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Abstract

We deal with the image deblurring problem. We assume that the blur mask has
large dimensions. To restore the images, we propose a GNC-type technique, in which
a convex approximation of the energy function is first minimized. The computational
cost of the GNC algorithm depends strongly on the cost of such a first minimization.
So, we propose of approximating the Toeplitz symmetric matrices in the blur oper-
ator by means of suitable matrices. Such matrices are chosen in a class of matrices
which can be expressed as a direct sum between a circulant and a reverse circulant
matrix.

1 Introduction
The problem of restoring images consists of estimating the original image, starting from
the observed image and the supposed blur. In our model, we suppose to know the blur
mask. In general, this problem is ill–conditioned and/or ill–posed in the Hadamard sense
(see also [36]). Thanks to known regularization techniques (see, e.g., [3, 21, 27]), it is
possible to reduce this problem to a well–posed problem, whose solution is the minimum
of the so-called primal energy function, which consists of the sum of two terms. The
former indicates the faithfulness of the solution to the data, and the latter is in connection
with the regularity properties of the solution (see also [21, 31]). In order to obtain more
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realistic restored images, the discontinuities in the intensity field is considered (see also
[31]). Indeed, in images of real scenes, there are some discontinuities in correspondence
with edges of several objects. To deal with such discontinuities, we consider some line
variables (see also [31]). It is possible to minimize a priori the primal energy function
in these variables, to determine a dual energy function (see, e.g., [10, 18, 27]), which
treats implicitly discontinuities. Indeed, minimizing the dual energy function is more
computationally efficient than minimizing directly the primal energy function. In general,
the dual energy function has a quadratic term, related to the faithfulness with the data, and
a not necessarily convex addend, the regularization term. In order to link these two kinds
of energy functions, some suitable duality theorems are used (see, e.g., [3, 4, 6, 7, 9, 10,
27]).

In order to improve the quality of the reconstructed images, it is possible to consider
a dual energy function which implicitly treats Boolean line variables. The proposed du-
ality theorems can be used even with such a function. However, the related dual energy
function is not necessarily convex. So, to minimize it, we use a GNC (Graduated Non-
Convexity)-type technique, which considers as first convex approximation the proposed
convex dual energy function (see also [4, 10, 39, 40, 41, 42, 45]).

It is possible to verify experimentally that the more expensive minimization is the first
one, because the other ones just start with a good approximation of the solution. Hence,
when we minimize the first convex approximation, we will approximate every block of
the blur operator by matrices whose product can be computed by a suitable fast discrete
transform. As every block is a symmetric Toeplitz matrix, we deal with determining a
class of matrices easy to handle from the computational point of view, which yield a good
approximation of the Toeplitz matrices.

Toeplitz-type linear systems arise from numerical approximation of differential equa-
tions. Moreover, in restoration of blurred images, it is often dealt with Toeplitz matrices
(see, e.g., [25]).

So we investigate a particular class, which is a sum of two families of simultaneously
diagonalizable real matrices, whose elements we call β -matrices. Such a class includes
both circulant and reverse circulant matrices. Symmetric circulant matrices have several
applications to ordinary and partial differential equations (see, e.g., [26, 28, 34, 35]), im-
ages and signal restoration (see, e.g., [14, 37]), graph theory (see, e.g., [19, 24, 31, 29, 32,
33]). Reverse circulant matrices have different applications, for instance in exponential
data fitting and signal processing (see, e.g., [1, 2, 23, 43, 44]).

In Section 2 we present the problem of image deblurring and the related regularization
technique; in Section 3 we present a GNC-type technique for the minimization of the en-
ergy function; in in Section 4 we investigate spectral properties of β -matrices; in Section
5 we deal with structural properties; in Section 6 we study the properties of the multipli-
cations of our family of matrices; in Section 7 we determine some conditions in order that
a β -matrix is invertible; in Section 8 we deal with the problem of approximating a real
symmetric Toeplitz matrix by a β -matrix.

2 Regularization of the problem
The problem of image restoration consists of reconstructing the original image from an
image blurred and/or corrupted by noise. In the sequel we will assume that all intensities
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of our involved pixels are put into one column, with the rule that (i, j)< (i′, j′) if and only
if i < i′ or i = i′ and j < j′. The direct problem is formulated as follows:

y = Ax+n,

where the n2-dimensional vectors x, y are respectively the original and the observed im-
age. In particular, the elements of these vectors indicate the light intensity of pixels in the
corresponding image. The n2-dimensional vector n expresses the additive noise on the
image, which we assume to be independent and identically distributed (i.i.d.) Gaussian,
with zero mean and known variance. The n2×n2 matrix A is a linear operator, which rep-
resents the translation invariant blur acting on the image. To obtain a blurred image, each
pixel of original image turns to be equal to a weighted average of its neighbors. Given a
positive matrix M ∈ R(2h+1)×(2h+1), called blur mask, the entries of matrix A are defined
by

a(i, j),(i+w, j+v) =


mh+1+w,h+1+v, if |w|, |v| ≤ h,

0, otherwise.

Here, in lexicographic notation, the generic index ((i, j),(h, l)) of matrix A is supposed to
be equal to (( j−1)n+ i,(l−1)n+h). The matrix A turns to be a block Toeplitz matrix
with Toeplitz blocks. If we assume that the blur operator is uniform on each direction and
is very wide (that is, h∼ n), then the matrix A is symmetric.

The image restoration problem consists of finding an estimation x of the unknown
original image given the blurred image y, the matrix A and the variance of the noise σ2.
This is an ill–posed inverse problem in the Hadamard sense.

A clique c of order k is the subset of points of a square grid on which the k–th order
finite difference is defined. We denote by Ck the set of all cliques of order k. More
precisely, we consider, for k = 1,

C1 = {c = {(i, j),(h, l)} : i = h, j = l +1 or
i = h+1, j = l};

for k = 2,
C2 = {c = {(i, j),(h, l),(r,q)} :

i = h = r, j = l +1 = q+2, or
i = h+1 = r+2, j = l = q};

and for k = 3,
C3 = {c = {(i, j),(h, l),(r,q),(w,z)} :

i = h = r = w, j = l +1 = q+2 = z+3, or
i = h+1 = r+2 = w+3, j = l = q = z}.

We denote by Dk
cx the k–th order finite difference operator of the vector x associated with

the clique c, that is, if c = {(i, j),(h, l)} ∈C1, then

D1
cx = xi, j− xh,l;

if c = {(i, j),(h, l),(r,q)} ∈C2, then

D2
cx = xi, j−2xh,l + xr,q;
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and if c = {(i, j),(h, l),(r,q),(w,z} ∈C3, then

D3
cx = xi, j−3xh,l +3xr,q− xw,q.

In [10] it has been shown that the use of second order difference operators allows to
obtain significantly better results than those obtained by first order difference operators.
On the other hand, in [10] it is noted that third order difference operators give slightly
better results than those obtained with second order difference operators to the detriment
of an excessive increase in computational costs. Therefore we will only use second order
difference operators, and hence we refer to C and Dc as C2 and D2

c . We associate with each
clique c a non–negative weight bc, called line variable, which has the role of dropping the
regularity constraints, where discontinuities could appear. In particular, the zero value is
associated with a discontinuity of the considered image in correspondence with the clique
c. In our model, the original image is considered idealistically as a pair (x,b), where x,
b are the vectors of the grey intensity of pixels and of the set of all line components bc,
c ∈C, respectively.

A regularized solution of the investigated problem is the minimizer of the following
function, called primal energy function, defined by

E(x,b) = ‖y−Ax‖2 + ∑
c∈C

[
λ

2(Dcx)2bc +β (bc)
]
, (1)

where β is a suitable non-increasing function, called balancing function, and ‖ · ‖ is the
Euclidean norm. The first term in the right hand indicates the faithfulness of the solution
to the data and the last one is a regularization term, which is related to a smoothness
condition on x. The scalar parameter λ 2 is in connection with the confidence to the data
and the degree of regularization of the solutions. In particular, when λ 2 is close to zero,
we represent a strong faithfulness to the data, while when λ 2 is very large we have a
confidence to the a priori information.

To find the minimum of the primal energy function (1), we first minimize with respect
to b. So, the dual energy function Ed(x) (see, e.g., [6, 7, 10, 27]) is given by

Ed(x) = inf
b∈B|C|

E(x,b), (2)

where |C| is the cardinality of the set C. Observe that, by [12, Theorem 1], Ed is well-
defined. Observe that

Ed(x) = ‖y−Ax‖2 + ∑
c∈C

g(Dcx), (3)

where

g(t) = inf
b∈B

(λ 2bt2 +β (b)), (4)

is the potential function, which associates a cost with each value of the finite difference
operator and does not depend on the involved clique (see also [27]).

In general, to reduce computational costs, for reconstructing images, it is more advis-
able to use the dual energy rather the primal energy, because a lower number of variables
have to be determined. Thus, some versions of the duality theorem were given in [9, 10]
for energy functions which do not include the constraint of avoiding parallel lines. For
other versions existing in the literature see, e.g., [13, 18, 27].
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3 GNC algorithm
In general, a function g satisfying duality theorems is not convex. So, neither is the dual
energy function in 3. Thus, to minimize such a function, we use a GNC (Graduated Non-
Convexity) algorithm (see also [4, 10, 39, 40, 41, 42, 45]). The solution of the algorithms
for minimizing a non–convex function depends on the choice of the initial point. To
give an advisable choice of such a point, the GNC technique finds a finite family of
approximating functions {E(p)

d }p, whose the first one is convex and the last one is the
original dual energy function. So, the following algorithm is applied:

initialize x;
while E(p)

d 6= Ed do

• find the minimum of the function E(p)
d

starting from the initial point x;

• x= argminE(p)
d ;

• update the parameter p.

It is possible to verify experimentally that the more expensive minimization is the first
one, because the other ones just start with a good approximation of the solution. Hence, in
this thesis, when we minimize the first convex approximation, we propose to approximate
every block of the operator A by means of matrices whose product can be computed by
means a suitable fast discrete transform. Since every block of A is a symmetric Toeplitz
matrix, we now deal with determining a class of matrices easy to handle from the compu-
tational point of view, that give a good approximation of the Toeplitz matrices.

4 Spectral characterization of β -matrices
We begin with presenting a new class of simultaneously diagonalizable matrices, so we
define the following matrix. Let n be a fixed positive integer, and Qn = (q(n)k, j )k, j, k, j = 0,
1, . . . ,n−1, where

q(n)k, j =


α j cos

(2π k j
n

)
if 0≤ j ≤ bn/2c,

α j sin
(2π k (n− j)

n

)
if bn/2c ≤ j ≤ n−1,

(5)

α j =


1√
n
= α if j = 0, or j = n/2 if n is even,

√
2
n
= α̃ otherwise,

(6)
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and put

Qn =
(

q(0)
∣∣∣q(1)

∣∣∣ · · · ∣∣∣q(b n
2c)
∣∣∣q(b n+1

2 c)
∣∣∣ · · · ∣∣∣q(n−2)

∣∣∣q(n−1)
)
, (7)

where

q(0) =
1√
n

(
1 1 · · · 1

)T
=

1√
n

u(0), (8)

q( j) =

√
2
n

(
1 cos

(
2π j

n

)
· · · cos

(
2π j(n−1)

n

))T

=

√
2
n

u( j),

q(n− j) =

√
2
n

(
0 sin

(
2π j

n

)
· · · sin

(
2π j(n−1)

n

))T

=

√
2
n

v( j), (9)

j = 1, 2, . . . ,bn−1
2 c. Moreover, when n is even, set

q(n/2) =
1√
n

(
1 −1 1 −1 · · · −1

)T
=

1√
n

u(n/2). (10)

In [38] it is proved that all columns of Qn are orthonormal, and thus Qn is an orthonormal
matrix.

Now we define the following function. Given λλλ ∈ Cn, λλλ = (λ0 λ1 · · ·λn−1)
T , set

diag(λλλ ) = Λ =



λ0 0 0 . . . 0 0
0 λ1 0 . . . 0 0
0 0 λ2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . λn−2 0
0 0 0 . . . 0 λn−1


,

where Λ ∈ Cn×n is a diagonal matrix.
A vector λλλ ∈ Rn, λλλ = (λ0 λ1 · · ·λn−1)

T is said to be symmetric (resp., asymmetric) iff
λ j = λn− j (resp., λ j =−λn− j) ∈ R for every j = 0, 1, . . . ,bn/2c.

Let Qn be as in (7), and Gn be the space of the matrices simultaneously diagonalizable
by Qn, that is

Gn = sd(Qn) = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn}.

A matrix belonging to Gn, n∈N, is called γ-matrix (see also [8]). Moreover, we define
the following classes by

Cn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}, (11)

Bn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is asymmetric},

Dn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric,

λ0 = 0,λn/2 = 0 if n is even},

En = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn,λ j = 0, j = 1, . . . ,n−1,

j 6= n/2 when n is even}.
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Proposition 4.1. (see also [8])The class Gn is a matrix algebra of dimension n.

Proposition 4.2. (see also [8]) The class Cn is a subalgebra of Gn of dimension bn
2c+1.

Proposition 4.3. (see also [8]) The class Bn is a linear subspace of Gn, and has dimension
bn−1

2 c.

Similarly as in Propositions 4.1 and 4.2, it is possible to prove that Dn is a subalgebra
of Gn of dimension bn−1

2 c and En is a subalgebra of Gn of dimension 1 when n is odd and
2 when n is even. Moreover, the following results hold.

Theorem 4.4. (see also [8]) One has

Gn = Cn⊕Bn, (12)

where ⊕ is the orthogonal sum, and 〈·, ·〉 denotes the Frobenius product, defined by

〈G1,G2〉 = tr(GT
1 G2), G1,G2 ∈ Gn,

where tr(G) is the trace of the matrix G.

Theorem 4.5. (see also [8]) It is

Cn = Dn⊕En, (13)

where ⊕ is the orthogonal sum with respect to the Frobenius product.

Now we give a consequence of 4.4 and 4.5.

Corollary 4.5.1. The following result holds:

Gn = Bn⊕Dn⊕En.

We recall the definition of the classical Hartley matrix (see also [5] and the references
therein). If n is odd, we have

Hn =
1√
n

(
u(0) u(1)+v(1) . . . u(

n−1
2 ) +v(

n−1
2 ) u(

n−1
2 )−v(

n−1
2 ) . . . u(1)−v(1)

)
. (14)

When n is even we get

Hn =
1√
n

(
u(0) u(1)+v(1) . . .u(

n
2−1) +v(

n
2−1) u(

n
2) u(

n
2−1)−v(

n
2−1) . . .u(1)−v(1)

)
.(15)

It is not difficult to see that

Hn = QnYn, (16)
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where

y(n)k, j =



1 if k = j = 0,

1√
2

if k = j and 1≤ k ≤ n−1
2

,

1√
2

if k+ j = n and 1≤ k ≤ n−1,

− 1√
2

if k = j and
n+1

2
≤ k ≤ n−1,

0 otherwise

(17)

if n is odd, and

y(n)k, j =



1 if k = j = 0 or k = j =
n
2
,

1√
2

if k = j and 1≤ k ≤ n
2
−1,

1√
2

if k+ j = n and 1≤ k ≤ n−1,

− 1√
2

if k = j and
n
2
+1≤ k ≤ n−1,

0 otherwise

(18)

if n is even. Now, set

Hn = sd(Hn) = {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn}. (19)

It is not difficult to see that

Cn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}= (20)

= {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}.

From (19) and (20) it follows that

Hn = Cn⊕Fn, (21)

where

Fn = {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is asymmetric}.

Now we define the following class:

An = {FnΛF∗n : Λ = diag(λλλ ), λλλ ∈ (iR)n, λλλ is asymmetric}.

So we define the β -matrices as the matrices belonging to the following set:

Vn = Cn⊕Bn⊕Fn⊕An. (22)
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5 Structural characterizations of γ-matrices
In this section we show that Vn coincides with the direct sum of the sets of all real sym-
metric circulant matrices and of all reverse circulant matrices.

We consider the set of families

Ln,k = {A ∈ Rn×n : there is a = (a0 a1 . . . an−1)
T ∈ Rn with al, j = a( j+kl) mod n},

Kn,k = {A ∈ Rn×n : there is a symmetric a = (a0 a1 . . . an−1)
T ∈ Rn

with al, j = a( j+kl) mod n},

Jn,k =
{

A ∈ Rn×n : there is a symmetric a = (a0 a1 . . . an−1)
T ∈ Rn with

n−1

∑
t=0

at = 0,
n−1

∑
t=0

(−1)tat = 0 when n is even, and al, j = a( j+kl) mod n

}
,

where k ∈ {1,2, . . . ,n−1}.
When k = n− 1, Ln,n−1 is the class of all real circulant matrices, that is the family

of those matrices C ∈ Rn×n such that every row, after the first, has the elements of the
previous one shifted cyclically one place right (see, e.g., [20]).

Given a vector c ∈ Rn, c = (c0 c1 · · ·cn−1)
T , let us define

circ(c) =C =



c0 c1 c2 . . . cn−2 cn−1
cn−1 c0 c1 . . . cn−3 cn−2

cn−2 cn−1 c0
. . . cn−4 cn−3

...
... . . . . . . . . . ...

c2 c3 c4
. . . c0 c1

c1 c2 c3 . . . cn−1 c0


,

where C ∈Ln,n−1.
If i is the imaginary unit and ωn = e

2πi
n , then the n-th roots of 1 are

ω
j

n = e
2π ji

n = cos
(2π j

n

)
+i sin

(2π j
n

)
, j = 0,1, . . . ,n−1.

The Fourier matrix of dimension n×n is defined by Fn = ( f (n)k,l )k,l , where

f (n)k,l =
1√
n

ω
kl
n , k, l = 0,1, . . . ,n−1.

Note that Fn is symmetric, and F−1
n = F∗n (see, e.g., [20]).

Let Wn be the space of all real matrices simultaneously diagonalizable by Fn, that is

Wn = sd(Fn) = {FnΛF∗n ∈ Rn×n : Λ = diag(λλλ ), λλλ ∈ Cn}.

It is not difficult to see that Wn is a commutative matrix algebra.

Theorem 5.1. ([20, Theorems 3.2.2 and 3.2.3]) The following result holds:

Wn = Ln,n−1.
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As a consequence of this theorem, we get that the n eigenvectors of every circulant
matrix C ∈ Rn×n are given by

w( j) = (1 ω
j

n ω
2 j
n · · · ω

(n−1) j
n )T ,

and the eigenvalues of a matrix C =circ(c) ∈Fn are expressed by

λ j = cT w( j) =
n−1

∑
k=0

ckω
jk

n , j = 0,1, . . . ,n−1.

Now we present some results about symmetric circulant real matrices. Observe that,
if C =circ(c), with c ∈ Rn, then C is symmetric if and only if c is symmetric. Thus, the
class of all real symmetric circulant matrices coincides with Kn,n−1 and has dimension
bn

2c+1 over R.

Theorem 5.2. (see, e.g., [19, §4], [38, Lemma 3]) Let C ∈ Kn,n−1. Then, the set of
all eigenvectors of C can be expressed as {q(0), q(1), . . ., q(n−1)}, where q( j), j = 0,
1, . . . ,n−1, is as in (8), (9) and (10).

Note that from Theorem 5.2 it follows that the set of all real symmetric circulant
matrices is contained in Gn. The nest result holds.

Theorem 5.3. (see, e.g., [11, §1.2], [19, §4], [47, Theorem 1]) Let C = circ(c) ∈Kn,n−1.
Then, the eigenvalues λ j of C, j = 0, 1, . . . ,bn

2c, are given by

λ j = cT u( j). (23)

Moreover, for j = 1, 2, . . . ,bn−1
2 c it is

λ j = λn− j.

From Theorem 5.3 it follows that, if C is a real symmetric circulant matrix and λλλ
(C)

is the set of its eigenvalues, then λλλ
(C) is symmetric, thanks to (23). Hence,

Kn,n−1 ⊂ Cn. (24)

Now we prove that Cn is contained in the class of all real symmetric circulant matrices
Kn,n−1. First, we give the following

Theorem 5.4. (see [8]) Every matrix C ∈ Cn is circulant, that is

Cn ⊂Ln,n−1. (25)

A consequence of Theorem 5.4 is the following

Corollary 5.4.1. (see [8]) The class Cn is the set of all real symmetric circulant matrices,
that is

Cn = Kn,n−1. (26)
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If k = 1, then Ln,1 is the set of all real reverse circulant (or real anti-circulant) ma-
trices, that is the class of all matrices B ∈ Rn×n such that every row, after the first, has
the elements of the previous one shifted cyclically one place left (see, e.g., [20]). Given a
vector b = (b0 b1 · · ·bn−1)

T ∈ Rn, set

rcirc(b) = B =



b0 b1 b2 . . . bn−2 bn−1
b1 b2 b3 . . . bn−1 b0
b2 b3 b4 . . . b0 b1
...

...
... . . .

...
...

bn−2 bn−1 b0 . . . bn−4 bn−3
bn−1 b0 b1 . . . bn−3 bn−2


,

with B ∈Ln,1.
Observe that every matrix B ∈Bn,1 is symmetric, and the set Ln,1 is a linear space

over R, but not an algebra. Note that, if B1, B2 ∈Ln,1, then B1 B2, B2 B1 ∈Ln,n−1 (see
[20, Theorem 5.1.2]).

Now we give the next results.

Theorem 5.5. (see [8]) The following inclusion holds:

Bn ⊂Ln,1.

Theorem 5.6. (see [8]) One has

Bn ⊂Kn,1.

Theorem 5.7. (see [8]) Let B =rcirc(b) ∈ Bn. Then, the eigenvalues λ
(B)
j of B, j =

0,1, . . . ,bn
2c, can be expressed as

λ
(B)
j = bT u( j). (27)

Moreover, for j = 1, 2, . . .bn−1
2 c, we get

λ
(B)
n− j =−λ

(B)
j .

Furthermore, it is λ
(B)
0 = 0, and λ

(B)
n/2 = 0 if n is even.

For the general computation of the eigenvalues of reverse circulant matrices, see, e.g.,
[11, §1.3 and Theorem 1.4.1], [46, Lemma 4.1].

Now we give the following

Theorem 5.8. (see [8]) The following result holds:

Bn = Jn,1.

Theorem 5.9. (see [8]) The next result holds:

Dn = Jn,n−1.
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Theorem 5.10. (see [8]) The next result holds:

En = Pn = Ln,n−1∩Ln,1,

where

Pn =


{

C ∈ Rn×n: there are k1,k2 with ci, j =

{
k1 if i+ j is even
k2 if i+ j is odd

}
if n is even,

{C ∈ Rn×n: there is k with ci, j = k for all i, j = 0,1, . . . ,n−1} if n is odd.

Theorem 5.11. (see [8]) The following result holds:

Kn,1 = Bn⊕En.

We note that

Fn = {A ∈Ln,1 : there is an asymmetric a ∈ Rn with A = rcirc(a)} (28)

(see also [5]). Now we prove the following

Proposition 5.12. It is

An = {A ∈Ln,n−1 : there is an asymmetric a ∈ Rn with A = circ(a)}.

Proof. We begin with the inclusion⊃. Let A ∈An, A =circ(a), with a asymmetric. Since
A ∈Ln,n−1, its eigenvectors are given by

w( j) = (1 ω
j

n ω
2 j
n · · · ω

(n−1) j
n )T ,

and the eigenvalues of A are expressed by

λ j = aT w( j), j = 0,1, . . . ,n−1.

Note that

w( j) = u( j)+ iv( j), (29)

if j = 0,1, . . . ,dn−1
2 e, and

w(n− j) = u( j)− iv( j), (30)

if j = 0,1, . . .bn−1
2 c. From (29) and (30) it follows that

λ j = aT (u( j)+ iv( j)) = iaT v( j) ∈ iR

for j = 0,1, . . . ,dn−1
2 e, and

λn− j = aT (u( j)− iv( j)) =−iaT v( j) =−λi ∈ iR

for j = 0,1, . . . ,bn−1
2 c.
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Now we turn to the converse inclusion. Suppose that A = FnΛF∗n , where Λ = diag(λλλ ),
λλλ ∈ (iR)n and λλλ is asymmetric. The element ak,l is given by

ak,l =
1
n

n−1

∑
j=0

ω
k j
n λ j ω

l j
n =

1
n

b(n−1)/2c

∑
j=1

λ j(ω
k j
n ω

l j
n −ω

k(n− j)
n ω

l(n− j)
n ) =

=
1
n

b(n−1)/2c

∑
j=1

λ j(ω
(k−l) j
n −ω

(k−l)(n− j)
n ) =

=
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j(k− l)
n

)
.

For l = 0, 1, . . . ,n−1, we get

a0,l =−
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j l
n

)
∈ R.

Now we claim that the first row of A is asymmetric. Indeed, we have

a0,n−l = −2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j (n− l)
n

)
=

=
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j l
n

)
=−a0,l,

getting the claim.

From Proposition 5.12 it follows that

Ln,n−1 = Cn⊕An. (31)

Moreover, note that Bn⊕Fn⊕En = Ln,1. Since En = Ln,n−1, then Cn⊕An = Ln,n−1.
Hence, we obtain

Vn = Cn⊕Bn⊕Fn⊕An = Ln,1∪Ln,n−1.

6 Multiplication between β -matrices
It is not difficult to see that Vn is closed under the operations of sum between matrices.
Now we recall that the eigenvalues λ

(C)
j of C =circ(c) ∈ Cn, j = 0,1, . . . ,bn

2c, are given
by

λ
(C)
j = cT u( j).

Moreover, for j = 1, 2, . . .bn−1
2 c, we have

λ
(C)
n− j = λ

(C)
j .
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Furthermore, the eigenvalues λ
(B)
j of B =rcirc(b) ∈Bn, j = 0,1, . . . ,bn

2c, can be ex-
pressed as

λ
(B)
j = bT u( j),

and for j = 1, 2, . . .bn−1
2 c, we have

λ
(B)
n− j =−λ

(B)
j .

Now we give the following

Proposition 6.1. Let a = (a0 a1 · · ·an−1)
T , b = (b0 b1 · · ·bn−1)

T ∈ Rn be such that a is
symmetric and b is asymmetric. Then, aT b = 0.

Proof. First of all, we observe that b0 = bn/2 = 0. So, we have

aT b =
n−1

∑
j=0

a j b j =
n−1

∑
j=1

a j b j =
n/2−1

∑
j=1

a j b j +an/2 bn/2 +
n

∑
j=n/2+1

a j b j =

=
n/2−1

∑
j=1

a j b j +
n/2−1

∑
j=1

an− j bn− j =
n/2−1

∑
j=1

a j b j−
n/2−1

∑
j=1

a j b j = 0.

Proposition 6.2. The eigenvalues λ
(F)
j of F =rcirc(f) ∈Fn, j = 0,1, . . . ,bn

2c, are given
by

λ
(F)
j = fT v( j),

and for j = 1, 2, . . .bn−1
2 c, we get

λ
(F)
n− j =−λ

(F)
j .

Proof. We consider the following set of eigenvectors, whose first component is 1.

u( j)+v( j), j = 0,1, . . . ,dn−1
2 e;

u( j)−v( j), j = 1,2, . . .bn−1
2 c.

Hence, by Proposition 6.1, we obtain

λ
(F)
j = fT (u( j)+v( j)) = fT v( j), j = 0,1, . . . ,dn−1

2 e;

λ
(F)
n− j = fT (u( j)−v( j)) =−fT v( j), j = 1,2, . . .bn−1

2 c.
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Proposition 6.3. The eigenvalues λ
(A)
j of A =circ(a) ∈An, j = 0,1, . . . ,bn

2c, are given by

λ
(A)
j = iaT v( j), (32)

and for j = 1, 2, . . .bn−1
2 c, we get

λ
(A)
n− j =−λ

(A)
j .

Proof. We consider the following set of eigenvectors, whose first component is 1.

u( j)+ iv( j), j = 0,1, . . . ,dn−1
2 e;

u( j)− iv( j), j = 1,2, . . .bn−1
2 c.

Hence, by Proposition 6.1, we obtain

λ
(A)
j = aT (u( j)+ iv( j)) = iaT v( j), j = 0,1, . . . ,dn−1

2 e;

λ
(A)
n− j = aT (u( j)− iv( j)) =−iaT v( j), j = 1,2, . . .bn−1

2 c.

Now we recall the following

Proposition 6.4. (see also [8]) Given two γ-matrices G1, G2, we get:

6.4.1) If G1, G2 ∈ Cn, then G1 G2 ∈ Cn;

6.4.2) If G1, G2 ∈Bn, then G1 G2 ∈ Cn;

6.4.3) If G1 ∈ Cn and G2 ∈Bn, then G1 G2 = G2 G1 ∈Bn.

It is not difficult to see that, given C ∈ Cn and V ∈ Vn, the eigenvalues of CV are equal
to those of VC and are given by

λ
(CV )
j = λ

(VC)
j = λ

(C)
j λ

(V )
j , j = 0,1, . . . ,n−1.

Now we prove the following

Theorem 6.5. Let B ∈Bn, B =rcirc(b), and F ∈Fn, F =rcirc(b). Then, BF ∈An and
the eigenvalues of BF are expressed by

λ
(BF)
j = iλ

(B)
j λ

(F)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(BF)
n− j =−λ

(BF)
j , j = 1,2, . . .bn−1

2 c.
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Proof. Let A = BF . Since B,F ∈ Ln,1, then A ∈ Ln,n−1 (see, e.g., [20]). So, to prove
that A ∈ An it is enough to show that the first row of the matrix A is asymmetric, that is
a0,n− j =−a0, j, j = 0,1, . . .dn−1

2 e. Indeed, if n is odd, we get

a0,n− j = b0 fn− j +
(n−1)/2

∑
l=1

bl ( f(n− j+l) (mod n)+ f(2n− j−l) (mod n)) =

= −b0 f j−
(n−1)/2

∑
l=1

bl ( f( j+l) (mod n)+ f(n+ j−l) (mod n)) =−a0, j,

and when n is even, we have

a0,n− j = b0 fn− j +bn/2 f(n/2− j) (mod n)+

+
n/2−1

∑
l=1

bl ( f(n− j+l) (mod n)+ f(2n− j−l) (mod n)) =

= −b0 f j−bn/2 f(n/2− j) (mod n)−

−
n/2−1

∑
l=1

bl ( f( j+l) (mod n)+ f(n+ j−l) (mod n)) =−a0, j.

Thus, A ∈An.
We consider the following set of eigenvectors, whose first component is 1:

u( j)+ iv( j), j = 0,1, . . . ,dn−1
2 e.

Hence, by Proposition 6.1, we obtain

λ
(A)
j = bT F(u( j)+ iv( j)) =

(
1− i

2

)
bT F(u( j)−v( j)+ i(u( j)+v( j))) =

=

(
1− i

2

)
bT (−λ

(F)
j (u( j)−v( j))+ iλ

(F)
j (u( j)+v( j))) =

=

(
1− i

2

)
(−λ

(F)
j λ

(B)
j + iλ

(F)
j λ

(B)
j ) = iλ

(B)
j λ

(F)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(A)
n− j =−λ

(A)
j =−iλ

(B)
j λ

(F)
j

for j = 1,2, . . .bn−1
2 c, since the eigenvalues of A ∈An are asymmetric.

Now we demonstrate the following

Theorem 6.6. Let B ∈Bn, B =rcirc(b), and F ∈Fn, F =rcirc(f). Then, FB ∈ An and
the eigenvalues of FB are expressed by

λ
(FB)
j =−iλ

(B)
j λ

(F)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(FB)
n− j =−λ

(FB)
j , j = 1,2, . . .bn−1

2 c.
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Proof. Let A = FB. As B,F ∈Ln,1, then A ∈Ln,n−1 (see, e.g., [20]). So, to prove that
A ∈ An it is sufficient to show that the first row of the matrix A is asymmetric, that is
a0,n− j =−a0, j, j = 0,1, . . .dn−1

2 e. Indeed, we have

a0,n− j =
b(n−1)/2c

∑
l=1

fl (b(n− j+l) (mod n)−b(2n− j−l) (mod n)) =

= −
b(n−1)/2c

∑
l=1

fl (b( j+l) (mod n)−b(n+ j−l) (mod n)) =−a0, j

for j = 1,2, . . .bn−1
2 c. Therefore, A ∈An.

We consider the following set of eigenvectors, whose first component is 1:

u( j)+ iv( j), j = 0,1, . . . ,dn−1
2 e.

Hence, by Proposition 6.1, we obtain

λ
(A)
j = fT B(u( j)+ iv( j)) = fT (λ

(B)
j u( j)− iλ

(B)
j v( j)) =

= −iλ
(B)
j (fT v( j)) =−iλ

(F)
j λ

(B)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(A)
n− j =−λ

(A)
j = iλ

(F)
j λ

(B)
j

for j = 1,2, . . .bn−1
2 c, because the eigenvalues of A ∈An are asymmetric.

Observe that, given B ∈ Bn and F ∈ Fn, we get that λ
(FB)
j = −λ

(BF)
j . Therefore,

FB =−BF .
Now we prove the following

Theorem 6.7. Let A ∈An, A =circ(a) and B ∈Bn, B =rcirc(b). Then, AB ∈Fn and the
eigenvalues of AB are expressed by

λ
(AB)
j =−iλ

(A)
j λ

(B)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(AB)
n− j =−λ

(AB)
j , j = 1,2, . . .bn−1

2 c.

Proof. Let F = AB. Since A ∈Ln,n−1 and B ∈Ln,1, then F ∈Ln,1 (see, e.g., [20]). So,
to prove that F ∈Fn it is enough to show that the first row of the matrix F is asymmetric,
that is f0,n− j =− f0, j, j = 0,1, . . .dn−1

2 e. Indeed, we have

f0,n− j =
b(n−1)/2c

∑
l=1

al (b(n− j+l) (mod n)−b(2n− j−l) (mod n)) =

= −
b(n−1)/2c

∑
l=1

al (b( j+l) (mod n)−b(n+ j−l) (mod n)) =− f0, j

for j = 1,2, . . .bn−1
2 c. Therefore, F ∈Fn.
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We consider the following set of eigenvectors, whose first component is 1:

u( j)+v( j), j = 0,1, . . . ,dn−1
2 e.

Hence, by Proposition 6.1, we obtain

λ
(F)
j = aT B(u( j)+v( j)) = aT (λ

(B)
j u( j)− λ

(B)
j v( j)) =

= −λ
(B)
j (aT v( j)) = iλ

(A)
j λ

(B)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(F)
n− j =−λ

(F)
j =−iλ

(A)
j λ

(B)
j

for j = 1,2, . . .bn−1
2 c, because the eigenvalues of F ∈Fn are asymmetric.

Theorem 6.8. Let B ∈Bn, B =rcirc(b), and A ∈An, A =circ(b). Then, BA ∈Fn and the
eigenvalues of BA are given by

λ
(BA)
j =−iλ

(B)
j λ

(A)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(BA)
n− j =−λ

(BA)
j , j = 1,2, . . .bn−1

2 c.

Proof. Let F = BA. Since A ∈Ln,n−1 and B ∈Ln,1, then F ∈Ln,1 (see, e.g., [20]). So,
to prove that F ∈Fn it is enough to show that the first row of the matrix F is asymmetric,
namely f0,n− j =− f0, j, j = 0,1, . . .dn−1

2 e. Indeed, if n is odd, we get

f0,n− j = b0 an− j +
(n−1)/2

∑
l=1

bl (a(l−n+ j) (mod n)+a(l− j) (mod n)) =

= −b0 a j−
(n−1)/2

∑
l=1

bl (a( j−l) (mod n)+a(− j−l) (mod n)) =− f0, j,

and when n is even, we have

f0,n− j = b0 an− j +bn/2 a(n/2− j) (mod n)+

+
n/2−1

∑
l=1

bl (a(l−n+ j) (mod n)+a(l− j) (mod n)) =

= −b0 a j−bn/2 a(n/2− j) (mod n)−

−
n/2−1

∑
l=1

bl (a( j−l) (mod n)+a(− j−l) (mod n)) =− f0, j.

Thus, F ∈Fn.
We consider the following set of eigenvectors, whose first component is 1:

u( j)+ v( j), j = 0,1, . . . ,dn−1
2 e.
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By Proposition 6.1, we have

λ
(F)
j = bT A(u( j)+v( j)) = bT A

((
1− i

2

)
(u( j)+ iv( j))+

(
1+ i

2

)
(u( j)− iv( j))

)
=

= bT
λ
(F)
j

(
1− i

2

)
(u( j)+ iv( j))−bT

λ
(F)
j

(
1+ i

2

)
(u( j)− iv( j)) =

=

(
1− i

2

)
λ
(B)
j λ

(A)
j −

(
1+ i

2

)
λ
(B)
j λ

(A)
j =−iλ

(B)
j λ

(A)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(F)
n− j =−λ

(F)
j = iλ (B)

j λ
(A)
j

for j = 1,2, . . .bn−1
2 c, since the eigenvalues of F ∈Fn are asymmetric.

Note that, given A∈An and B∈Bn, we have that λ
(AB)
j =−λ

(BA)
j . Hence, AB=−BA.

Now we give the following

Theorem 6.9. Let A ∈An, A =circ(a) and F ∈Fn, F =rcirc(b). Then, AF ∈Bn and the
eigenvalues of AF are expressed by

λ
(AF)
j =−iλ

(A)
j λ

(F)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(AF)
n− j =−λ

(AF)
j , j = 1,2, . . .bn−1

2 c.

Proof. Let B = AF . Since A ∈ Ln,n−1 and F ∈ Ln,1, then B ∈ Ln,1 (see, e.g., [20]).
Thus, to prove that B ∈Bn it is sufficient to demonstrate that the first row of the matrix B
is asymmetric, that is b0,n− j =−b0, j, j = 0,1, . . .dn−1

2 e. Indeed, it is

b0,n− j =
b(n−1)/2c

∑
l=1

al ( f(n− j+l) (mod n)− f(2n− j−l) (mod n)) = (33)

= −
b(n−1)/2c

∑
l=1

al ( f( j+l) (mod n)− f(n+ j−l) (mod n)) =−b0, j

for j = 1,2, . . .bn−1
2 c. Therefore, B ∈Bn.

We consider the following set of eigenvectors, whose first component is 1:

u( j), j = 0,1, . . . ,dn−1
2 e.

Hence, by Proposition 6.1, we obtain

λ
(B)
j = aT F u( j) =

1
2

aT F(u( j)+v( j))− 1
2

aT F (u( j)−v( j)) =

=
1
2

aT
λ
(F)
j (u( j)+v( j))− 1

2
aT

λ
(F)
j (u( j)−v( j)) =−iλ

(A)
j λ

(F)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(B)
n− j =−λ

(B)
j = iλ

(A)
j λ

(F)
j

for j = 1,2, . . .bn−1
2 c, because the eigenvalues of B ∈Bn are asymmetric.
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Now we prove the following

Theorem 6.10. Let A ∈ An, A =circ(a) and F ∈Fn, F =rcirc(b). Then, FA ∈Bn and
the eigenvalues of FA are given by

λ
(FA)
j =−iλ

(F)
j λ

(A)
j , j = 0,1, . . . ,dn−1

2 e;

λ
(FA)
n− j =−λ

(FA)
j , j = 1,2, . . .bn−1

2 c.

Proof. Let B = FA. Since A∈Ln,n−1 and F ∈Ln,1, then B∈Ln,1 (see, e.g., [20]). Thus,
to prove that B ∈Bn it is sufficient to demonstrate that the first row of the matrix B is
asymmetric, that is b0,n− j =−b0, j, j = 0,1, . . .dn−1

2 e. Indeed, we get

b0,n− j =
b(n−1)/2c

∑
l=1

fl (a(l−n+ j) (mod n)−a(l− j) (mod n)) = (34)

= −
b(n−1)/2c

∑
l=1

fl (a( j−l) (mod n)−a(− j−l) (mod n)) =−b0, j

for j = 1,2, . . .bn−1
2 c. Hence, B ∈Bn.

We consider the following set of eigenvectors, whose first component is 1:

u( j), j = 0,1, . . . ,dn−1
2 e.

Hence, by Proposition 6.1, we obtain

λ
(B)
j = fT Au( j) =

1
2

fT A(u( j)+ iv( j))+
1
2

fT A(u( j)− iv( j)) =

=
1
2

fT
λ
(A)
j (u( j)+ iv( j))+

1
2

fT
λ
(A)
j (u( j)− iv( j)) = iλ

(F)
j λ

(A)
j

for j = 0,1, . . . ,dn−1
2 e;

λ
(B)
n− j =−λ

(B)
j =−iλ

(F)
j λ

(A)
j

for j = 1,2, . . .bn−1
2 c, since the eigenvalues of B ∈Bn are asymmetric.

Observe that, if A ∈An and F ∈Fn, then λ
(AF)
j =−λ

(FA)
j . Hence, AF =−FA.

Moreover note that, if B1, B2 ∈ Bn, F1, F2 ∈ Fn, A1, A2 ∈ An, then B1 B2, F1 F2,
A1 A2 ∈ Cn.

7 Invertible β -matrices
In this section we present some results about invertibility of β -matrices. We prove the
following
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Theorem 7.1. Given V1 ∈ Vn, V1 =C1 +B1 +F1 +A1, with C1 ∈ Cn, B1 ∈Bn, F1 ∈Fn,
A1 ∈An, set σ

(A1)
j =−iλ

(A1)
j , j = 0,1, . . . ,dn−1

2 e. If the matrices

Θ j =



λ
(C1)
j λ

(B1)
j λ

(F1)
j −σ

(A1)
j

λ
(B1)
j λ

(C1)
j σ

(A1)
j −λ

(F1)
j

λ
(F1)
j −σ

(A1)
j λ

(C1)
j −λ

(B1)
j

σ
(A1)
j −λ

(F1)
j λ

(B1)
j λ

(C1)
j


∈ R4×4,

j = 0,1, . . . ,dn−1
2 e, are invertible, then there exists V2 ∈ Vn such that V1V2 = In.

Proof. First of all note that, if V2 ∈ Vn, then V2 =C2 +B2 +F2 +A2, with C2 ∈ Cn, B2 ∈
Bn, F2 ∈Fn, A2 ∈An.

Observe that V1V2 =C3 +B3 +F3 +A3, where

C3 = C1C2 +B1B2 +F1F2 +A1A2 ∈ Cn,

B3 = C1B2 +B1C2 +F1A2 +A1F2 ∈Bn,

F3 = C1F2 +F1C2 +B1A2 +A1B2 ∈Fn,

A3 = C1A2 +A1C2 +B1F2 +F1B2 ∈An.

By imposing C3 = In, we get

λ
(C1)
j λ

(C2)
j +λ

(B1)
j λ

(B2)
j +λ

(F1)
j λ

(F2)
j +λ

(A1)
j λ

(A2)
j = 1

for j = 0,1, . . . ,dn−1
2 e.

Moreover, by imposing B3 = On, by virtue of Theorems 6.9 and 6.10 it follows that

λ
(B1)
j λ

(C2)
j +λ

(C1)
j λ

(B2)
j − iλ

(A1)
j λ

(F2)
j + iλ

(F1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,dn−1
2 e.

Furthermore, we impose F3 = On. Then, from Theorems 6.7 and 6.8, it follows that

λ
(F1)
j λ

(C2)
j + iλ

(A1)
j λ

(B2)
j +λ

(C1)
j λ

(F2)
j + iλ

(B1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,dn−1
2 e.

Finally, by imposing A3 = On, from Theorems 6.5 and 6.6 we obtain

λ
(A1)
j λ

(C2)
j − iλ

(F1)
j λ

(B2)
j + iλ

(B1)
j λ

(F2)
j +λ

(C1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,dn−1
2 e.

Now, put σ
(A2)
j =−iλ

(A2)
j , j = 0,1, . . . ,dn−1

2 e, ϑϑϑ j
T = (λ

(C2)
j λ

(B2)
j λ

(F2)
j σ

(A2)
j ). Since

Θ j is invertible, then the system Θ j ϑϑϑ j = (1 0 0 0)T has a unique solution. This ends the
proof.

Thus, it is not difficult to show that in most cases it is possible to compute the inverse
of a β -matrix by means of DFFT and Hartley-type transforms.

21



8 Toeplitz matrix preconditioning
For each n ∈ N, let us consider the following class:

Tn = {Tn ∈ Rn×n : Tn = (tk, j)k, j, tk, j = t|k− j|, k, j ∈ {0,1, . . . ,n−1} }. (35)

Observe that the class defined in (35) coincides with the family of all real symmetric
Toeplitz matrices.

Now we consider the following problem.
Given Tn ∈Tn, find

Vn(Tn) = min
V∈Vn
‖V −Tn‖F ,

where ‖ · ‖F denotes the Frobenius norm.
It is not difficult to see that, since Tn is symmetric, then we can assume that Vn(Tn) is

symmetric. Therefore, Vn(Tn) =Cn(Tn)+Bn(Tn)+Fn(Tn), where Cn(Tn) ∈ Cn, Bn(Tn) ∈
Bn, and Fn(Tn) ∈Fn.

Theorem 8.1. Let Ĝn = Sn +Hn,1. Given Tn ∈Tn, one has

Gn(Tn) =Cn(Tn)+Bn(Tn) = min
G∈Ĝn

‖G−Tn‖F = min
G∈Gn
‖G−Tn‖F , (36)

where Cn(Tn) =circ(c), with

c j =
(n− j) t j + j tn− j

n
, j ∈ {1,2, . . . ,n−1};

c0 = t0,

and Bn(Tn) =rcirc(b), where: for n even and j ∈ {1,2, . . . ,n−1}\{n/2},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)

)
, j odd;

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j even;

for n even,

b0 =
2
n

(
n/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, (37)
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bn/2 =
4
n

(
n/4−1

∑
k=1

2k
n
(t2k− tn−2k)

)
; (38)

for n odd and j ∈ {1,2, . . . ,n−1},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j odd; (39)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
, j even; (40)

for n odd,

b0 =
2
n

(
(n−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
. (41)

Proof. Let us define

φ(c,b) = ‖Tn− circ(c)− circ(b)‖2
F

for any two symmetric vectors c, b ∈ Rn. If j ∈ {1,2, . . . ,n−1}, then we get

∂φ(c,b)
∂c j

=−4(n− j) t j−4 j tn− j +4
n−1

∑
j=0

b j +4nc j. (42)

Furthermore, one has

∂φ(c,b)
∂c0

=−2nt0 +2
n−1

∑
j=0

b j +2nc0. (43)

If n is even and j is odd, j ∈ {1, . . . ,n−1}, then, since cn− j = c j, we have

∂φ(c,b)
∂b j

= −2

(
2 t j +4

( j−3)/2

∑
k=0

t2k+1 +2 tn− j +4
(n− j−3)/2

∑
k=0

t2k+1−

−4
n/4−1

∑
k=0

c2k+1−2nb j

)
=

= −2

(
2(t j− c j)+4

( j−3)/2

∑
k=0

(t2k+1− c2k+1)+2(tn− j− cn− j)+ (44)

+4
(n− j−3)/2

∑
k=0

(t2k+1− c2k+1)−2nb j

)
.
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If both n and j are even, j ∈ {1,2, . . . ,n−1}\{n/2}, then, by arguing analogously as
in the previous case, we deduce

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

j/2−1

∑
k=1

(t2k− c2k)+2(tn− j− cn− j)+

+4(t0− c0)+4
(n− j)/2−1

∑
k=1

(t2k− c2k)−2nb j

)
. (45)

Moreover, if n is even, then one has

∂φ(c,b)
∂b0

=−2

(
t0− c0 +2

n/2−1

∑
k=1

(t2k− c2k)−nb0

)
, (46)

getting (37). Furthermore, for n even, we have

∂φ(c,b)
∂bn/2

=−2

(
2(tn/2− cn/2)+4

n/4−1

∑
k=1

(t2k− c2k)−nbn/2

)
. (47)

Now, if both n and j are odd, j ∈ {0,1, . . . ,n−1}, then, taking into account (55), we
obtain

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

( j−3)/2

∑
k=0

(t2k+1− c2k+1)+2(tn− j− cn− j)+

+4
(n− j)/2−1

∑
k=1

(t2k− c2k)+2(t0− c0)−2nb j

)
. (48)

If n is odd and j is even, j ∈ {0,1, . . . ,n−1}, then we have

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

j/2−1

∑
k=1

(t2k− c2k)+2(tn− j− cn− j)+ (49)

+ 4
(n− j−3)/2

∑
k=1

(t2k+1− c2k+1)+2(t0− c0)−2nb j

)
.

Finally, for n odd, one has

∂φ(c,b)
∂b0

=−2

(
t0− c0 +2

(n−3)/2

∑
k=0

(t2k+1− c2k+1)−nb0

)
. (50)

It is not difficult to see that the function φ is convex. By [22, Theorem 2.2], φ has
exactly one point of minimum. From this it follows that φ admits exactly one stationary
point. Now we claim that this point satisfies

n/4−1

∑
k=0

b2k+1 = 0 (51)
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and

b0 +2
n/4−1

∑
k=1

b2k +bn/2 = 0 (52)

when n is even, and

b0 +2
(n−1)/2

∑
j=1

b j = 0 (53)

if n is odd, that is Bn(Tn) ∈Bn. From (51)-(53) and (42)-(43) we get (55)-(55). Further-
more, from (55)-(55) and (44)-(50) we obtain (55)-(41). Finally, (51)-(52) follow from
(55)-(38), while (53) is a consequence of (39)-(41).

Theorem 8.2. Given Tn ∈Tn, one has

Vn(Tn) =Cn(Tn)+Bn(Tn)+Fn(Tn) = min
V∈Vn
‖V −Tn‖F , (54)

where Cn(Tn) =circ(c), with

c j =
(n− j) t j + j tn− j

n
, j ∈ {1,2, . . . ,n−1};

c0 = t0,

and Bn(Tn) =rcirc(b), where: for n even and j ∈ {1,2, . . . ,n−1}\{n/2},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)

)
, j odd; (55)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j even; (56)

for n even,

b0 =
2
n

(
n/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
,

bn/2 =
4
n

(
n/4−1

∑
k=1

2k
n
(t2k− tn−2k)

)
;
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for n odd and j ∈ {1,2, . . . ,n−1},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j odd; (57)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
, j even; (58)

for n odd,

b0 =
2
n

(
(n−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
; (59)

f j =
t j− tn− j

n
, j ∈ {1,2, . . . ,n−1}; (60)

f0 = 0. (61)

Proof. Set

φ̃(c,b, f) = ‖Tn− circ(c)− rcirc(b)− rcirc(f)‖2
F

for each symmetric vector c ∈ Rn, b ∈ Rn and for every asymmetric vector f ∈ Rn. By
proceeding analogously as in (42)-(50) and taking into account the asymmetry of f, we
get that the derivatives

∂ φ̃(c,b, f)
∂c j

,
∂ φ̃(c,b, f)

∂b j

have the same expressions as the respective derivatives

∂φ(c,b)
∂c j

,
∂φ(c,b)

∂b j

in (42)-(50), j = 0, 1, . . . ,n−1. Furthermore, for any n ∈ N and j ∈ {1,2, . . . ,n−1} we
get

∂ φ̃(c,b, f)
∂ f j

= 4(n f j− tn + tn− j). (62)

Proceeding similarly as we dealt with the function φ in Theorem 8.1, it is not difficult to
prove the convexity of the function φ̃ . From this and [22, Theorem 2.2] again, it follows
that φ̃ has exactly one point of minimum, and hence φ̃ admits exactly one stationary point.
By arguing analogously as in Theorem 8.1, it is possible to show that the same conditions
as in (51)-(53) are satisfied, and the assertion of the theorem follows.
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Now we show how the approximation found in β -matrices allows to obtain also pre-
conditioned linear systems with eigenvalues clustered around 1. For every n ∈ N, set

T̂n = {t ∈Tn : there is a function f (z) =
+∞

∑
j=−∞

t j z j, (63)

with z ∈ C, |z|= 1, and such that
+∞

∑
j=−∞

|t j|<+∞}.

Observe that any function defined by a power series as in the first line of (63) is real-
valued, and the set of such functions satisfying the condition

+∞

∑
j=−∞

|t j|<+∞

is called Wiener class (see, e.g., [5], [16, §3]).
Given a function f belonging to the Wiener class and a matrix Tn ∈ T̂n, Tn( f ) =

(tk, j)k, j: tk, j = t|k− j|, k, j ∈ {0, 1, . . . ,n−1}, and f (z) =
+∞

∑
j=−∞

t j z j, then we say that Tn( f )

is generated by f .
We will often use the following property of absolutely convergent series (see, e.g.,

[5, 15]).

Lemma 8.3. Let
∞

∑
j=1

t j be an absolutely convergent series. Then, we get

lim
n→+∞

[
1
n

(
n

∑
k=1

k |tk|+
n

∑
k=d(n+1)/2e

(n− k) |tk|

)]
= 0.

Proof. Let S =
∞

∑
j=1
|t j|. Choose arbitrarily ε > 0. By hypothesis, there is a positive integer

n0 with
∞

∑
k=n0+1

|tk| ≤
ε

4
. (64)

Let n1 = max
{

2n0 S
ε

,2n0

}
. Taking into account (64), for every n > n1 it is

0 ≤ 1
n

(
n

∑
k=1

k |tk|+
n

∑
k=d(n+1)/2e

(n− k) |tk|

)
=

=
1
n

n0

∑
k=1

k |tk|+
1
n

n

∑
k=n0+1

k |tk|+
1
n

n

∑
k=d(n+1)/2e

(n− k) |tk| ≤

≤ 1
n1

n0

n0

∑
k=1
|tk|+2

n

∑
k=n0+1

|tk| ≤
ε

2n0 S
n0 S+2

ε

4
= ε.

So, the assertion follows.
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Theorem 8.4. For n ∈ N, given Tn( f ) ∈ T̂n, let Cn( f ) =Cn(Tn( f )), Bn( f ) = Bn(Tn( f )),
Fn( f ) = Fn(Tn( f )) be as in Theorem 8.2, and set Vn( f ) = Cn( f )+Bn( f )+Fn( f ). Then,
the following statements hold.

8.4.1) For every ε > 0 there is a positive integer n0, such that for each n ≥ n0 and for
every eigenvalue λ

(Vn( f ))
j of Vn( f ), it is

λ
(Vn( f ))
j ∈ [ fmin− ε, fmax + ε], j ∈ {0,1, . . . ,n−1}, (65)

where fmin and fmax denote the minimum and the maximum value of f , respectively.

8.4.2) For every ε > 0 there are k, n1 ∈ N such that for each n ≥ n1 the number of
eigenvalues λ

((Vn( f ))−1 Tn( f ))
j of V−1

n ( f )Tn( f ) such that |λ ((Vn( f ))−1 Tn( f ))
j −1| > ε is

less than k, namely the spectrum of (Vn( f ))−1 Tn( f ) is clustered around 1.

Proof. We begin with proving 8.4.1). Let Gn( f ) = Cn( f ) +Bn( f ). Choose arbitrarily
ε > 0. We denote by λ

(Cn( f ))
j (resp., λ

(Bn( f ))
j , λ

(Fn( f ))
j , λ

(Gn( f ))
j ) the generic j-th eigenvalue

of Cn( f ) (resp., Bn( f ), Fn( f ), Gn( f )) in the order given by Theorem 5.3 (resp., Theorem
5.7, Proposition 6.2). First, we claim that

λ
(Gn( f ))
j ∈ [ fmin− ε/2, fmax + ε/2], j ∈ {0,1, . . . ,n−1}. (66)

To prove (66) it is enough to show that this property holds (in correspondence with ε/4)
for each λ

(Cn( f ))
j , j = 0, 1, . . . ,n−1, and that

λ
(Bn( f ))
j ∈ [−ε/4,ε/4] for every n≥ n0 and j ∈ {0,1, . . . ,n−1}. (67)

Indeed, since Cn( f ), Bn( f ) ∈ Gn, we have

λ
(Gn( f ))
j = λ

(Cn( f ))
j +λ

(Bn( f ))
j for all j ∈ {0,1, . . . ,n−1},

getting the claim.
Now we consider the case n odd. For every j ∈ {0,1, . . . ,n−1}, since c j = cn− j and

thanks to (55), one has∣∣∣λ (Cn( f ))
j

∣∣∣ =

∣∣∣∣∣n−1

∑
h=0

ch cos(2π h j)

∣∣∣∣∣=
∣∣∣∣∣c0 +2

(n−1)/2

∑
h=1

ch cos(2π h j)

∣∣∣∣∣=
=

∣∣∣∣∣t0 +2
(n−1)/2

∑
h=1

th cos(2π h j) −

−
(n−1)/2

∑
h=1

h
n

th cos(2π h j)+
(n−1)/2

∑
h=1

h
n

tn−h cos(2π h j)

∣∣∣∣∣≤ (68)

≤
(n−1)/2

∑
h=−(n−1)/2

|th|
(

ei 2π j
n

)h
+

(n−1)/2

∑
h=1

h
n
|th|+

(n−1)/2

∑
h=1

h
n
|tn−h| ≤

≤
+∞

∑
h=−∞

|th|
(

ei 2π j
n

)h
+

(n−1)/2

∑
h=1

h
n
|th|+

n−1

∑
h=(n+1)/2

n−h
n
|th|.
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Choose arbitrarily ε > 0. Note that the first addend of the last term in (68) tends to
f
(

ei 2π j
n

)
as n tends to +∞, and hence, without loss of generality, we can suppose that it

belongs to the interval [ fmin− ε/12, fmax + ε/12] for n sufficiently large. By Lemma 8.3,
it is

lim
n→+∞

(
(n−1)/2

∑
h=1

h
n
|th|+

n−1

∑
h=(n+1)/2

n−h
n
|th|

)
= 0.

When n is even, we get

∣∣∣λ (Cn( f ))
j

∣∣∣ =

∣∣∣∣∣n−1

∑
h=0

ch cos(2π h j)

∣∣∣∣∣=
∣∣∣∣∣c0 +2

n/2−1

∑
h=1

ch cos(2π h j)+(−1)n/2cn/2

∣∣∣∣∣=
=

∣∣∣∣∣t0 +2
n/2−1

∑
h=1

cos(2π h j) th +(−1)n/2tn/2−

−
n/2−1

∑
h=1

h
n

th cos(2π h j)+
n/2−1

∑
h=1

h
n

tn−h cos(2π h j)

∣∣∣∣∣≤
≤

n/2

∑
h=−n/2+1

|th|
(

ei 2π j
n

)h
+

n/2−1

∑
h=1

h
n
|th|+

n/2−1

∑
h=1

h
n
|tn−h|

≤
+∞

∑
h=−∞

|th|
(

ei 2π j
n

)h
+

n/2−1

∑
h=1

h
n
|th|+

n−1

∑
h=n/2+1

n−h
n
|th|.

Thus, it is possible to repeat the same argument used in the previous case, getting 8.4.1).
Now we turn to 8.4.2). From Theorem 5.7 we obtain

λ
(Bn( f ))
j =



n−1

∑
h=0

bh cos
(

2π j h
n

)
if j ≤ n/2,

−
n−1

∑
h=0

bh cos
(

2π (n− j)h
n

)
if j > n/2.

So, without loss of generality, it is enough to prove 8.4.2) for j ≤ n/2.
We first consider the case when n is even. We get

∣∣∣λ (Bn( f ))
j

∣∣∣ ≤ ∣∣∣∣∣n−1

∑
h=0

bh cos
(

2π j h
n

)∣∣∣∣∣≤ n−1

∑
h=0
|bh|=

= |b0|+
n/4−1

∑
h=1
|b2h|+

n/2−1

∑
h=n/4+1

|b2h|+ |bn/2|+
n/2−1

∑
h=0
|b2h+1|= (69)

= I1 + I2 + I3 + I4 + I5.

So, in order to obtain 8.4.2), it is enough to prove that each addend of the last line of (69)
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tends to 0 as n tends to +∞. We get:

I1 = |b0| ≤
n/2−1

∑
k=1

4k
n2 |t2k|+

n/2−1

∑
k=1

4k
n2 |tn−2k|= (70)

=
n/2−1

∑
k=1

4k
n2 |t2k|+

n/2−1

∑
k=1

2n−4k
n2 |t2k| ≤

4n−8
n2

∞

∑
h=1
|th| ≤

4S
n
,

where S =
∞

∑
h=1
|th|. From (70) it follows that I1 = |b0| tends to 0 as n tends to +∞. Analo-

gously it is possible to check that I4 = |bn/2| tends to 0 as n tends to +∞.
Now we estimate the term I2 + I3. We first observe that

1
n2

n/4−1

∑
h=1

(4h−n)(|t2h|+ |tn−2h|)+
1
n2

n/2−1

∑
h=n/4+1

(4h−n)(|t2h|+ |tn−2h|)≤

≤ 1
n2

n/2−1

∑
h=1

(4h−n)(|t2h|+ |tn−2h|)≤ (71)

≤ 1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

(4h−n)|tn−2h|=

=
1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

(2n−4h)|t2h|.

Arguing analogously as in (70), it is possible to see that the quantities at the first hand of
(71) tend to 0 as n tends to +∞.

Furthermore, we have

2
n

n/2−1

∑
h=1

(
h−1

∑
k=1

2k
n
|t2k|

)
=

n/2−2

∑
k=1

4k
n2

(n
2
−2− k

)
|t2k| ≤

n/2−2

∑
k=1

2k
n
|t2k|, (72)

2
n

n/2−1

∑
h=1

(
h−1

∑
k=1

2k
n
|tn−2k|

)
=

n/2−2

∑
k=1

4k
n2

(n
2
−2− k

)
|tn−2k| ≤

n/2−1

∑
k=2

2k
n
|t2k|, (73)

2
n

n/2−1

∑
h=1

(
n/2−h−1

∑
k=1

2k
n
|t2k|

)
≤

n/2−2

∑
k=1

2k
n
|t2k|, (74)

and

2
n

n/2−1

∑
h=1

(
n/2−h−1

∑
k=1

2k
n
|tn−2k|

)
≤

n/2−2

∑
k=1

4k
n2

(
n−2k−2

2

)
|tn−2k|=

=
n/2−1

∑
k=2

(n−2k)(2k−2)
n2 |t2k| ≤

n/2−1

∑
k=2

2k
n
|t2k|. (75)
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Summing up (71)-(75), from (56) we obtain

I2 + I3 =
n/4−1

∑
h=1
|b2h|+

n/2−1

∑
h=n/4+1

|b2h| ≤
1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

4h|tn−2h|+

+
n/2−2

∑
k=1

4k
n
|t2k|+

n/2−1

∑
k=2

4k
n
|t2k|. (76)

Thus, taking into account Lemma 8.3, it is possible to check that the terms at the right
hand of (76) tend to 0 as n tends to +∞.

Now we estimate the term I5. One has

2
n

n/2−1

∑
h=0

(
h−1

∑
k=0

2k+1
n
|t2k+1|

)
=

n/2

∑
k=0

2k+1
n
|t2k+1|=

=
n/2

∑
k=0

2k
n
|t2k+1|+

n/2

∑
k=1

1
n
|t2k+1|= J1 + J2.

Thanks to Lemma 8.3, it is possible to check that J1 tends to 0 as n tends to +∞. Moreover,
we have

0≤ J2 ≤
S
n
, (77)

and hence I4 tends to 0 as n tends to +∞. Analogously as in the previous case, it is possible
to prove that

I5 =
n/2−1

∑
k=0
|b2k+1| ≤

1
n2

n/2−1

∑
k=0

2(2k+1)|t2k+1|+

+
2
n

n/2−2

∑
k=1

(n
2
−1− k

)(2k+1
n

)
|tn−2k−1| ≤ (78)

≤
n/2−2

∑
k=1

2(2k+1)
n

|t2k+1|+
n/2−1

∑
k=2

2(2k+1)
n

|t2k+1|.

By virtue of Lemma 8.3 and (77), we get that I5 tends to 0 as n tends to +∞. Therefore,
all addends of the right hand of (69) tend to 0 as n tends to +∞. Thus, (67) follows from
(69), (70), (76) and (78).

When n is odd, it is possible to proceed analogously as in previous case. This proves
(66).

Now we claim that the eigenvalues of Fn( f ) lie between −ε/2 and ε/2 for n large
enough. We have:

|λ Fn( f )
j |=

∣∣∣∣∣n−1

∑
k=0

f j sin
(

2π k j
n

)∣∣∣∣∣≤ n−1

∑
k=0
| f j| ≤

1
n

n−1

∑
k=0
|t j|+

1
n

n−1

∑
k=0
|tn− j|. (79)

Since f belongs to the Wiener class, we get the claim.
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Moreover, we observe that

Gn( f )+Fn( f ) = Qn (Λ
(Gn( f ))+Yn Λ

(Fn( f ))Y T
n )QT

n ,

where

Λ
(Gn( f )) = λλλ

(Gn( f )) = (λ
(Gn( f ))
0 λ

(Gn( f ))
1 · · ·λ (Gn( f ))

n−1 )T ,

Λ
(Fn( f )) = λλλ

(Fn( f )) = (λ
(Fn( f ))
0 λ

(Fn( f ))
1 · · ·λ (Fn( f ))

n−1 )T .

Thus, the matrix Gn( f )+Fn( f ) is similar to Λ(Gn( f ))+Yn Λ(Fn( f ))Y T
n . Note that

Yn Λ
(Fn( f ))Y T

n =


0 0 . . . 0 λ

(Fn( f ))
0

0 . . . 0 λ
(Fn( f ))
1 0

...
...

... . . .
...

0 λ
(Fn( f ))
2 0 . . . 0

λ
(Fn( f ))
1 0 . . . 0 0

 .

Therefore, 8.4.1) follows from the Gerschgorin theorem (see, e.g., [30]).

Now we turn to 8.4.2), that is we prove that the spectrum of (Vn( f ))−1 Tn( f ) is clus-
tered around 1. Since (Vn( f ))−1(Tn( f )−Vn( f )) = (Vn( f ))−1Tn( f )− In, where In is the
identity matrix, it is enough to check that the eigenvalues of (Vn( f ))−1(Tn( f )−Vn( f ))
are clustered around 0.

Choose arbitrarily ε > 0. Since f belongs to the Wiener class, there exists a positive
integer n0 = n0(ε) such that

∞

∑
j=n0+1

|t j| ≤ ε.

Proceeding similarly as in the proof of [5, Theorem 3 (ii)], we get

Tn( f )−Vn( f ) = Tn( f )−Cn( f )−Bn( f )−Fn( f ) =W (n0)
n +Z(n0)

n +E(n0)
n ,

where W (n0)
n , Z(n0)

n , E(n0)
n are suitable matrices such that W (n0)

n and Z(n0)
n agree with the

(n− n0)× (n− n0) leading principal submatrices of Tn( f )−Cn( f ) and Bn( f ) +Fn( f ),
respectively. We have:

rank(E(n0)
n ) ≤ 2n0;

‖W (n0)
n ‖1 ≤

2
n

n−n0−1

∑
k=1

k |tn−k− tk| ≤
2
n

n0

∑
k=1

k |tk|+4
∞

∑
k=n0+1

|tk|; (80)

‖Z(n0)
n ‖1 ≤

n−1

∑
h=0

(|bh|+ | fh|),

where the symbol ‖ · ‖1 denotes the 1-norm of the involved matrix. Let n1 > n0 be a
positive integer with

1
n1

n0

∑
k=1

k |tk| ≤ ε and
n−1

∑
h=0

(|bh|+ | fh|)≤ ε. (81)
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Note that such an n1 does exist, thanks to Lemma 8.3 and since all terms of (69) and (79)
tend to 0 as n tends to +∞. From (80) and (81) it follows that

‖W (n0)
n +W (n0)

n ‖1 ≤ ‖W
(n0)
n ‖1 +‖Z

(n0)
n ‖1 ≤ 8ε. (82)

From (82) and the Cauchy interlace theorem (see, e.g., [48]) we deduce that the eigenval-
ues of Tn( f )−Vn( f ) are clustered around 0, with the exception of at most k = 2n0 of them.
By the Courant-Fisher minimax characterization of the matrix (Vn( f ))−1 (Tn( f )−Vn( f ))
(see, e.g., [48]), we obtain

λ
(Vn( f ))−1 (Tn( f )−Vn( f ))
j ≤

λ
(Tn( f )−Vn( f ))
j

fmin
(83)

for n large enough. From (83) we deduce that the spectrum of (Vn( f ))−1 (Tn( f )−Vn( f ))
is clustered around 0, namely for every ε > 0 there are k, n1 ∈N with the property that for
each ε > 0 the number of eigenvalues λ

(Vn( f ))−1 Tn( f )
j such that

∣∣∣λ (Vn( f ))−1 Tn( f )
j −1

∣∣∣> ε is
at most equal to k.

Note that a similar result can be obtained by approximating Gn( f ) = Cn( f )+Bn( f )
(see [8]).

9 Experimental results
In order to test the goodness of the proposed approximations, we have proceeded as fol-
lows: fixed the dimension n and the range of values which the involved Toeplitz matrices
can assume, we have created 10000 different instances of Toeplitz symmetric matrices
Tn, whose values have been randomly and uniformly chosen in the interior of the pre-
fixed range. Moreover, we have computed the approximation Cn(Tn) given in [17], the
approximation Hn(Tn) presented in [5] and the approximations Gn(Tn) and Vn(Tn) given
in (36) and (54), respectively. Furthermore, we have computed the mean error in terms of
difference between the matrix Tn and the preconditioning matrix evaluated with respect
to the Frobenius norm. In Table 1 the considered range is [0,1]. In this case, as expected,
Vn(Tn) turns to be the best approximation, while Gn(Tn) is the second best approxima-
tion in mean. In Table 2, the considered interval is [−1,1], and the obtained results are
analogous to the previous ones. In Table 3, to generate the first row of the Toeplitz sym-
metric matrix, we have proceeded as follows. We have taken the value of the first entry
equal to 1. To determinate the value of the i-th entry, we have multiplied the value of the
i−1-th entry by a random constant chosen uniformly in [0.9,1]. Such a choice allows to
better simulate the Toeplitz matrices present in the blur operators. The behavior of the
errors is similar to that of the prevous cases. Moreover, from Tables 1-3 it is possible to
see that, for large numbers, the approximations Cn(Tn) and Hn(Tn) give similar results,
while the approximations Gn(Tn) and Vn(Tn). Furthermore, as seen in Table 4, for large
numbers the approximation Gn(Tn) is always better than the approximation Hn(Tn). Since
the multiplication of Vn(Tn) by a vector needs three fast discrete transforms, while the
multiplication of Vn(Tn) by a vector requires only one fast discrete transform. Thus we
deduce that, for n very large, Gn(Tn) is the better solution in terms both of approximation
and in computational costs.
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‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F
n = 20 3.1389 3.1156 3.0770 3.0532
n = 25 4.1076 4.0885 3.9591 3.9392
n = 30 4.8062 4.7903 4.7369 4.7207
n = 35 5.7528 5.7390 5.5989 5.5847
n = 40 6.4536 6.4416 6.3811 6.3689
n = 45 7.4243 7.4135 7.2649 7.2538
n = 50 8.1211 8.1114 8.0471 8.0373
n = 100 16.46786 16.46293 16.38939 16.38444
n = 1000 166.48101 166.48051 166.39821 166.39771

Table 1: Mean error obtained by the various approximations with respect to 10000 instances of
randomly generated Toeplitz matrices Tn with entries in [0,1].

‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F
n = 5 0.73470 0.65623 0.65593 0.56618
n = 10 1.44816 1.40540 1.40531 1.36116
n = 15 2.42566 2.39475 2.28953 2.25668
n = 20 6.2564 6.2098 6.1313 6.0838
n = 25 8.2016 8.1633 7.8982 7.8584
n = 30 9.6160 9.5842 9.4776 9.4453
n = 35 11.517 11.489 11.210 11.182
n = 40 12.915 12.891 12.771 12.747
n = 45 14.835 14.813 14.521 14.499
n = 50 16.292 16.272 16.141 16.121
n = 100 32.92819 32.91833 32.76966 32.75976
n = 1000 332.72496 332.72396 332.56154 332.56054

Table 2: Mean error obtained by the various approximations with respect to 10000 instances of
randomly generated Toeplitz matrices Tn with entries in [−1,1].
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‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F
n = 5 0.18725 0.16362 0.18190 0.15743
n = 10 0.71534 0.68775 0.67302 0.64363
n = 15 1.43778 1.41100 1.33331 1.30439
n = 20 2.28601 2.26095 2.10745 2.08025
n = 25 3.17788 3.15482 2.92053 2.89542
n = 30 4.07270 4.05158 3.73644 3.71341
n = 35 4.95798 4.93865 4.54353 4.52243
n = 40 5.79877 5.78109 5.31037 5.29105
n = 45 6.59117 6.57494 6.03320 6.01547
n = 50 7.30809 7.29317 6.68763 6.67133
n = 100 11.56697 11.55943 10.60308 10.59485
n = 1000 13.68293 13.68225 13.43137 13.43068

Table 3: Mean error obtained by the various approximations with respect to 10000 instances of
randomly generated Toeplitz matrices Tn with entries in [0,1] in decreasing way.

range = [−1,1] range = [−1,1],decreasing
n = 5 4994 0
n = 10 5019 9992
n = 15 8989 10000
n = 20 8727 10000
n = 25 9794 10000
n = 30 9765 10000
n = 35 9973 10000
n = 40 9943 10000
n = 45 9993 10000
n = 50 9990 10000
n = 100 10000 10000
n = 1000 10000 10000

Table 4: Number of times in which the first proposed approximation gives better results than that
in [5] with respect to 10000 instances of randomly generated Toeplitz matrices Tn with entries in
[0,1] in decreasing way.
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