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Abstract

We prove the veracity of the Syracuse conjecture by establishing
that starting from an arbitrary positive integer diffrent of 1 and 4, the
Syracuse process will never comeback to any positive integer reached
before and then we conclude by using a probabilistic approach.

Classification : MSC: 11A25

1 Introduction

The SYRACUSE conjecture is an idea introduced by Lothar Collatz in 1937. It
is also known as the 3n + 1 problem and has been studied by many mathemati-
cians as J.J. O’Connor, J.J.Robertson, E.F. in [1] and T.Tao in [2], since its first
appearance.
We consider the following operation on an arbitrary positive integer l:

• If l is even, divide it by two.

• If the l is odd, triple it and add one.

The Collatz (or Syracuse) conjecture is: This process will eventually reach the
number 1, regardless of which positive integer is chosen initially.

We can also understand this process by the following:
If l is a positive even integer (when l is a positive odd integer we get to the

even case by tripling l and adding one to the result of the last multiplication) we

∗ author e-mail address: elimadimad@gmail.com

1



divide it by 2 until we get an odd number, this last one we triple it and we add
one, or we continue dividing l by two, until we get to 1. This last case is possible
just when l is of the form l = 2n with n ∈ N∗ . In fact when l is odd by tripling
it and adding one, what we do is trying to get to an even number of the form
3l + 1 = 2n (n ∈ N an even integer). Of course, half the numbers of the form 2n

can be written 3k + 1, k been a positive odd integer, the other half is of the form
3k − 1.

The Syracuse process can be modeled as a random variable taking its values in
the set of positive integers (strictly supeior to 1) without any possibility to return
to a positive integer reached before.

Using this random walk modelization of the Syracuse process and by a geo-
metric distribution argument we prove that the Syracuse conjecture is true.

2 Main results

We first prove the following proposition which will be necessary to prove the next
lemma .

Proposition 2.1. For all (m,n) ∈ N2 such that (m,n) ̸= (1, 0), (m,n) ̸= (2, 1)
and 2m − 3n > 0, we have

2m − 3n ̸= 1.

Proof. According to the Catalan’s conjecture proven in 2002 by Preda Mihăilescu.

Let l be a positive integer:

a- If l is an odd integer then the next odd integer will be reached
after those two operations:

– triple l and add one.

– divide 3l + 1 by 2 until we have the second odd integer.

b- If l is an even integer then the next even integer will be reached
after those two operations:

– divide l by 2 until we have the first odd number.

– triple the odd number resulting from the first operation and
add one.

We will call this passage from l supposed to be odd (even)to the next odd (even)
integer a step.
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Lemma 2.1. For every positive integer l strictly superior to 1 and diffrent of 4,
the Syracuse process starting from l will never return to l after i ≥ 1 steps.

Proof. We first suppose that l is a positive odd integer.
Let mj , j ∈ {1, ..., i} be the number of divisions by 2 after the j−ieth step.

After i steps, we have li the i−ieth odd number reached :

li =
1

2mi
(

3

2mi−1
(

3

2mi−2
(...(

3

2m2
(

3

2m1
(3l + 1) + 1) + 1)...) + 1) + 1)

If the process returns (after i steps) to l then we have:

l × 3i = l × 2
∑i

j=1 mj − 2
∑i−1

j=1 mj − 3× 2
∑i−2

j=1 mj − ...− 3i−2 × 2m1 − 3i−1 (I)

If i = 1 then since l is the first odd positive integer reached ( after one step)
we have :

3l = 2m1 l − 1

this leads to the equality:
l(2m1 − 3) = 1

The last equality has a sens if and only if l = 1 and m1 = 2 which is absurd
because l is supposed to be strictly superior to 1.

If i = 2, the eaquation (I) becomes 32l = 2m1+m2 l − 2m1 − 3 and hence

(2m1+m2 − 32)l = 2m1 + 3

..
In the other hand we have

(2m1 + 3)(2m2 − 3) = 2m1+m2 − 32 − 3× 2m1 + 3× 2m2 (A)

by multiplying both sides by l we have

l × (2m1 + 3)(2m2 − 3) = 3× l × (2m2 − 2m1) + l × (2m1+m2 − 32)

hence
l × (2m1 + 3)(2m2 − 3) = 3× l × (2m2 − 2m1) + 2m1 + 3

which implies that 2m1+3 divide 3×l×(2m2−2m1), since (2m1+m2−32)l = 2m1+3
then (2m1+m2 − 32) divides 3× (2m2 − 2m1) but 2m1+m2 − 32 − 3× (2m2 − 2m1) =
(2m2 + 3) × (2m1 − 3) > 0 for m1 > 2 and since 2m1+m2 − 32 > 1 according
to proposition 2.1, we deduce that 2m1 + 3 can not divide 3 × l × (2m2 − 2m1)
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and hence the equality (I) is absurd. When m1 = 1 the equality (I) becomes
(2m2+1 − 32)l = 5 which is also absurd according to proposition 2.1. Finally when
m1 = 2 the equality (I) becomes (2m2+2 − 32)l = 7 which is absurd according to
proposition 2.1

We use the same idea for i ≥ 3, the equality (I) becomes

l × (2
∑i

j=1 mj − 3i) = 2
∑i−1

j=1 mj + 3× 2
∑i−2

j=1 mj + ...+ 3i−2 × 2m1 + 3i−1.

In the other hand we have
(2

∑i−1
j=1 mj + 3× 2

∑i−2
j=1 mj + ...+ 3i−2 × 2m1 + 3i−1)(2mi − 3) = 2

∑i
j=1 mj − 3i +

2mi × (3× 2
∑i−2

j=1 mj + ...+3i−2 × 2m1 +3i−1)− 3× (2
∑i−1

j=1 mj +3× 2
∑i−2

j=1 mj + ...+
3i−2 × 2m1) (B).

By multiplying both sides by l we have

l× (2
∑i−1

j=1 mj +3×2
∑i−2

j=1 mj + ...+3i−2×2m1 +3i−1)(2mi −3) = l× (2
∑i

j=1 mj −
3i) + l× 2mi × (3× 2

∑i−2
j=1 mj + ...+3i−2 × 2m1 +3i−1)− l× 3× (2

∑i−1
j=1 mj + l× 3×

2
∑i−2

j=1 mj + ...+ 3i−2 × 2m1)

hence
l × (2

∑i−1
j=1 mj + 3 × 2

∑i−2
j=1 mj + ... + 3i−2 × 2m1 + 3i−1)(2mi − 3) = 2

∑i−1
j=1 mj +

3× 2
∑i−2

j=1 mj + ...+3i−2 × 2m1 +3i−1 + l× 2mi × (3× 2
∑i−2

j=1 mj + ...+3i−2 × 2m1 +

3i−1)− 3× l × (2
∑i−1

j=1 mj + 3× 2
∑i−2

j=1 mj + ...+ 3i−2 × 2m1)

which implies that 2
∑i−1

j=1 mj +3×2
∑i−2

j=1 mj +...+3i−2×2m1+3i−1 divides 2mi×(3×
2
∑i−2

j=1 mj + ...+3i−2× 2m1 +3i−1)− 3× (2
∑i−1

j=1 mj +3× 2
∑i−2

j=1 mj + ...+3i−2× 2m1)

since 2
∑i−1

j=1 mj +3×2
∑i−2

j=1 mj + ...+3i−2×2m1 +3i−1 > l because 2
∑i−1

j=1 mj −3i > 1
acording to proposition 2.1.

Then according to equality (B), 2
∑i−1

j=1 mj +3×2
∑i−2

j=1 mj + ...+3i−2×2m1 +3i−1

divides 2
∑i

j=1 mj − 3i which is absurd because l× (2
∑i

j=1 mj − 3i) = 2
∑i−1

j=1 mj +3×
2
∑i−2

j=1 mj + ... + 3i−2 × 2m1 + 3i−1 and l > 1 and 2
∑i

j=1 mj − 3i > 1 according to
proposition 2.1.

If l is even, let r = l
2m1 , m1 ∈ N∗ be the first odd number reached. If we

suppose that the process returns to l after i steps then it will reach r again, which
is absurd according to what precedes exept for r = 1 and in this case l = 4 .

Remark 2.1. a- The lemma 2.1 conffrms that the only loops per-
formed by the Srycuse process are:

1 −→ 4 −→ 1
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and

4 −→ 1 −→ 4

.

b- Let l ̸= 1 be a positive odd integer, the lemma 2.1 states that
starting from l the Syracuse process will never comeback to l.
Let (lk)k≥1, lk ̸= 1 be the sequence of odd integers reached by the
Syracuse poces starting from l. Each positive odd integer lk can
be considred as a starting point for the Syracuse process, then
according to the lemma 2.1, the Syracuse process starting from
lk can never comeback to lk. It follows that the Syracuse process
starting from l can never comeback to any lk, k ≥ 1. It is then
legitimate to consider the Syracuse process starting from an odd
positive integer l as a drawing without replacement in the set of
positive odd integers.

Theorem 2.1. Starting from an arbitrary positive integer the Syracuse process
will always reach the value 1.

Proof. According to the Lemma 2.1, starting from an integer l, the Syracuse pro-
cess will never come back to l after i ≥ 1 steps. Therefore starting from an
arbitrary odd positive integer l, the Syracuse process can be assimilated to a ran-
dom walk in the set of odd integers (without any possibility to comeback to any
of the positive odd integers reached before), we will denote this random variable Yl.

Remark 2.2. When l is even then the first odd integer reached (r = l
2m1 , m1 ∈ N∗)

will be the starting point of the random walk of the Syracuse process.

Let Yl be a random variable taking values in the set {s = 2k + 1, k ∈ N∗}, with-
out coming back to any value reached before.

Let A be the set of positive odd integers of the forme 2n−1
3 for n > 2 such that

n is even. Concretely :

A := {2
n − 1

3
∈ N/ n is even and > 2.}

Remark 2.3. The arbitrary odd integer l is assumed not to belong to A.

Consider the Bernoulli trial with two possible outcomes:

• ”Failure” if {Yl ∈ A},

• ”Success” if {Yl /∈ A}.
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Let 0 ≤ q ≤ 1 be the probability of the event ”Success”, then 1− q is the probabil-
ity of the event ”Failure”. Since the set A is a non-empty (in fact it is an infinite)
subset of the set of odd numbers, the probability 1− q is strictly superior to 0 and
therefore 0 < q < 1.

Consider now the random variable Xl, taking value in N∗
⋃
{+∞} and repre-

senting the number of success of the previous Bernoulli trials, followed by the first
failure. Xl has a geometric distribution P of parameter q, then:

lim
m−→+∞

P(Xl = m) = lim
m←−+∞

qm−1(1− q) = 0

So,
lim

m−→+∞
P(Xl = m) = P(Xl = lim

m−→+∞
m) = 0

and hence P(Xl = +∞) = 0. In other words P(Xl < +∞) = 1, i.e., the appear-
ance of the first ”failure” after a finite number of the previous mentioned Bernoulli
trials , is a certain event.

This means that Yl will necessarily reach a positive odd integer belonging to
A, after a finite number of steps in the set of the odd numbers.

Once such a positive odd integer s = 2n0−1
3 (for some positive even integer

n0 > 2 ) reached, the next operation in the Syracuse process is to multiply s by 3
and to add 1, then we get to the even integer 2n0 , after n0 divisions by 2, we get
to the value 1.

According to what have been proved before, we deduce that starting from an
arbitrary integer the Syracuse process will always reach the value 1.
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