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Abstract

Tetrahedral numbers have a well-defined construction but are not the only way of building tetrahedra

from numbers, as is evidenced in studies we will briefly consider as a motivation for looking at the

following proposed construction of number shapes, this being a new perspective on a pattern often

written in a slightly different context, to a different stacking of numbers. We will go on to look at a few

properties of shapes built from this novel construction, including a few specific shapes built from prime

numbers, taking us neatly into some parabolic equations with prime-heavy cartesian coordinates.
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Introduction 

Although we will consider patterns written about in detail by many authors before, 

this is intended to be an original work and not a derivative work. This paper looks to report a 

short investigation by a single researcher with limited mathematical background, and as such 

will be short on deep commentary, claims, conjectures and world-ending conclusions. 

Through a simple reporting of findings, the author hopes to provide material and momentum 

for new studies into the construction described herein. A second investigation into these 

shapes has been started, but in the interest of keeping this report clean and focused, these will 

be included in a follow-up report.  

 

Abstract 

Tetrahedral numbers have a well-defined construction but are not the only way of 

building tetrahedra from numbers, as is evidenced in studies we will briefly consider as a 

motivation for looking at the following proposed construction of number shapes, this being a 

new perspective on a pattern often written in a slightly different context, to a different 

stacking of numbers. We will go on to look at a few properties of shapes built from this novel 

construction, including a few specific shapes built from prime numbers, taking us neatly into 

some parabolic equations with prime-heavy cartesian coordinates.  
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Background, research and rationale 

 

This investigation follows a previous look at Observing the Movement of Prime 

Numbers in Prime-based Number Shapes (viXra:2012.0157), in which the nature of primes 

above 2 being odd numbers was used to explore how combinatorics might be used to view 

primes in a system of numbers where odd numbers were in a predictable place (within 

Wacław Sierpiński’s famous odds and evens pattern imbedded in Pascal’s/Pingala’s triangle 

of the binomial coefficient), and then viewed in a number shape where odd and even numbers 

had been separated. This following report should be a lot simpler to read than its predecessor 

but comes off of some of the patterns in that report suggesting to the author that tetrahedra 

are perhaps under-studied.  

There are a number of ways of graphing a tetrahedron in cartesian space. One such 

way is to graph coordinates of the tetrahedron’s vertices with 

(+1, +1, +1); 

(−1, −1, +1); 

(−1, +1, −1); 

(+1, −1, −1). 

This yields a tetrahedron with edge-length 2√2, centered at the origin. 

 (Davis, D., Dods, V., Traub, C., & Yang, J. (2017). Geodesics on the regular tetrahedron and 

the cube. Discrete Mathematics, 340(1), 3183-3196.) 

In a 3D implicit graph, two regular tetrahedra can be drawn using a similar ternary 

pattern of polarities. Graphing 0=abs(+x +y +z), 0=abs(−x −y +z), 0=abs(−x +y −z) and 

0=abs(+x, −y −z) gives us the shape shown in figure 1. Using the absolute value allows us to 

not have to graph eight graphs, where we might look at a ternary pattern of polarities, 

+++,++-,+-+,+--,-++,-+-,--+,---. 
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Another way of embedding two regular tetrahedra in cubic space was explored in this 

graph, where we also look at how such shapes embedded in cubes can start to be packed in a 

cubic matrix: String (desmos.com) (Edited from an open-source spinning cube file with no 

traceable author) 

It should be noted that these two graphings show two tetrahedra sharing the same 

space, where we might consider that their interaction form an octahedron. Consequently, this 

shape is normally termed as a compound polyhedron of an octahedron and eight tetrahedra, 

or of a cube and an octahedron, and packed together in a tetrahedral-octahedral honeycomb. 

(Coxeter, H. S. M. (1954). Regular honeycombs in 

elliptic space. Proceedings of the London Mathematical 

Society, 3(1), 471-501.)  

We will come to a sequence of numbers 

relevant to this shape packing later in this paper.  

It might be then noted that none of the 

tetrahedra in these graphs or links are sitting in the 

orientation we might be used to seeing as being the construction of tetrahedral numbers, as 

shown in figure 2. 
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Consequently, it was decided to explore numbers constructed by placing cubes 

together, as illustrated in figure. 3, in line with how we view numbers stacking in 3D 

Cartesian xyz graphs. The notation included in figure 3 will be explained in the following 

section. We will look at some patterns of prime numbers in these ‘3D pixellated’ tetrahedra 

(referred to as cubic tetrahedra here-on-in). 
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Looking at cubic tetrahedra with a side length of 1 to 16 cubes 

 

It is not intended to say for such number packing as we are looking at that spheres 

could not be used, but for ease of illustration we will here use cubes, where we might 

similarly pack spheres. For this reason, this paper will stop short of looking at line lengths as 

algebraic numbers based on the dimensions of cubes, instead we will just consider the 

number of cubes used to build these cubic tetrahedra. We will notate this as CT(n) being the 

number of cubes forming a line between any two vertices of the cubic tetrahedra (but more 

specifically the bottom line), as illustrated in figure 3. We will also look at the different layers 

of these shapes, so to give notation to this, we will use CT(n,l) where l denotes the lth layer 

up from the bottom line of n being l=1. This is illustrated in figure 4, showing layer 5 of a 

cubic tetrahedron with a side length of 16 cubes and layer 2 of a cubic tetrahedron with a side 

length of 4 cubes. Counting the cubes on these two layers, we then write CT(16,5)=104 cubes 

and CT(4,2)=8 cubes. We will notate the total amount of cubes in CT(n) as ΣCT(n), being the 

sum of all the cubes on all of the layers.   
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The amounts of cubes in each layer of CT(16) has been highlighted in figure 5 with a 

blue accent. This triangular table shows layer amounts for cubic tetrahedra with side lengths 

of 1 cube through to 16 cubes. CT(16,5)=104 has been highlighted with a darker shade of 

blue. 

 

This table only goes up to CT(16) at this point as that’s as big a cubic tetrahedron as 

the software used allowed. We will go on to look at how we might consider larger cubic 

tetrahedra, but for now we will look to see the amount of cubes in CT(n) for n = 1 to 16.  

By adding together the layer totals in CT(16), as illustrated in figure 5, we can see that 

ΣCT(16)=CT(16,1)+CT(16,2)+CT(16,3)…+CT(16,15)+(CT(16,16)=1376 cubes.  

Lets take a smaller cubic tetrahedron, with a side length of 5 cubes. 

ΣCT(5)=CT(5,1)+CT(5,2)+CT(5,3)+CT(5,4)+CT(5,5)=5+11+13+11+5=45 cubes. 

 

We can now look at the total amount of cubes involved in building cubic tetrahedra 

with side lengths 1-16 cubes. They are as follows: 
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This sequence of numbers is logged in the OEIS as entry A006527 and with the 

equation a(n) = (n^3 + 2*n)/3. A comment on this OEIS entry by Dr Jason Pruski notes that 

this sequence relates to the number of unit tetrahedra contained in an n-scale tetrahedron 

composed of a tetrahedral-octahedral honeycomb.  

 

Looking at larger cubic tetrahedra 

In order to look at larger cubic tetrahedra, without having to build them in 3D software and 

count and add the layers as we did above, we will go back to the triangular table in figure 5 to 

see if we can divine some rules that can be extrapolated. This was achieved by taking lines of 

numbers and searching them in WolframAlpha. 
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Since the rules found were relatively simple, it was found that having the numbers in 

a spreadsheet and dragging them into new cells extrapolated the rules without having to 

manually type the rules in. In this fashion, the table in figure 5 was extrapolated to cover 

CT(1) to CT(77) cubes, and a mod based prime checking formula was used to look for primes 

in this larger table. In this way it was found that cubic tetrahedra CT(3), CT(5), CT(11) & 

CT(19) are built from layers with prime amounts of cubes, which did seem a remarkable 

property, especially for the two larger shapes. The construction of these shapes are shown 

below in figure 6.  
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Looking at the larger two shapes CT(11) and CT(19), a search of the amount of cubes 

in each of their layers reveals that they have equations, and that these two sequences are 

parabolic.  

Again using l to donate the layer number, we see that CT(11,l) = (-2*l2)+(24*l)-11, 

and the equation for CT(19,l) = (-2*l2)+(40*l)-19. To demonstrate this, we will look at 

CT(11,4) and CT(19,12), the 4th layer of a cubic tetrahedron with a side length of 11 cubes 

and the 12th layer of a cubic tetrahedron with a side length of 19 cubes.  

Plugging l=4 into -2*l2+24*l-11 = (-2*42)+(24*4)-11 = (-32)+(96)-11 = 53, which we 

can see in the table above is correct, that CT(11,4) has 53 cubes. Similarly, plugging l=12 

into (-2*l2)+(40*l)-19 = (-2*122)+(40*12)-12 = (-288)+(480)-19 = 173 is confirmed in the 

table above, that the 12th layer of CT(19) is composed of 173 cubes.  

Plotting y=(-2*x2)+(24*x)-11 and y=(-2*x2)+(40*x)-19, we get the lines shown in 

figure 7. The x component of each coordinate relates to the line length of the two cubic 

tetrahedra CT(11) and CT(19), and the y coordinates report the prime number amounts of 

cubes in each of their layers.  
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The similarity of these two lines suggests that the relationship between other cubic 

tetrahedrons line lengths and the number of cubes in their layers will also plot parabolas. To 

see this, we will transform the two equations used as follows: 

!2"# + 24" ! 11$ = $
11# + 1

2
$� $2(" !

11# + 1

2
)#$$$ 

!2"# + 40" ! 19$ = $
19# + 1

2
$� $2(" !

19# + 1

2
)#$$$ 
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Exploring CT(n,l) = 
%&'*

#
$� $2(" !

%&'*

#
)# in the following graph, using axis x=n and 

y=l, we see that the y coordinates match up with the layer tables for CT(n,l) we explored 

before in figures 5 and 6.  

Parabolas of cubic tetrahedra (desmos.com) 

 

There are other prime patterns in the table of CT(n,l), including that CT(13,1), 

CT(14,2), CT(15,3), CT(16,4)… starts a sequence of 2x2 + 22 x – 11 with 10 primes. This is 

shown in the following table of cubic tetrahedra with side lengths 1 –68, and where prime 

numbers have been highlighted in a separate table using the Taylor series to report on primes. 

The question begs itself if larger cubic tetrahedra with all-prime layers might exist, and if 

such shapes might also have a prime value of ΣCT(n), but because of errors arising from how 

we use floating point arithmetic, MS Excel is not the program in which to try answer this 

question.  
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Conclusions and next steps 

 

 As much as it might be a redundant point that square numbers relate to triangular 

matrices as well as squares, and to then pick up on the term ‘square numbers’ being 

somewhat misleading, the point that sequence A006527 might have as much reason to be 

called ‘tetrahedral numbers’ as sequence A000292 could be viewed as redundant. This is 

surely a pedantic argument, based on the limited nature of language. When Sir Frederick 

Pollock raised questions about tetrahedral and pyramidal numbers, his questions were about a 

specific definition of tetrahedral numbers, a specific stacking of billiard balls. The point of 

this paper is that the tetrahedral number stacking he asked about is not the only stacking of 

cubic or spherical shaped numbers we can use to build tetrahedra, and that there may be merit 

in exploring alternative number stacking, especially when we already know we can build 

tetrahedra in Cartesian space with a cubic lattice of numbers. Similarly, there might also be 

answers in looking at a cubic stacking of numbers 

to build pyramids. It seems fair to say that there 

will either be answers in such investigations, or an 

insight into the difficulty already inherent in these 

questions, based as they are on conceptualizing 

spheres sitting on spheres in a way easily 

abandoned to look at ±x±y±z graphs.  

 

The link between ternary patterns of operands and the coordinates of a tetrahedrons 

vertices might well point at there being links between other Platonic solids and use of axes 

more complex than ±x±y±z. 
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This report will end here as it is the author’s intention to spin away from prime numbers and 

to explore geometrical manipulations of number stacking. These will start with considering 

the outer shell of CT(n), and look at how we might smooth it into a regular tetrahedron of 

side length n. It is hoped we might then find alternative and perhaps ‘less expensive’ ways of 

computing irrational numbers.  

 


