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The massive amount of available neurodata suggests the existence of a mathematical backbone underlying the intricate 

oscillatory activity of the brain.  Hidden, unexpected multidisciplinary relationships can be found when mathematics 

copes with neural phenomena, leading to novel answers for everlasting neuroscientific questions.  We elucidate how and 

why underrated notions from geometry, topology, group theory/category theory are useful to describe neuronal issues and 

to provide a series of experimentally testable hypotheses.  Once established that geometric constraints are powerful 

enough to define cellular distribution and drive the embryonal development of the central nervous system, we suggest 

that the Monge’s theorem might contribute to our visual ability of depth perception and that the brain connectome can be 

tackled in terms of tunnelling nanotubes.  Further, we contend that the human mind does not perceive the topological 

findings of visual images and that the multisynaptic ascending fibers connecting the peripheral receptors to the neocortical 

areas can be assessed in terms of mathematical approaches like knot theory and braid groups.  We show how presheaves 

from category theory permit to tackle the nervous phase spaces in terms of the theory of infinity categories, highlighting 

an approach based on equivalence rather than equality.  The last, but not the least, we advocate that the far-flung field of 

soft-matter polymers/nematic colloids might shed new light on the neurulation in mammalian embryos and hypothesize 

that the development of the central and peripheral nervous systems might be correlated with the occurrence of local 

thermal changes in embryo-fetal tissues.   
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Mathematics displays the curious operational feature to be able to describe and predict biophysical issues, despite our 

scarce knowledge of the relationships between abstract models and descriptive experimental results (Benacerraf 1965; 

Maddy 1988).  Mathematics works in the real world, even if we do not know why (Wigner 1960; Lakoff and Nunez, 

2001).  It has been used as a unifying language and framework also for the description of neuroscientific issues.   Different 

mathematical fields have been used to cope with neural matters and to tackle the cognitive functions of the brain.  In 

particular, computational neuroscience has provided an effort to go through the intricate matters of the neural activity at 

different coarse-grained levels (Giusti et al., 2016; Morone et al., 2017; Kang et al., 2017; Yamazaki et al., 2021).   Our 

approach in this paper will be slightly different.  We are not going to talk about the mathematics applied to neurodata.  

We will not consider the areas of calculus and analysis, i.e., the mathematical branches encompassing multivariable 

calculus, functional analysis and numerical analysis that allow the computation of the ordinary/partial differential 

equations arising in many neuroscientific applications.  We will not focus on the mathematics subtending the 

implementation of various neurotechniques such as EEG, fMRI, network reconstruction, etc.  Rather, we will focus on 

unnoticed relationships linking mathematical abstract concepts to the neuronal activity subtending the very function on 

the central nervous system.   

We will proceed as follows.  Every chapter will be devoted to a different area of mathematics, i.e., geometry, topology, 

group theory and category theory.  We will provide a survey of mathematical approaches and their neuroscientific 

counterparts that might contribute to improve our knowledge of the central nervous system.  Furthermore, we will suggest 

next-to-come feasible mathematical developments potentially helpful in the experimental assessment of brain dynamics. 
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GEOMETRY 

 

 

Depth perception (DP) is the visual ability to perceive the distance of an object and its three-dimensional structure (Wexler 

and van Boxtel, 2005). DP arises from a variety of depth cues that are typically classified into:  

a) Binocular cues.  They are based on the receipt of sensory information in three dimensions from both 

eyes and include retinal disparity and steropsis (Chopin et al. 2019).   

b) Monocular cues.  They provide depth information when viewing a scene with one eye.  Monocular cues 

include relative size (distant objects subtend smaller visual angles than near objects), texture gradient, occlusion, 

perspective, contrast differences (e.g., texture gradient, lighting and shading), motion parallax, context-

dependent interpretation of the size, accommodation (Harris and Wilcox, 2009).  

Here we propose a novel mechanism of monocular cue that might give rise to depth perception.  Our approach is based 

on a theorem from geometry, the Monge’s theorem (MT).  MT states that for any three nonoverlapping circles of distinct 

radii in the two-dimensional analytical plane equipped with the Euclidean metric, none of which is completely inside one 

of the others, the intersection points of each of the three pairs of external tangent lines are collinear (Walker 1976).  See 

Figure 1A for a pictorial rendering 

MT implies that the projections arising from three separated objects (i.e., two- or three-dimensional circles) give rise to a 

line that is external to the three objects.   MT has been operationally used to calculate the correct camera position for the 

wearing examination of the hob’s cutting edge, by calculating the inner points of the Monge cuboid and their parallel 

shifting (defined by the bijective Monge projections) bordered by a surface (Balajti and Dudás, 2017).  Further, MT is 

still valid even if the plane is equipped with non-Euclidean metrics (Ermis and Gelisgen, 2021).   

 

We suggest to locate the line external to the three objects in the eye lens (Figure 1B).  This line is produced by three 

sensed objects located in the environment.  Due to MT, the projections of the three objects on the eye lens are slightly far 

apart one each other.  The line is subsequently projected from the eye lens to the retina, giving rise to retinal objects that 

are slightly far apart one each other.  This simple ocular mechanism, that does not involve higher mental faculties, might 

be the mathematical device that contributes to our three-dimensional perception of the world (Figures 1C-D).  
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Figure 1.  Monge’s theorem (MT) for the evaluation of depth perception.  Figure 1A: pictorial rendering of MT.  Figure 

1B.   MT can be used to investigate the physiological mechanism of depth perception. The black line on the eye lens 

corresponds to the line joining the projections from the three objects embedded in the environment.  Figure 1C.  the 

“classical” picture of Ernst Mach lying upon his sofa with the right exe closed.  “In a frame formed by the ridge of my 

eyebrow, by my nose and my moustache, appears a part of my body, so far as visible, with its environment” (Mach 1886).  

Figure D.  An example of MT’s monocular depth perception drawn from the Mach’s account.  Three objects with different 

distance from the eye are projected to a line on the eye lens, according to the MT dictates. 
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Tunneling nanotubes: towards a transient microconnectome?  In dynamical systems, simple elements spontaneously 

aggregate into larger and ordered structures giving rise to different self-sustaining waves such as traveling, rotating, 

standing and reflected waves/spirals (Bhattacharya and Iglesias, 2019). Following Libet et al. (1983), our ability to make 

choices might arise from random fluctuations in the background electrical noise of the brain (Bengson et al., 2014).  In 

non-equilibrium systems characterized by self-organization of collective active particles, input-driven local fluctuations 

lead to the emergence of larger-scale ordering (Chvykov et al., 2021).  This is the case not just of artificial devices such 

as shape-changing robotic active matter, but also of biological assemblies (Linneweber et al., 2020).  For example, cellular 

self-organization promotes follicle pattern in the avian skin (Shyer et al., 2017), while cooperative sets of firing neurons 

exhibit temporal complexity and emergence of criticality (Lovecchio et al., 2012).  Self-organization generates many 

processes, such as the crystallization producing unusual self-assemblies of small and rigid organic molecules, the 

gathering of colloids in liquid crystals, the supramolecular assembly of metal alloys, gold nanocrystal superlattices, 

proteins, viruses, nucleic acids, nervus structures (Montis et al., 2021).   It has been proposed that the brain is a dynamical 

system that moves from a subcritical regime of randomness to a critical state and then to a supercritical regime 

characterized by absence of complexity (Ribrault et al., 2011; Zare 2013; Wang et al., 2014; Papo 2014).  Here the human 

connectome comes into play, i.e., the hierarchical anatomical/functional network of cortical and subcortical structures. 

The connectome is characterized by preferential pathways for fast communication and winner-takes-all mechanisms that 

obey the stochastic forces typical of dynamical systems (Sporns et al., 2005; Reese et al., 2012).  A random 

synchronization-effect has been found inside the connectome, driven by the intrinsic hierarchy of neural timescales and 

by a heterogeneous, complex network topology (Pang et al., 2020).    Community structures of densely interconnected 

brain regions of the connectome have been operationally defined in terms of a Markov process and random walks with 

the purpose of studying nervous multi-scale arrangements (Betzel et al., 2013).       

 

Nevertheless, recently discovered microscopic entities screw up the paradigm of random neural networks.  Tunneling 

nanotubes (TNTs) are F-actin-based, transient tubular connections that allow active cell-to-cell transfer of vesicles, 

organelles and small molecules (Ariazi et al., 2017; Sartori-Rupp et al., 2019) and are involved in human diseases 

(Goodman et al., 2019; Tardivel et al., 2016).  TNTs in primary neurons and astrocytes are possibly correlated with short-

range transmission of electrical signals (Wang and Gerdes, 2012; Austefjord et al., 2014) and long-range transfer of 

electrical messages involving gap junctions (Abounit and Zurzolo, 2012).  Developing neurons form transient TNTs that 

enhance electrical coupling with distant astrocytes and allow transfer of polyglutamine aggregates among neuronal cells 

(Costanzo et al., 2013).  TNTs can be dynamically regulated, since their lengths vary as the connected cells migrate and 

the distance among them modifies (Austefjord et al., 2014).  Their lifetime ranges from a few minutes up to several hours 

(Gurke et al., 2008; Seyed-Razavi et al., 2013). These features change the idea of a human connectome made of stable 

nodes/edges and equipped with stochastic, long-standing connexions among brain areas (Van Essen et al., 2013).  TNTs 

might provide a multidimensional inter-cellular transient neural network with peculiar features: the nodes are not stable; 

the edges appear, modify themselves and vanish with time passing.  TNTs can be open on both ends, challenging the 

dogma of a cell as detectable individual unit (Sartori-Rupp et al., 2019).  The recent developments dictated by TNTs start 

to unveil that the nervous tissue displays a holistic behavior, acting like a system with long-range, multidimensional 

interactions that does not take into account stochastic issues. A non-stochastic narrative of connectome dynamics also 

provides an alternative explanation to the observation that some network branches of the brain modules are more visited 

than others.     

 

 

 

 

TOPOLOGY 

 

 

Topology deals with the properties of space preserved under continuous deformations, such as stretching, twisting, 

bending and so on.  This means that two shapes of genus zero (or one, or two, and so on) are topologically invariant under 

homeomorphisms, i.e., they share matching topological description. Topology has been used in neuroscience with a 

twofold option: by one side, the network topology successfully describes the relationships between the branches and the 

nodes of the human connectome; by another side, the algebraic topology illustrates the mappings and projections that 

correlate mathematical abstractions with the biophysical world by using symmetry breaks and widespread invariances.  

Here we will focus on two underrated topological issues: the visual perception of topological features and the occurrence 

of braids in our brains.  
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Do we perceive the topological features of visual images? no, we don’t!  How do we perceive a visual image?  Scholars 

suggest that we mammals are equipped with topological perception of the visual objects in our visual field.  For example, 

Singh et al. (2008) cast the neural representation in the primary visual cortex in terms of the underlying persistent 

homology of population activity.  Dabaghian et al. (2011) suggested that the hippocampal representation of space in 

humans and animals can be described in terms of mathematical topological spaces, concluding that the hippocampus is 

specialized for computing a topological representation of the environment.  Chen et al. (2014) proposed the occurrence 

of a topological code, rather than a topographic one, underlying hippocampal pyramidal cells’ spatial tuning during 

navigation. The use of topological coding is tempting especially in the cases of sparse sample size and fuzzy space 

mapping.  During spatial cognition, Dabaghian et al. (2014) proved that the hippocampal place cells are concerned about 

the topological qualities (such as connectivity) of an environmental space, rather than its geometric properties (such as 

distances and angles).  Taken together, these results suggest that, when we explore morphing linear tracks, our brain 

dissociates the geometry of the track from its topology, the latter being highlighted.  If the above-mentioned authors are 

right, we would be able to perceive the topological findings of visual images, such as, e.g., holes, shapes, connected 

spaces, disjoint subsets.   

 

However, a trivial observation points towards a different conclusion: the human mind does not perceive topological 

findings of visual images.  Look at Figure 2A depicting a curtain design: how many spots can be detected?  A human 

individual usually locates fifteen spots (Figure 2B).  However, by a topological standpoint, the shapes located in the 

lower part of the picture belong to a single shape, therefore they are connected (Figure 2C).  This means that the number 

of spots detected by our brain during visual perception does not correspond to the real topological number of shapes.  If 

our perception would work according to topological rules, we could count a different number of spots, i.e., nine instead 

of fifteen (Figure 2D).  

Several Authors have suggested that rules from algebraic and network topology might underlie the neuronal mechanisms, 

contributing to generate  the functions and activities of the human brain (Babichev et al., 2019).  However, our simple, 

rather naive experimental observation suggests that topology plays no role, at least when coping with the macroscopic 

level of visual perception.  This implies that our brain builds internal representations of the external world independent 

of the topological features subtending visual images.   
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Figure 2.  The topological features of the picture of a curtain design.  The perceived spots are in higher number than the 

identifiable topological spots.  See the main text for further details.    

 

 

 

 

 

Braid groups, nerve fibers and somatotopic maps.  Here the focus is tuned on the anatomical intertwining of nervous 

fibers in both central and peripheral nervous systems, introducing new mathematical players.  The description of 

intermingling peripheral nerves and mingling grey/white matter can be appraised in terms of knot theory and braid groups 

(Lukyanova and Nikitin, 2018).  Knots can be transformed one into another via a deformation of three-dimensional space 

upon itself and summed in assemblages equipped with commutative and associative properties (Cromwell, 2004).  A 

braid is a collection of strands between two parallel planes (Artin 1947).  Braids are termed isotopic when, keeping their 

endpoints fixed, they can be twisted into each other without cutting the strands.  The operations of composition allow 

braids to be joined to achieve new ones.   Given a set of braids with a fixed number of strands, its group structure is 

provided by generators and fusion rules such as, e.g., associativity, crossing, braiding/unbraiding, intertwining, 

composition and sequence of elementary braids, and so on.  In algebraic topology, a well-established link does exist 

between braids and knots. Is it always possible to transform a knot into a closed braid: for example, the Alexander 

theorem states that every knot or link in three-dimensional Euclidean space is the closure of a braid (Alexander 1923).   

Nevertheless, the correspondence between knots and braids is not one-to-one, because a single knot may have many braid 

representations.  The Markov theorem provides the moves to relate closed braids representing the same knot type (Birman 

1974). 

Biology suggests several examples of living structures standing for feasible counterparts of mathematical knots and 

braids.  Tissue morphogenesis is produced by coordinated regional changes in cell shape driven by localized contractions 

of actomyosin “braids” (Bailles et al., 2019).  Wire-like flow of electrons and ions along cytoskeletal elements conveying 

messages from the cell membrane to the nucleus has been demonstrated (Frieden and Gatenby, 2019).  The three-

dimensional space of neural connexions is severely constrained by physical factors, such as the anatomical overlap of 

neuronal arbors and the available axonal space to make synapses.  The average overlap between the dendritic and axonal 
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arbors of different types of neurons determines neuron-type specific patterns of distance-dependent connectivity, since 

higher-order connexions depend on the diverse branching patterns of individual arbors of the same neuronal type 

(Reimann et al., 2017; Lukyanova and Nikitin, 2017).   

Incorporating the mathematical/topological perspective of knot theory in neuroscience appears particularly relevant for 

understanding brain functions such as, e.g., how the brain represents and processes the environmental stimuli.   The 

arrangement of nervous fibers becomes an example of isotopic braids able to describe the evolution of a multi-particle 

system equipped with two spatiotemporal extremes: a beginning and an end.  Just like the knots are embeddings of closed 

lines in the three-dimensional space and cannot be reduced to simple circles by a continuous deformation (Wu, 1992), the 

nerves are structures that do not disentangle completely after being pulled from both ends.  The nervous fibers connecting 

distinct structures of the peripheral and the central nervous systems are shaped as braids.  For example, consider the 

sensory inputs from the external world detected by the peripheral nervous fibers: they follow a multisynaptic, ascending 

path towards the higher areas of the central nervous system.  See Figures 3A-B for further details.  This means that, if 

we term “braid group” the whole nervous tract between peripheral receptors and cortical areas, we are allowed to term 

“knots” the intermediate anatomical/functional multi-synaptic steps.  Figure 3C tells us that also the anatomical nervous 

structures studied by tractography can be described in terms of braids.  Our suggestion is twofold: a) simple changes in 

location and arrangement of nerves could explain the activity of the central nervous system; b) the external inputs follow 

specific nervous paths which can be described in the mathematical terms of braid groups.   

The overwhelming complexity of the mammalian nervous system makes it extremely difficult to map nervous anatomical 

structures to mathematical manifolds equipped with knots and braids.  Given the objective obstacle to find the proper 

group generators, why should we care to describe the nervous paths in the tricky terms of braid groups? What are the 

(methodological, philosophical, explanatory, medical) benefits? The occurrence of a theoretical link between the 

anatomical conformation of the nerves (i.e., knots and braids) and the brain activity would mean that different braiding 

rules might give rise to different nervous functions.  Braid groups could be the key to explain the differences among 

different sensitive cues, since various braids conformations might lead to distinct computational processes/properties of 

every sensory cortex.  Fully different perceptions such as olfactive, auditory, tactile, visive perceptions could be explained 

by diverse configurations of the braids linking the external receptors to the corresponding sensitive cortex.  It is well-

established that neural pathways are topographically organized, giving rise to maps that are preserved from the periphery 

to the cortex (Imam and Finlay, 2020).  This could be explained by the occurrence of isotopic braids in nervous fibers: 

since the strands between the starting and the ending points (i.e., the nervous fibers between the peripheral receptor and 

the corresponding cortical projection) display the same intermingled conformation, they must carry the same message.  

This hypothesis does not require that the external message stands strictly in 1:1 relationship with the corresponding 

cortical area.  Due to the braid rules, the relationship between the two extremities of the braids could be either injective, 

or surjective, bijective, and so on.  Therefore, the nervous arrangement of the cortical somatotopic maps could be 

correlated with the arrangement of the peripheral nervous fibers.  The connexions and the entanglement of their 

extremities give rise to reversible or irreversible topological knots, respectively standing for labile functional activities 

and stable anatomical tracts.  This means that - at least a part of- the human brain diseases might depend on the anatomical 

configuration of peripheral nerve fibers.  Instead of looking for alterations in the central nervous systems, it would be 

reasonable to look for neuropathological features in the braids and knots of the peripheral nervous fibers.   
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Figure 3A-B.  Comparison of nervous connexions in the central/peripheral nervous systems and mathematical examples 

of braid groups.  The Figures illustrate the retino-geniculo-cortical projection in a ventral view (Figure 3A), the central 

connections of the trigeminal nerve in a sagittal view (Figure 3B) and their hypothetical braid counterparts.  Modified 

from: http://matematita.science.unitn.it/braids/summary.html and Nieuwenhuys et al. (2007). Figure 3C.  The anatomical 

nervous structures detectable by tractography can be also described in terms of braids.  Modified from: 

http://www.sci.utah.edu/~gk/DTI-data/ 

 

 

 

 

 

CATEGORY THEORY AND GROUP THEORY 

 

Once a wheat sheaf is sealed and tied up, the packed down straws display the same orientation.  This trivial observation 

brings us into the realm of presheaves/globular sets that allowS a simple assessment of diverging and superimposing 

functions.  A mathematically well-founded assessment of elusive nervous activities in terms of presheaves as well as the 

hierarchical information transmission inside globular sets provide fresh insights on different neural issues.  Presheaves 

permit also to tackle the nervous phase spaces in terms of the theory of infinity categories, i.e., an approach founded on 

equivalence, rather than equality (Lurie, 2003).  The key to unlocking the activity of the brain does not lie in single 

neurons, or single neuronal assemblies, or single neural modules, rather in its abstract functional phase spaces where 

equivalence, and not identity, holds. Here we will explain this time in technical terms, a novel theoretical approach to 

nervous paths based on infinity topoi.  This permits us to introduce Lurie’s theory of infinity topoi (Lurie, 2008) to 

describe and quantify the paths taking place inside the brain phase spaces.  Because sheaf-theoretic methods are powerful 

and flexible enough to allow generalizations of neural paths, Lurie’s theory enjoys formal properties that suggest novel 

functional phase spaces where brain activities might take place.   

 

Every category of sheaves of abelian groups contains derived functors, called cohomology groups (Grothendieck, 1957), 

that can be defined as follows: 

                                 
where X is a topological space and G an abelian group (Lurie 2003).   

This means that the cohomology group Hn(X, G) can be defined in terms of sheaf cohomology:  

                           

Where G stands for the constant sheaf on X.  Remind that a sheaf is a presheaf that satisfies the gluing axiom.   

Lurie (2003) generalized this approach to non-abelian cohomology H1(X, G), tacking also into account the fact that the 

coefficient system G is not constant and may display different values.  This is the case of the brain phase spaces.  

Specifying G is equivalent to specifying the Eilenberg-MacLane space K(G,1), together with a base point.  This 

observation suggests that the proper coefficients G for non-abelian cohomology H1(X, G) are not groups, rather homotopy 

http://matematita.science.unitn.it/braids/summary.html
http://www.sci.utah.edu/~gk/DTI-data/
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types, i.e., purely combinatorial entities such as simplicial sets.  Sheaves of homotopy types on X can be used as 

coefficients, achieving a theory of infinite-stacks (in groupoids) on X.  Stacks, that are required to satisfy a descent 

condition only for covering, satisfy the Whitehead theorem: a pointed stack (E,η) can be achieved, for which πi(E, η), is 

a trivial sheaf for all i>0, such that E is not contractible.   If K is a simplicial set, then the cohomology of X with coefficients 

K can be defined as:  

                 
Where H JJ is the Joyal-Jardine homotopy theory of simplicial presheaves on X, and F is a fibrant replacement for the 

constant simplicial presheaf with value K on X (Lurie, 2003).     

 

In brain terms, if X stands for the manifold where nervous oscillations take place and G stands for an operation performed 

by the brain (say, the oscillatory activity), the following conclusions can be drawn together with Lurie (2003):  

1) if X is paracompact, H(X, K) is the set of homotopy classes from X into K. 

2) if X is paracompact space of finite covering dimension, then Lurie’s theory of stacks is equivalent to the Joyal-

Jardine homotopy theory.   

The definition of a sheaf depends just on the open sets of a topological space, rather than the individual points; this means 

that open sets could be replaced by other objects.  The stalk Fx of a sheaf F captures the properties of a sheaf “around” a 

point x ∈ X, generalizing the germs of functions. 

   

In neuroscientific words, we can state the following: even if one looks at smaller and smaller neighborhoods when single 

neuronal assemblies or tiny brain areas are investigated, no single neighborhood is small enough such that some limit can 

be taken into account (Serre, 1955).  In terms of nervous issues, this means that a nervous object of investigation, e.g., 

either the single neurons, or the single brain modules, or an assembly of neural waves with the same frequency, stand in 

relation to each other in many ways.  Single neural structures do not count anymore, rather the whole brain activity counts.  

Summarizing, an infinity topoi approach to neural dynamics suggests that nervous activities can be described in terms of 

sheaves and presheaves leading us into the realm of the ∞-topos, i.e., a ∞-category of ∞-stakes on a topological space that 

is correlated to ordinary topos.  We are faced with two entirely different approaches to brain dynamics:  

1) the customary concept of equality suggests the occurrence of a strict relationship between two entities (say, two 

neurons, or two neural waves on the brain surface);  

2) Lurie’s ∞-topos’ concept of equivalence suggests that two entities (say, two neurons, or two neural waves on the brain 

surface) stand in relation to each other in many ways.   

In this latter account, the relationships between the entities can be studies in terms of the different forms correlated with 

homotopy paths, explaining why apparently matching cortical oscillations give rise to highly different inter-individual 

responses.   

 

 

Soft matter polymers and embryonal neurulation.  The development of multicellular living beings involves 

morphogenetic processes that shape embryo-fetal structures through the self-organized activity of pluripotent stem cells 

(Veenvliet et al., 2020).   The orchestrated movement of cellular groups requires genetic as well as mechanical and 

molecular interactions between cells and their surrounding environment (Thompson 1992; Barriga et al., 2018).  

Migrating cells respond to various stimuli such as cortical tension, luminal pressure and size (Chan et al., 2019), local 

changes in tissue architecture (Box et al. 219), as well as topographical, adhesive and chemoattractant cues (Dai et al., 

2020), duplication of existing regions (Kebschull et al., 2020), topological templates (Dabaghian et al., 2014). Changes 

in substrate stiffness triggers collective cell migration, suggesting that tissue mechanics combines with molecular 

effectors to coordinate morphogenesis (Barriga et al., 2018).  Here we focus on the morphogenetic dynamical processes 

characterized by cooperative interaction and collective cell migration of numerous cellular units (Lovecchio et al., 2012), 

describing an unnoticed biophysical process underlying the very structure of vertebrates’ systems.  The embryo-fetal 

development of the central/peripheral nervous system is of foremost importance in this context, since the growth of the 

neuronal tissue is correlated with the growth of a wide range of distinct structures (Karzbrun et al., 2021).   

Brain-derived signals are involved in the regulation of the whole embryogenesis, providing long-range interactions among 

separate structures.  During embryogenesis, unexpected interactions have been described between the nervous system and 

numerous craniofacial and trunk skeletal elements (Herrera-Rincon et al., 2017; Soldatov et al., 2019). Multipotent 

Schwann cell precursors detach from their nerve fibers commitment to become mesenchymal, chondroprogenitor and 

osteoprogenitor cells (Xie et al., 2019).   Also, a link has been found between two apparently unrelated processes -

gastrulation and neural crest migration - via changes in tissue mechanics (Barriga et al., 2018).  In the sequel, our aim is 

to portray the embryonal neurulation in terms of liquid/crystalline phase of condensed colloidal self matter.     
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The cellular structures could be viewed as building blocks characterized by liquid/crystalline phases of condensed soft 

matter where order and fluidity coexist (Qian et al., 2017).  Mechanisms for intracellular organization within distinct 

compartments inside the cell, known as liquid–liquid phase separation, have been recently studied in bacteria and 

eukaryotes (Hartmann et al., 2019; Ladouceur et al., 2020).  Phase transitions drive proteins and other molecules to 

aggregate into cytoplasmatic and nuclear condensed fluid bodies, generating nonuniform localization patterns and 

subcellular compartmentalization.   These biomolecular condensates include membrane protein clusters, cytoplasmic P 

granules (Brangwynne et al., 2009), nucleolus, histone locus body, heterochromatin domains (Strom et al., 2017), 

protoplasmic gelation (Nguyen et al., 2020), amyloid-like assemblies (Boke et al., 2016), intrinsically disordered mixed-

charge domains (Greig et al., 2020).  Liquid-phase condensates can be viewed as reaction centers where some components 

become enriched for processing or storage within cells.  For example, Garcia Quiroz et al. (2020) found that the 

keratinocytes of the stratified squamous epithelium undergo a vinegar-in-oil type of liquid-liquid phase separation, 

crowding the cytoplasm with increasingly viscous protein droplets that drive squamous formation.  

 

Compounds made of “liquid crystals” display properties between conventional liquids and solid crystals that can be 

experimentally studied in vitro.  Mundoor et al. (2018) produced building blocks of a molecular–colloidal liquid crystal 

formed by micrometer-long inorganic silica-coated disks dispersed in a crystalline fluid host composed of molecular rods.  

Field-induced motion caused by magnetic fields elicited colloidal interactions between disks in nematic hosts and 

generated various symmetric conformations with different tangential surface orientations (Figure 4A).  Within a range 

of temperature and concentration, the freely diffusing rods arranged themselves orthogonally to the solvent molecules, 

producing a biaxial liquid crystal.  Mundoor et al. (2021) demonstrated that dispersion of isotropic charged colloidal disks 

in nematic host composed of molecular rods produces nematic, smectic and columnar organizations (Figure 4A).  While 

regular polymeric materials respond in linear fashion to external stimuli such as high- temperature material softening, 

liquid crystals polymers display nonlinear and much faster macroscopic changes (Iqbal and Samiullah, 2013).  Under the 

proper biophysical constraints, it is feasible to realize low-symmetry condensed matter phases in systems with building 

blocks of dissimilar shapes and sizes.  During the embryo-fetal differentiation of the central nervous system, the bodily 

architecture recalls isotropic, nematic and smectic columnar arrangements (Chen et al., 2017).  See Figure 4B for further 

details.  It is noteworthy that biaxial nematics can be produced either through long inorganic nanorods and short organic 

molecules, or board-like molecules, or component mixtures, paving the way to future approaches focused on organic 

structures.  Experimental clues point towards a relationship between biological elements (in our case, the nervous 

elements) and phase changes: for example, the assembly of the developing synaptic active zone requires the liquid phase 

of the scaffold molecules (McDonald, 2020).   

 

Summarizing, we suggest to investigate the relationship between the processes of liquid crystals arrangements and the 

formation of the embryonic neural structures.  To further scrutinize this hypothetical correlation, we provide a testable 

hypothesis. It is worth mentioning that the collective phenomena of colloidal interactions between disks in nematic hosts 

described by Mundoor et al. (2018 and 2019) are thermotropic, i.e., they are temperature-driven and temperature-

dependent.  Increases in temperature in such thermally reconfigurable monoclinic nematic colloidal fluids lead to unusual 

transitions towards more-ordered states.  When temperature is lowered, symmetry-breaking phase transitions lead at first 

to transition from isotropic liquid to nematic phases and then to liquid-crystal smectic phase (Qian et al., 2017).  In touch 

with classical polymer physics, Kießling et al. (2013) observed a systematic deformation of the viscous cellular matter 

upon temperature changes.  This enables us to draw an intriguing suggestion that correlates differences in cellular 

temperature with developmental outcomes of the nervous system.  Variations in thermal conductivity within biological 

cells point towards the occurrence of transient temperature spikes and heat flux for short-distance thermal signaling 

(Sotoma et al., 2021).  These non-stationary local fluctuations of cellular temperature are worth exploring.  The neocortex 

displays thermal gradients observed at many spatiotemporal scales (Wang et al., 2014).  Tanimoto et at. (2016) quantified 

the temperature difference in human-derived neuronal cell lines and concluded that the temperatures in cell body and 

neurites are different.  Membrane patch temperature impacts neuronal activity through adjustment of the opening and 

closing rates of ion channels (Xu et al., 2019), so that local changes in thermal properties modulate presynaptic and 

postsynaptic events, sensory stimuli, memory encoding and behavioral changes (Long and Fee, 2008; Kalmbach and 

Waters, 2012).  Thermodynamic arguments point towards a relationship between changes in temperature and message 

content, since modifications in thermic flows are correlated with variations in thermodynamic/information entropies 

(Jizba and Arimitsu, 2001; Jizba, 2015).   Fluctuations of thermic properties across biological regions can be absorbed 

into the thermodynamic frameworks of dynamical systems theory.  This means that the critical slowing related to 

decreases in temperatures of living systems is mandated by any system which provides an effort to minimize its own 

energetic expenditure.   

To sum up, the development of the central and peripheral nervous system could be linked with the occurrence of local 

thermal changes in embryo-fetal tissues.  Changes in local temperature during embryogenesis might lead to anatomical 

modifications in the final shape of the central and peripheral nervous systems.      
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Figure 4.  Comparison of two seemingly uncorrelated phenomena. i.e., liquid crystal phases and embryonic development 

of the nervous system.  Figure 4A.  Mixtures of molecular/colloidal rods and disks of fluid condensed matter give rise to 

temperature-dependent columnar chains that display different uniaxial symmetries.  Depending on the structural 

arrangement, we achieve isotropic, nematic and smectic liquid crystals.  Modified from Mundoor et al. (2021).  Figure 

4B.  Schematic transverse sections of neurulation in the mouse embryo at different stages of development.  While the 

primitive confined neuroectoderm at E.75 recalls isotropic liquid crystals (left picture), the converging neural folds at 

E8.0 remind the arrangement of nematic liquid crystals (middle picture).  In turn, the spinal cord at E.9.0 evokes the 

typical arrangement of smectic liquid crystals (right picture).  Legenda:  E: embryonic age in day; DER: dermatome, 

ECT: ectoderm, END: endoderm, MES: mesoderm, MYO: myotome, N: notochord, NECT: neuroectoderm, NF: neural 

folds, SC: spinal cord. Modified from Chen et al. (2017).   

 

 

 

 

 

CONCLUSIONS 

 

 

Our account emphasizes the value of the mathematic-framed mechanisms shaping the structure and the activity of 

biological entities.  Simple changes in the arrangement of the anatomical and functional nervous structures might elucidate 

(at least partially) the activity of the central nervous system.  In touch with the old claims of D’Arcy Thompson (1992), 

we conclude that the arrangement and the pattern make the function in countless biological instances.  Geometric 

constraints are powerful factors able to define shape, size and cell distributions, drive crucial biological phenomena and 

give rise to deterministic patterns that are predictable and reproducible.  For example, methods to develop spatial and 

temporal control of stem cell–derived epithelial organoids have been described, thereby rendering a stochastic process 

more deterministic (Gjorevski et al., 2022).  Showing that natural three-dimensional natural rock fragments reproduce the 

Plato’s cube, Domokos et al. (2020) demonstrated that distinct fragment patterns tend towards a ubiquitous, standard 

shape.  Geometric constraints stand for overarching design principles for icosahedral and octahedral architectures that can 

be formulated in terms of Archimedean lattices (Twarock and Luque, 2019).   The spontaneous occurrence of peculiar 

self-assembled artificial structures suggests a comparison with the design of natural organic crystalline materials such as 

the nervous structures.  In particular, a fullerenic-like geometry is widespread in our universe (Palotás et al., 2020).  Both 

artificial and natural quasicrystal structures can generate fullerenic-like self-assemblies grounded on simple geometric 

rules (Montis et al. 2021).  The same fullerenic structures have been recently proposed to explain some features of the 

cortical microanatomy (Tozzi et al., 2017a).  The tubular cortical microcolumn, i.e., the embryological, anatomical and 

functional basic unit of the brain, can be flattened to form fullerene-like two-dimensional lattices equipped with about 80 

nodes corresponding to pyramidal neurons.  
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A mathematical-framed approach to scientific matters such as the neuroscientific ones provides a metatheoretic starting 

point that might be termed “testable rationalism”: sharp experimental previsions arising from top-down, deductive 

mathematical approaches. Technical devices such as group structure and generator operations point towards a novel 

approach to long-standing questions concerning human sensation and perception, leading to the suggestion that the very 

structure and intermingling of nervous structures might contribute to the cortical brain activity.  Since the dynamical 

processes of living systems are characterized by the cooperative interaction of many units, we are allowed to portray the 

development of the central and peripheral nervous systems in terms of assemblies of building blocks dictated by 

mathematical constraints.   

 

We want to give a further, last suggestion, this time drawn from algebra and number theory.  Are there elliptic curves in 

the brain?  Elliptic curves, generated through cubic equations, are characterized by two-dimensional paths devoid of either 

cusps or intersections (Young 2006).  These curves are embedded in algebraic two-dimensional finite fields defined in 

terms of points and integer/rational numbers (Gebel et al., 1994; Heath-Brown 2004).  Both classical neurotechniques 

such as EEG and fMRI patterns and novel one such as Diffusion Tensor Imaging and Diffusion Tensor Tractography 

describe neural wavefronts and projections that roughly resemble elliptic curves (Alizadeh et al., 2019). Therefore, a 

mathematical account suggests the possibility to examine the brain anatomy/activity from afar, looking for the possible 

presence of abstract subtending structures.  The obvious question is: what elliptic curves bring on the table in the 

assessment of the nervous activities?  Elliptic curves might stand for the abstract counterpart of the anatomical neural 

projections lying inside the finite field of the brain.  Operationally, a brain including elliptic curves could be partitioned 

in numbered zones characterized by integer and rational numbers.  These zones could be assessed through number theory, 

complex analysis, algebraic geometry and representation theory.  Since elliptic curves are abelian (Kühne 2021), they are 

equipped with symmetries apparently hidden at first sight.  The occurrence of these hidden symmetries would allow the 

matching and simultaneous activation of neuronal tissue located in far-flung brain areas.  It is noteworthy that half of the 

elliptic curves displays a finite number of rational numbers, while the other half displays an infinite number of rational 

numbers (Smith 2017).  In operational terms, this means that half of the nervous patterns are continuous, while half are 

discontinuous and arranged in spatiotemporally quantized steps.  The last, but not the least, elliptic curve is a type of cubic 

curve whose solutions are confined to a region of space that is topologically equivalent to a torus. This means that 

anatomical and functional nervous trajectories could be assessed in the easily manageable terms of trajectories occurring 

inside a torus, as suggested by Tozzi et al. (2017b).   

 

As a final remark, we would like to emphasize that our experimental suggestions are technically achievable with the 

current technology.  Concerning, for example, our novel approaches to the mechanisms of nervous growth correlated with 

the liquid crystals and embryonic development of the nervous system, it is noteworthy that the recent availability of 

artificial embryonic trunk-like structures from mouse stem cells’ aggregates (Telley et al., 2019) provides the exciting 

possibility to study in vitro complex developmental processes.   
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