A probabilistic solution for the Syracuse conjecture

Imad El ghazi*

2021

Abstract

We prove the veracity of the Syracuse conjecture by establishing that starting from an arbitrary positive integer diffrent of 1 and 4 , the Syracuse process will never comeback to any positive integer reached before and then we conclude by using a probabilistic approach.

Classification: MSC: 11A25

1 Introduction

The SYRACUSE conjecture is an idea introduced by Lothar Collatz in 1937. It is also known as the $3 n+1$ problem and has been studied by many mathematicians as J.J. O'Connor, J.J.Robertson, E.F. in (1) and T.Tao in [2], since its first appearance.
We consider the following operation on an arbitrary positive integer l :

- If l is even, divide it by two.
- If the l is odd, triple it and add one.

The Collatz (or Syracuse) conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

We can also understand this process by the following:
If l is a positive even integer (when l is a positive odd integer we get to the even case by tripling l and adding one to the result of the last multiplication) we

[^0]divide it by 2 until we get an odd number, this last one we triple it and we add one, or we continue dividing l by two, until we get to 1 . This last case is possible just when l is of the form $l=2^{n}$ with $n \in \mathbb{N}^{*}$. In fact when l is odd by tripling it and adding one, what we do is trying to get to an even number of the form $3 l+1=2^{n}(n \in \mathbb{N}$ an even integer $)$. Of course, half the numbers of the form 2^{n} can be written $3 k+1, k$ been a positive odd integer, the other half is of the form $3 k-1$.

The Syracuse process can be modeled as a random variable taking its values in the set of positive integers (strictly supeior to 1) without any possibility to return to a positive integer reached before.

Using this random walk modelization of the Syracuse process and by a geometric distribution argument we prove that the Syracuse conjecture is true.

2 Main results

We first prove the following proposition which will be necessary to prove the next lemma.

Proposition 2.1. For all $(m, n) \in \mathbb{N}^{2}$ such that $(m, n) \neq(1,0),(m, n) \neq(2,1)$ and $2^{m}-3^{n}>0$, we have

$$
2^{m}-3^{n} \neq 1
$$

Proof. According to the Catalan's conjecture proven in 2002 by Preda Mihăilescu.

Let l be a positive integer:
a- If l is an odd integer then the next odd integer will be reached after those two operations:

- triple l and add one.
- divide $3 l+1$ by 2 until we have the second odd integer.
b- If l is an even integer then the next even integer will be reached after those two operations:
- divide l by 2 until we have the first odd number.
- triple the odd number resulting from the first operation and add one.

We will call this passage from l supposed to be odd (even)to the next odd (even) integer a step.

Lemma 2.1. For every positive integer l strictly superior to 1 and diffrent of 4, the Syracuse process starting from l will never return to l after $i \geq 1$ steps.

Proof. We first suppose that l is a positive odd integer.
Let $m_{j}, \quad j \in\{1, \ldots, i\}$ be the number of divisions by 2 after the j-ieth step.
After i steps, we have l_{i} the i-ieth odd number reached :

$$
l_{i}=\frac{1}{2^{m_{i}}}\left(\frac{3}{2^{m_{i-1}}}\left(\frac{3}{2^{m_{i-2}}}\left(\ldots\left(\frac{3}{2^{m_{2}}}\left(\frac{3}{2^{m_{1}}}(3 l+1)+1\right)+1\right) \ldots\right)+1\right)+1\right)
$$

If the process returns (after i steps) to l then we have:

$$
\begin{equation*}
l \times 3^{i}=l \times 2^{\sum_{j=1}^{i} m_{j}}-2^{\sum_{j=1}^{i-1} m_{j}}-3 \times 2^{\sum_{j=1}^{i-2} m_{j}}-\ldots-3^{i-2} \times 2^{m_{1}}-3^{i-1} \tag{I}
\end{equation*}
$$

If $i=1$ then since l is the first odd positive integer reached (after one step) we have :

$$
3 l=2^{m_{1}} l-1
$$

this leads to the equality:

$$
l\left(2^{m_{1}}-3\right)=1
$$

The last equality has a sens if and only if $l=1$ and $m_{1}=2$ which is absurd because l is supposed to be strictly superior to 1 .

If $i=2$, the eaquation (I) becomes $3^{2} l=2^{m_{1}+m_{2}} l-2^{m_{1}}-3$ and hence

$$
\left(2^{m_{1}+m_{2}}-3^{2}\right) l=2^{m_{1}}+3
$$

In the other hand we have

$$
\begin{equation*}
\left(2^{m_{1}}+3\right)\left(2^{m_{2}}-3\right)=2^{m_{1}+m_{2}}-3^{2}-3 \times 2^{m_{1}}+3 \times 2^{m_{2}} \tag{A}
\end{equation*}
$$

by multiplying both sides by l we have

$$
l \times\left(2^{m_{1}}+3\right)\left(2^{m_{2}}-3\right)=3 \times l \times\left(2^{m_{2}}-2^{m_{1}}\right)+l \times\left(2^{m_{1}+m_{2}}-3^{2}\right)
$$

hence

$$
l \times\left(2^{m_{1}}+3\right)\left(2^{m_{2}}-3\right)=3 \times l \times\left(2^{m_{2}}-2^{m_{1}}\right)+2^{m_{1}}+3
$$

which implies that $2^{m_{1}}+3$ divide $3 \times l \times\left(2^{m_{2}}-2^{m_{1}}\right)$, since $\left(2^{m_{1}+m_{2}}-3^{2}\right) l=2^{m_{1}}+3$ then $\left(2^{m_{1}+m_{2}}-3^{2}\right)$ divides $3 \times\left(2^{m_{2}}-2^{m_{1}}\right)$ but $2^{m_{1}+m_{2}}-3^{2}-3 \times\left(2^{m_{2}}-2^{m_{1}}\right)=$ $\left(2^{m_{2}}+3\right) \times\left(2^{m_{1}}-3\right)>0$ for $m_{1}>2$ and since $2^{m_{1}+m_{2}}-3^{2}>1$ according to proposition 2.1 , we deduce that $2^{m_{1}}+3$ can not divide $3 \times l \times\left(2^{m_{2}}-2^{m_{1}}\right)$
and hence the equality (I) is absurd. When $m_{1}=1$ the equality (I) becomes $\left(2^{m_{2}+1}-3^{2}\right) l=5$ which is also absurd according to proposition 2.1. Finally when $m_{1}=2$ the equality (I) becomes $\left(2^{m_{2}+2}-3^{2}\right) l=7$ which is absurd according to proposition 2.1

We use the same idea for $i \geq 3$, the equality (I) becomes

$$
l \times\left(2^{\sum_{j=1}^{i} m_{j}}-3^{i}\right)=2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1} .
$$

In the other hand we have
$\left(2^{\sum_{j=1}^{i=1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)\left(2^{m_{i}}-3\right)=2^{\sum_{j=1}^{i} m_{j}}-3^{i}+$ $2^{m_{i}} \times\left(3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)-3 \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+\right.$ $3^{i-2} \times 2^{m_{1}}$) (B).

By multiplying both sides by l we have
$l \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)\left(2^{m_{i}}-3\right)=l \times\left(2^{\sum_{j=1}^{i} m_{j}}-\right.$ $\left.3^{i}\right)+l \times 2^{m_{i}} \times\left(3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)-l \times 3 \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+l \times 3 \times\right.$ $\left.2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}\right)$
hence
$l \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)\left(2^{m_{i}}-3\right)=2^{\sum_{j=1}^{i-1} m_{j}}+$ $3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}+l \times 2^{m_{i}} \times\left(3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+\right.$ $\left.3^{i-1}\right)-3 \times l \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}\right)$
which implies that $2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}$ divides $2^{m_{i}} \times(3 \times$ $\left.2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}\right)-3 \times\left(2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}\right)$ since $2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}>l$ because $2^{\sum_{j=1}^{i-1} m_{j}}-3^{i}>1$ acording to proposition 2.1.

Then according to equality $(B), 2^{\sum_{j=1}^{i-1} m_{j}}+3 \times 2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}$ divides $2^{\sum_{j=1}^{i} m_{j}}-3^{i}$ which is absurd because $l \times\left(2^{\sum_{j=1}^{i} m_{j}}-3^{i}\right)=2^{\sum_{j=1}^{i-1} m_{j}}+3 \times$ $2^{\sum_{j=1}^{i-2} m_{j}}+\ldots+3^{i-2} \times 2^{m_{1}}+3^{i-1}$ and $l>1$ and $2^{\sum_{j=1}^{i} m_{j}}-3^{i}>1$ according to proposition 2.1.

If l is even, let $r=\frac{l}{2^{m_{1}}}, m_{1} \in \mathbb{N}^{*}$ be the first odd number reached. If we suppose that the process returns to l after i steps then it will reach r again, which is absurd according to what precedes exept for $r=1$ and in this case $l=4$.

Remark 2.1. $\quad a$ - The lemma 2.1 conffrms that the only loops performed by the Srycuse process are:

$$
1 \longrightarrow 4 \longrightarrow 1
$$

and

$$
4 \longrightarrow 1 \longrightarrow 4
$$

b- Let $l \neq 1$ be a positive odd integer, the lemma 2.1 states that starting from l the Syracuse process will never comeback to l. Let $\left(l_{k}\right)_{k \geq 1}, l_{k} \neq 1$ be the sequence of odd integers reached by the Syracuse poces starting from l. Each positive odd integer l_{k} can be considred as a starting point for the Syracuse process, then according to the lemma 2.1, the Syracuse process starting from l_{k} can never comeback to l_{k}. It follows that the Syracuse process starting from l can never comeback to any $l_{k}, k \geq 1$. It is then legitimate to consider the Syracuse process starting from an odd positive integer l as a drawing without replacement in the set of positive odd integers.

Theorem 2.1. Starting from an arbitrary positive integer the Syracuse process will always reach the value 1 .

Proof. According to the Lemma 2.1, starting from an integer l, the Syracuse process will never come back to l after $i \geq 1$ steps. Therefore starting from an arbitrary odd positive integer l, the Syracuse process can be assimilated to a random walk in the set of odd integers (without any possibility to comeback to any of the positive odd integers reached before), we will denote this random variable Y_{l}.

Remark 2.2. When l is even then the first odd integer reached $\left(r=\frac{l}{2^{m_{1}}}, m_{1} \in \mathbb{N}^{*}\right)$ will be the starting point of the random walk of the Syracuse process.

Let Y_{l} be a random variable taking values in the set $\left\{s=2 k+1, k \in \mathbb{N}^{*}\right\}$, without coming back to any value reached before.

Let A be the set of positive odd integers of the forme $\frac{2^{n}-1}{3}$ for $n>2$ such that n is even. Concretely :

$$
A:=\left\{\frac{2^{n}-1}{3} \in \mathbb{N} / n \text { is even and }>2 .\right\}
$$

Remark 2.3. The arbitrary odd integer l is assumed not to belong to A.
Consider the Bernoulli trial with two possible outcomes:

- "Failure" if $\left\{Y_{l} \in A\right\}$,
- "Success" if $\left\{Y_{l} \notin A\right\}$.

Let $0 \leq q \leq 1$ be the probability of the event "Success", then $1-q$ is the probability of the event "Failure". Since the set A is a non-empty (in fact it is an infinite) subset of the set of odd numbers, the probability $1-q$ is strictly superior to 0 and therefore $0<q<1$.

Consider now the random variable X_{l}, taking value in $\mathbb{N}^{*} \bigcup\{+\infty\}$ and representing the number of success of the previous Bernoulli trials, followed by the first failure. X_{l} has a geometric distribution \mathbb{P} of parameter q, then:

$$
\lim _{m \longrightarrow+\infty} \mathbb{P}\left(X_{l}=m\right)=\lim _{m \longleftarrow+\infty} q^{m-1}(1-q)=0
$$

So,

$$
\lim _{m \longrightarrow+\infty} \mathbb{P}\left(X_{l}=m\right)=\mathbb{P}\left(X_{l}=\lim _{m \xrightarrow{m}} m\right)=0
$$

and hence $\mathbb{P}\left(X_{l}=+\infty\right)=0$. In other words $\mathbb{P}\left(X_{l}<+\infty\right)=1$, i.e., the appearance of the first "failure" after a finite number of the previous mentioned Bernoulli trials, is a certain event.

This means that Y_{l} will necessarily reach a positive odd integer belonging to A, after a finite number of steps in the set of the odd numbers.

Once such a positive odd integer $s=\frac{2^{n} 0-1}{3}$ (for some positive even integer $\left.n_{0}>2\right)$ reached, the next operation in the Syracuse process is to multiply s by 3 and to add 1 , then we get to the even integer $2^{n_{0}}$, after n_{0} divisions by 2 , we get to the value 1 .

According to what have been proved before, we deduce that starting from an arbitrary integer the Syracuse process will always reach the value 1.

References

[1] O'Connor, J.J.; Robertson, E.F.: "Lothar Collatz". St Andrews University School of Mathematics and Statistics, Scotland (2006).
[2] Tao,T.: Almost all Collatz orbits attain almost bounded values. Arxiv(2019)

[^0]: * author e-mail address: elimadimad@gmail.com

