range, the missing element is point x2.
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Step 2: Remove the element [x0, x2) from A1, the final result is A2 = A1 \ {[x0, x2)} =
{[x0, x) : x ∈ E and x1 ≤ x ≤ x2} \ {[x0, x) : x = x2} = {[x0, x) : x ∈ E and x1 ≤ x <

x2} and the set A2 covers the range
⋃
A2 =

⋃
{[x0, x) : x ∈ E and x1 ≤ x < x2}; for the

range, there is definitely a new loss.
Now, return to the initial conditions and revisit the same final scene through another

passage.

Step I : Remove the element [x0, x2] from A, the stage result is A3 = A \ {[x0, x2]} =
{[x0, x] : x ∈ E and x1 ≤ x ≤ x2}\{[x0, x] : x = x2} = {[x0, x] : x ∈ E and x1 ≤ x < x2}
and the set A3 covers the range

⋃
A3 = {y ∈ E : x0 ≤ y < x2}; for the range, the missing

element is point x2. Notice that
⋃

A3 =
⋃
A1.

Step II : Remove the upper endpoint of each element of A3, the final result is A4 =
{[x0, x) : x ∈ E and x1 ≤ x < x2} and the set A4 covers the range

⋃
A4 =

⋃
{[x0, x) :

x ∈ E and x1 ≤ x < x2}; by logic only the lower adjacent element of x2, if exists in E,
may be a newly lost point from the range. (Obviously, A4 = A2.)
The two passages together show the existence of the lower adjacent point of x2 in E.

We denote z and its neighbors in E by 〈z〉−2
E , 〈z〉−1

E , z, 〈z〉+1
E , 〈z〉+2

E , and so on in both

directions. Usually we omit the subscript “E” if the context makes it unnecessary. We

have {〈x2〉−1} =
⋃

A1 \
⋃

A2, or {〈x2〉−1} =
⋃
A3 \

⋃
A4, that is, {〈x2〉−1} = {y ∈ E :

x0 ≤ y < x2} \
⋃
{[x0, x) : x ∈ E and x1 ≤ x < x2}. And 〈x2〉−1 is the upper endpoint of

the E-segment [x0, x2).

Side note: It is worth noting that
⋃
{[x0, x) : x ∈ E and x1 ≤ x < x2} might be mistaken

as the equivalent of
⋃
{[x0, x) : x ∈ E and x1 ≤ x ≤ x2} or

⋃
{[x0, x] : x ∈ E and x1 ≤

x < x2}. (Nevertheless, the latter two equal each other.)
Along the same line of thought, 〈x2〉−2 and others are available; and the case in the

other direction is entirely analogous.

B. The Partition Paradox of a “Densely Ordered Set”

Below is a visualized version of [1, Thought Experiment 6.1 ].
Containing or not?
Consider all rational numbers between 0 and 1, excluding 0 but including 1, in the form

of reduced fraction. Divide them into two groups, the blue group for those have an even
number as numerator or denominator, and the red group for all others (in particular, 1
is in this group). Notice that in between any two of these rationals there are both a blue
one (that belongs to the blue group) and a red one (that is in the red group).
From a number line take the continuous piece that just contains all the rationals under

discussion. Cut the piece at all red points while keeping each red point as the right
endpoint of its own fragment. Of course, each fragment contains exactly one red point.
Our question is: Is there any fragment containing a blue point?
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