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Abstract

In this paper we study a Blind Source Separation (BSS) problem, and in particular

we deal with document restoration. We consider the classical linear model. To this aim,

we analyze the derivatives of the images instead of the intensity levels. Thus, we can

establish a non-overlapping constraints on document sources. Moreover, we impose that

the rows of the mixture matrices of the sources have sum equal to 1, in order to keep

equal the lightnesses of the estimated sources and of the data. Here we give a technique

which uses the symmetric factorization, whose goodness is tested by the experimental

results.

1 Introduction

In this paper we deal with a Blind Source Separation (BSS) problem. This problem has been

an active research topic in signal processing since the end of the last century, and has several

applications in different fields. Here we deal with show-through and bleed-through effects.

The show-through is a front-to-back interference, mainly due to the scanning process and the
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transparency of the paper, which causes the text in the verso side of the document to appear

also in the recto side (and vice versa). The bleed-through is an intrinsic front-to-back physical

deterioration due to ink seeping, and produces an effect similar to that of show-through.

We consider a classical linear and stationary recto-verso model (see also [4, 9, 10, 11, 17])

developed for this purpose, and we deal with the problem of estimating both the ideal source

images of the recto and the verso of the document and the mixture matrix producing the

bleed-through or show-through effects. This problem is ill-posed in the sense of Hadamard

(see also [8]). In fact, since the estimated mixture matrix varies, the corresponding estimated

sources are in general different, and thus we have infinitely many solutions. Many techniques

to solve this problem have been proposed in the literature. Among them, the Independent

Component Analysis (ICA) methods are based on the assumption that the sources are mutually

independent (see also [6]). The best-known ICA technique is the so-called FastICA (see also

[9, 10, 11, 12, 13]), which finds an orthogonal rotation of the prewhitened data which maximizes

a measure of non-Gaussianity of the rotated components, using a fixed point iteration. The

FastICA algorithm is a parameter-free and extremely fast procedure, but ICA is not a suitable

approach in our setting, as for the problem we consider there is a clear correlation among the

sources. On the other hand, several techniques for ill-posed inverse problems require that the

estimated sources are only mutually uncorrelated. In this case, they are determined by a linear

transformation of the data, which is obtained by imposing either an orthogonality condition, as

in Principal Component Analysis (PCA) (see also [4, 16, 17]), or an orthonormality condition,

as in Whitening (W) and Symmetric Whitening (SW) techniques (see also [4, 16, 17]). These

approaches require only a unique and very fast processing step. In [4, 17] it is observed that

the results obtained by the SW method are substantially equivalent to those given by an ICA

technique in the symmetric mixing case.

In [2] it is assumed that the sum of all rows of the mixing matrix is equal to one, since

we expect that the color of the background of the source is the same as that of the data. In

[2] a change of variables concerning the data is made so that high and low light intensities

correspond to presence and absence of text in the document, respectively, and we impose a

nonnegativity constraint on the estimated sources (see also [3, 5, 7, 14]). In [2] the overlapping

matrix of both the observed data and the ideal sources is defined, namely a quantity related

to the cross-correlation between the signals. From the overlapping matrix it is possible to

deduce the overlapping level, which measures the similarity between the front and the back of

the document. In this paper we modify the technique proposed in [2] and we deal with the

derivatives of the images of the original sources. In this case, we assume that the overlapping

level is equal to zero. By means of our experimental results, we show that the proposed

technique improves the results obtained in [2] in terms both of accuracy of the estimates and
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of computational costs. We refer to this method as the Zero Edge Overlapping in Document

Separation (ZEODS) algorithm.

In Section 2 we present the linear model. In Section 3 we develop the ZEODS algorithm to

deal with the linear problem. In Section 4 we compare experimentally the ZEODS algorithm

with other fast and unsupervised methods existing in the literature.

2 The linear model

The classical linear model is the following (see, e.g., [4, 9, 10, 11, 15, 17]):

x̂T = A ŝT , (1)

where ·T is the transpose operator of a matrix, x̂ ∈ [0, 255]nm is the data document in the

involved subdomain, ŝ ∈ [0, 255]nm is the source document, n (resp., m) is the number of rows

(resp., columns) of the considered images, and A ∈ R2×2 is the mixture matrix.

In this paper we discuss the problem of evaluating the ideal sources and the mixture matrix

from the observed data using the linear equation (1), which is a Blind Source Separation (BSS)

problem (see, e.g., [4, 16]). If we get an invertible estimate Ã of A, then an estimate of s is

given by

s̃T = Ã−1x̂T . (2)

Since there are infinitely many choices of Ã, our problem admits infinitely many solutions,

and is ill-posed in the sense of Hadamard. Also when Ã and s̃ are nonnegative matrices,

the problem is NP-hard (see [18]) and ill-posed (see [8]). To overcome this, we impose some

constraints on the solutions.

We do not assume that the mixing matrix is symmetric, because the phenomenon of infil-

tration of the ink is often unpredictable. However, since the color of the paper is the same for

each part of the document, we suppose that the value of the source background, that is the

graylevel of the unprinted/unwritten paper, is the same as the background of the data. This

value corresponds to the light intensity of the paper on which the document is written. To

impose this condition, we require that A is a one row-sum matrix, namely

a11 + a12 = a21 + a22 = 1. (3)

We call clique the set of pixels on which the finite difference of first order is well-defined.

The vertical cliques are of the type

c = {(i, j), (i+ 1, j)}, (4)
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while the horizontal cliques have the form

c = {(i, j), (i, j + 1)}. (5)

We denote by C the set of all cliques. Note that |C| = 2nm −m − n, where C denotes the

cardinality of C.

Given a vertical clique c = {(i, j), (i + 1, j)}, the finite difference operator on it is ∆cx̂ =

x̂i,j − x̂i+1,j. Moreover, given a horizontal clique c = {(i, j), (i, j + 1)}, the associated finite

difference operator is let ∆cx̂ = x̂i,j − x̂i,j+1. We consider the linear operator D ∈ R|C|×nm.

Note that, in this matrix, every row index corresponds to a clique, while every column index

corresponds to a pixel. To every row it is possible to associate a vertical or horizontal clique.

Then, if we consider a vertical clique c = {(i, j), (i+ 1, j)}, we get

Dc,(l,k) =



1, if (l, k) = (i, j),

−1, if (l, k) = (i+ 1, j),

0, otherwise;

and, if c = {(i, j), (i, j + 1)} is a horizontal clique, we have

Dc,(l,k) =



1, if (l, k) = (i, j),

−1, if (l, k) = (i, j + 1),

0, otherwise.

Let x ∈ R|C|×2 be the data derivative document matrix defined by

x = Dx̂. (6)

Analogously, the source derivative matrix s ∈ R|C|×2 is defined by

s = Dŝ. (7)

Notice that the involved images contain letters. If we assume that the colours of the letters

and of the background are uniform, then the finite differences are null, while they are different

from zero in correspondence with the edges of the letters.

From (1), (6) and (7) we deduce

xT = x̂TDT = AŝTDT = AsT . (8)
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Note that the linear model obtained by considering the data document derivative matrix and

the source derivative matrix is equal to that obtained by treating the data document and the

source document in (1).

Analogously as in [2], here we define the following 2× 2 data derivative overlapping matrix

of the observed data:

C =

[
c11 c12

c21 c22

]
= xT x =

[
xTr · xr xTr · xv
xTv · xr xTv · xv

]
. (9)

The matrix C indicates how much the edges of the letters in the front overlap with those of

the back. Indeed, in our case, the data derivative overlapping matrix is always nonnegative,

and is diagonal if and only if there is no overlapping of the edges of text from the recto to the

verso of the document. In particular we refer to the entries d = c12 = c21 as the data derivative

overlapping level.

The source derivative overlapping matrix can be defined similarly as

P =

[
p11 p12

p21 p22

]
= sT s =

[
sTr · sr sTr · sv
sTv · sr sTv · sv

]
.

It is not difficult to see that the matrices C and P are symmetric and positive semidefinite.

We refer to the value

k = p12 = p21 = sTr · sv (10)

as the source derivative overlapping level. We assume that k = 0, that is the edges of the recto

of the document do not overlap with those of the verso.

3 A technique for solving the linear problem

As in [2], we define a symmetric factorization of a symmetric and positive-definite matrix

H ∈ Rn×n as an expression of the type H = ZZT , where Z ∈ Rn×n. Note that, given an

orthogonal matrix Q ∈ Rn×n and a symmetric factorization of the type H = ZZT , then

ZQ(ZQ)T is a symmetric factorization of H too. Furthermore, if we pick any two symmetric

factorizations H = Z1Z
T
1 and H = Z2Z

T
2 , then there exists an orthogonal matrix Q ∈ Rn×n

with Z1 = Z2Q (see, e.g., [1]).

In the 2 × 2 case, the set of the orthogonal matrices is the union of all rotations and

reflections in R2, which are expressed as

Q1(θ) =

[
sin θ − cos θ

cos θ sin θ

]
and Q−1(θ) =

[
sin θ cos θ

cos θ − sin θ

]
, (11)
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respectively, as θ varies in ]0, 2π]. Since C = C1/2(C1/2)T = C1/2C1/2 is a symmetric factoriza-

tion of C, then all factorizations of C are given by

Z(ι)(θ) = C1/2Q(ι)(θ) =

[
ρ11 ρ12

ρ21 ρ22

]
Q(ι)(θ) =

[
z
(ι)
11 (θ) z

(ι)
12 (θ)

z
(ι)
21 (θ) z

(ι)
22 (θ)

]
, (12)

where θ ∈]0, 2π] and ι ∈ {−1, 1}. In particular, we get

z
(1)
11 (θ) = z

(−1)
11 (θ), z

(1)
12 (θ) = −z(−1)12 (θ), z

(1)
21 (θ) = z

(−1)
21 (θ), z

(1)
22 (θ) = −z(−1)22 (θ). (13)

We assume that

C = xT x = AsT sAT = A P̃ AT , (14)

where P̃ is a symmetric and positive-definite estimate of the source derivative overlapping

matrix P . In P̃ we put

p̃12 = p̃21 = 0. (15)

Observe that we do not assign a value to p̃11 and p̃22, as they will be determined later by

imposing that the estimated mixture matrix is one row-sum. Let

P̃ = Y Y T (16)

be a symmetric factorization, where Y is a nonsingular matrix that satisfies

y11 y21 + y12 y22 = 0, (17)

thanks to (15). From (14) and (16) we get

C = AY Y TAT = AY (AY )T ,

that is, AY is a factorization of C. For every given choice of θ ∈]0, 2π] and ι ∈ {−1, 1}, we

define an estimate Ã(ι)(θ) of the mixture matrix A as a matrix such that Ã(ι)(θ) = Z(ι)(θ)Y −1,

where Z(ι)(θ) is as in (12). We have

a
(ι)
11 (θ) =

z
(ι)
11 (θ)y22 − z(ι)12 (θ)y21
y11 y22 − y21 y12

, a
(ι)
12 (θ) =

z
(ι)
12 (θ)y11 − z(ι)11 (θ)y12
y11 y22 − y21 y12

, (18)

a
(ι)
21 (θ) =

z
(ι)
21 (θ)y22 − z(ι)22 (θ)y21
y11 y22 − y21 y12

, a
(ι)
22 (θ) =

z
(ι)
22 (θ)y11 − z(ι)21 (θ)y12
y11 y22 − y21 y12

,

and by imposing that Ã(ι)(θ) satisfies the one row-sum condition in (3), we get

z
(ι)
11 (θ)y22 − z(ι)12 (θ)y21 + z

(ι)
12 (θ)y11 − z(ι)11 (θ)y12 = y11 y22 − y21 y12, (19)

z
(ι)
21 (θ)y22 − z(ι)22 (θ)y21 + z

(ι)
22 (θ)y11 − z(ι)21 (θ)y12 = y11 y22 − y21 y12.
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Thus, the matrix Y fulfils the conditions in equations (17) and (19). The nonlinear system given

by the equations (17) and (19) admits infinitely many solutions. For the sake of convenience,

we choose the solution

y11 =
detC

(z
(ι)
22 (θ)− z(ι)12 (θ)) detZ(ι)(θ)

, y12 = 0, (20)

y21 = 0, y22 =
detZ(ι)(θ)

z
(ι)
11 (θ)− z(ι)21 (θ)

.

This choice has several consequences. First, from (13) and (18) we obtain that Ã(1)(θ) =

Ã(−1)(θ) for all θ ∈]0, 2π]. Moreover, from equations (11) and (12) we get that Z(θ) = −Z(θ+

π), for θ ∈]0, π], and hence from (18) and (20) we deduce that

Ã(θ) = Ã(θ + π), (21)

for each θ ∈]0, π].

So, in the following we consider only the case ι = 1, we put Ã(θ) = Ã(1)(θ) and Z(θ) =

Z(1)(θ) for each θ ∈]0, π], and in general we consider only the values of θ belonging to ]0, π].

Recall that Y must be non-singular, since Y realizes a symmetric factorization of the non-

singular matrix P .

Moreover, the equations in (20) are well defined if z11(θ) 6= z21(θ) and z12(θ) 6= z22(θ). In

[1] we prove that z11(θ) = z21(θ) or z12(θ) = z22(θ) when θ assumes the values ϕ + tπ
2
, with

t ∈ Z and

ϕ =

 arctan

(
ρ22 − ρ12
ρ11 − ρ21

)
, if ρ11 6= ρ21,

π

2
, if ρ11 = ρ21,

(22)

where ρi,j, i, j = 1, 2, are the entries of the matrix C1/2.

For any θ ∈]ϕ, ϕ+ π
2
[∪]ϕ+ π

2
, ϕ+ π[, we get that an estimate of the ideal sources s is given

by

s̃(θ)T =
[
s̃r(θ) s̃v(θ)

]T
= Ã−1(θ)xT , (23)

which, together with the fact that Ã−1(θ) = Ã1(θ) = Z(1)(θ)Y −1 and (19), yields

s̃r(θ) = − z22(θ)

z12(θ)− z22(θ)
xr +

z12(θ)

z12(θ)− z22(θ)
xv; (24)

s̃v(θ) = − z21(θ)

z11(θ)− z21(θ)
xr +

z11(θ)

z11(θ)− z21(θ)
xv.

As we supposed that the derivatives of our estimated sources take values between 0 and 2m,

where m is the maximum value of the observed image, we take the orthogonal projection of the
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estimate sι(θ) on the space [0, 2m]nm×2 with respect to the Frobenius norm. Namely, we apply

to the estimate of the sources the function that maps a vector s ∈ Rnm to the nm-dimensional

vector τ(s), whose elements are given by

(τ(s))i =


0, if si ≤ 0,

si, if 0 < si ≤ 2m,

2m, if si > 2m,

i = 1, . . . , nm. (25)

By this transformation, the projections of the estimated source derivative images τ(s̃r,ι(θ))

and τ(s̃v,ι(θ)) turn to be nonnegative (see also [3, 5, 7, 14]). From now on, we consider the

projections above as the new estimates of the derivatives of the sources. Thus, among the

possible values of θ in ]ϕ, ϕ+ π
2
[∪]ϕ+ π

2
, ϕ+ π[, we find a value θ̃ that minimizes the objective

function

g(θ, C) = τ(s̃r(θ))
T · τ(s̃v(θ)). (26)

Observe that from (21) and (23) it follows that the function g is periodic in the variable θ with

period π. The function g is minimized by means of the algorithm given in [2].

The steps of the algorithm described in this section are illustrated as follows.

function ZEODS(x̂)

determine the maximum value m of x̂;

x = Dx̂;

C = xTx;

θ̃ = argmin(function g(·, C));

Z(θ̃) = C1/2Q1(θ̃);

compute s̃r(θ̃) and s̃v(θ̃) as in (24);

return D−1τ(s̃(θ̃))

The function g(·, ·) is computed as follows:

function g(θ, C)

Z(θ) = C1/2Q1(θ);

compute s̃r(θ) and s̃v(θ) as in (24);

return (τ(s̃r(θ)))
T · τ(s̃v(θ))

We refer to this method as the Zero Edge Overlapping in Document Separation (ZEODS)

algorithm, which is a parameter-free technique, and thus unsupervised.
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4 Experimental results

We have used ideal images, from which the observed documents have been synthetically con-

structed from suitable mixture matrices. The ideal images used for the tests are represented

in Figures 1 and 2.

(1.1) original recto (1.2) original verso

(1.3) original recto (1.4) original verso

(1.5) original recto (1.6) original verso

Figure 1: Ideal images

In our tests, we have used both symmetric and asymmetric mixture matrices. In the

following subsections, the obtained results are explained and compared with other techniques

both computationally and from the graphical point of view. We examined RGB color images.

The channels R, G and B was treated separately.
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(2.1) original recto (2.2) original verso

(2.3) original recto (2.4) original verso

(2.5) original recto (2.6) original verso

Figure 2: Ideal images
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4.1 Case 1: First symmetric matrix

The first case we investigate is a symmetric mixture matrix. For each channel R, G and B,

the related matrices are

AR =

(
0.6 0.4

0.4 0.6

)
, AG =

(
0.6 0.4

0.4 0.6

)
, AB =

(
0.6 0.4

0.4 0.6

)
. (27)

Now we see the behavior of the presented algorithms. We consider the ideal images in Figure 3,

and using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 4.

(3.1) original recto (3.2) original verso

Figure 3: Ideal images

(4.1) degraded recto (4.2) degraded verso

Figure 4: Degraded images

By applying the algorithms we get, as estimates, the results in Figures 5-10.

In Table 1 we present the mean square errors with respect to the original documents

obtained by means of the aforementioned algorithms for estimating the recto and the verso of

Figure 3. Now we consider the following ideal images in Figure 11. Using the above indicated

mixture matrices, we synthetically obtain the degraded images in Figure 12.
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(5.1) recto estimated by

ZEODS

(5.2) verso estimated by

ZEODS

Figure 5: Estimates by ZEODS

(6.1) recto estimated by

MATODS

(6.2) verso estimated by

MATODS

Figure 6: Estimates by MATODS

(7.1) recto estimated by

FastIca

(7.2) verso estimated by

FastIca

Figure 7: Estimates by FastIca
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(8.1) recto estimated by

Symmetric Whitening

(8.2) verso estimated by

Symmetric Whitening

Figure 8: Estimates by Symmetric Whitening

(9.1) recto estimated by

Whitening

(9.2) verso estimated by

Whitening

Figure 9: Estimates by Whitening

(10.1) recto estimated by

PCA

(10.2) verso estimated by

PCA

Figure 10: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 5.0766 0.6228 1.020 · 10−4

MATODS 12.5173 49.0506 0.0011

FASTICA 58.2382 212.8663 0.0546

Symmetric Whitening 428.0422 373.6753 0.00183

Whitening 7.7086 · 103 6.2362 · 103 0.3561

PCA 1.4943 · 104 5.2861 · 103 0.3770

Table 1: Errors of the algorithms by using the mixture matrix in (27).

(11.1) original recto (11.2) original verso

Figure 11: Ideal images

(12.1) degraded recto (12.2) degraded verso

Figure 12: Degraded images
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(13.1) recto estimated by

ZEODS

(13.2) verso estimated by

ZEODS

Figure 13: Estimates by ZEODS

(14.1) recto estimated by

MATODS

(14.2) verso estimated by

MATODS

Figure 14: Estimates by MATODS

(15.1) recto estimated by

FastIca

(15.2) verso estimated by

FastIca

Figure 15: Estimates by FastIca
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(16.1) recto estimated by

Symmetric Whitening

(16.2) verso estimated by

Symmetric Whitening

Figure 16: Estimates by Symmetric Whitening

(17.1) recto estimated by

Whitening

(17.2) verso estimated by

Whitening

Figure 17: Estimates by Whitening

(18.1) recto estimated by

PCA

(18.2) verso estimated by

PCA

Figure 18: Estimates by PCA
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By applying the algorithms we obtain, as estimates, the results in Figures 13-18.

In Table 2 we give the mean square errors with respect to the original documents obtained

by means of the above algorithms for the estimates of the recto and the verso of Figure 11.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.7592 0.4784 5.4688 · 10−5

MATODS 25.6900 52.0605 1.2550 · 10−4

FASTICA 3.3840 3.4516 0.0095

Symmetric Whitening 74.7709 80.8914 0.0110

Whitening 8.4391 · 103 5.98950 · 103 0.4561

PCA 1.4068 · 104 3.9386 · 103 0.4225

Table 2: Errors of the algorithms by using the mixture matrix in (27).

We consider the ideal images in Figure 19.

(19.1) original recto (19.2) original verso

Figure 19: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 20.

By applying the algorithms we obtain, as estimates, the results in Figures 21-26.

In Table 3 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 19. We consider the ideal images in Figure 27.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 28.

By applying the algorithms we obtain, as estimates, the results in Figures 29-34.

In Table 4 we indicate the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of
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(20.1) degraded recto (20.2) degraded verso

Figure 20: Degraded images

(21.1) recto estimated by

ZEODS

(21.2) verso estimated by

ZEODS

Figure 21: Estimates by ZEODS

(22.1) recto estimated by

MATODS

(22.2) verso estimated by

MATODS

Figure 22: Estimates by MATODS

18



(23.1) recto estimated by

FastIca

(23.2) verso estimated by

FastIca

Figure 23: Estimates by FastIca

(24.1) recto estimated by

Symmetric Whitening

(24.2) verso estimated by

Symmetric Whitening

Figure 24: Estimates by Symmetric Whitening

(25.1) recto estimated by

Whitening

(25.2) verso estimated by

Whitening

Figure 25: Estimates by Whitening
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(26.1) recto estimated by

PCA

(26.2) verso estimated by

PCA

Figure 26: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.8752 0.6474 4.4766 · 10−5

MATODS 172.146 180.0660 2.8565 · 10−4

FASTICA 12.1634 43.6463 0.0395

Symmetric Whitening 261.5776 259.4301 0.00168

Whitening 3.5723 · 103 1.5907 · 103 0.4596

PCA 5.9609 · 103 1.4281 · 103 0.4242

Table 3: Errors of the algorithms by using the mixture matrix in (27).

(27.1) original recto (27.2) original verso

Figure 27: Ideal images
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(28.1) degraded recto (28.2) degraded verso

Figure 28: Degraded images

(29.1) recto estimated by

ZEODS

(29.2) verso estimated by

ZEODS

Figure 29: Estimates by ZEODS

(30.1) recto estimated by

MATODS

(30.2) verso estimated by

MATODS

Figure 30: Estimates by MATODS
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(31.1) recto estimated by

FastIca

(31.2) verso estimated by

FastIca

Figure 31: Estimates by FastIca

(32.1) recto estimated by

Symmetric Whitening

(32.2) verso estimated by

Symmetric Whitening

Figure 32: Estimates by Symmetric Whitening

(33.1) recto estimated by

Whitening

(33.2) verso estimated by

Whitening

Figure 33: Estimates by Whitening
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(34.1) recto estimated by

PCA

(34.2) verso estimated by

PCA

Figure 34: Estimates by PCA

Figure 27.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.7829 0.5673 1.095 · 10−4

MATODS 0.9015 10.3131 0.0014

FASTICA 1.0849 0.6707 0.0136

Symmetric Whitening 8.5123 12.2799 0.0085

Whitening 1.9433 · 103 1.2006 · 103 0.4548

PCA 2.9914 · 103 716.5649 · 103 0.4234

Table 4: Errors of the algorithms by using the mixture matrix in (27).

We consider the ideal images in Figure 35.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 36.

By applying the algorithms we obtain, as estimates, the results in Figures 37-42.

In Table 5 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 35.

As we can observe from the results of the previous subsection, the proposed and imple-

mented ZEODS method obtains better results than algorithms FastIca, PCA, Whitening and

Symmetric Whitening. However the MATODS algorithm obtains results close to those of the

ZEODS algorithm only in the image in Figure 27. To see this, we compare the execution time

of the two algorithms in the image in Figure 27. The results are presented in Table 14.

To see a further demonstration of what we said before, we now make a further test on

another image, obtaining similar results by means of both algorithms obtaining similar results
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(35.1) original recto (35.2) original verso

Figure 35: Ideal images

(36.1) degraded recto (36.2) degraded verso

Figure 36: Degraded images

(37.1) recto estimated by

ZEODS

(37.2) verso estimated by

ZEODS

Figure 37: Estimates by ZEODS
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(38.1) recto estimated by

MATODS

(38.2) verso estimated by

MATODS

Figure 38: Estimates by MATODS

(39.1) recto estimated by

FastIca

(39.2) verso estimated by

FastIca

Figure 39: Estimates by FastIca

(40.1) recto estimated by

Symmetric Whitening

(40.2) verso estimated by

Symmetric Whitening

Figure 40: Estimates by Symmetric Whitening
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(41.1) recto estimated by

Whitening

(41.2) verso estimated by

Whitening

Figure 41: Estimates by Whitening

(42.1) recto estimated by

PCA

(42.2) verso estimated by

PCA

Figure 42: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 4.7486 1.6165 1.4055 · 10−4

MATODS 136.7090 120.7570 0.0015

FASTICA 58.2382 212.8663 0.0546

Symmetric Whitening 428.0422 373.6753 0.0183

Whitening 7.7086 · 103 6.2362 · 103 0.3561

PCA 1.4943 · 104 5.2861 · 103 0.3770

Table 5: Errors of the algorithms by using the mixture matrix in (27).

Used Technique Time

ZEODS 0.3320s

MATODS 754.1420s

Table 6: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (27) on the image in Figure 27
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by means of both algorithms ZEODS and MATODS.

We consider the ideal images in Figure 43.

(43.1) original recto (43.2) original verso

Figure 43: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 44.

(44.1) degraded recto (44.2) degraded verso

Figure 44: Degraded images

In Table 7 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 43.

The algorithms MATODS and ZEODS obtain very similar results. By applying the algo-

rithms we obtain, as estimates, the results in Figures 45-46. Now we analyze the execution

time of the algorithms. As in the previous case, we see that the ZEODS method gives results

in a much shorter time than the MATODS method, as shown in Table 14.

These results given in terms of time are consistent with the previously obtained results.
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.0008 0.4494 1.6842 · 10−6

MATODS 0.0081 0.0019 1.29 · 10−4

FASTICA 42.7700 70.7900 0.0066

Symmetric Whitening 341.69 342.1863 0.0048

Whitening 245.8900 262.93 0.0086

PCA 9249 · 104 10330 · 103 0.038

Table 7: Errors of the algorithms by using the mixture matrix in (27).

(45.1) recto estimated by

ZEODS

(45.2) verso estimated by

ZEODS

Figure 45: Estimates by ZEODS

(46.1) recto estimated by

MATODS

(46.2) verso estimated by

MATODS

Figure 46: Estimates by MATODS

Used Technique Time

ZEODS 0.3410s

MATODS 750.6980s

Table 8: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (27) on the image in Figure 43
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4.2 Case 2: Second symmetric matrix

The second case we investigate is another symmetric mixture matrix. For every channel R, G

and B, the corresponding matrices are

AR =

(
0.7 0.3

0.3 0.7

)
, AG =

(
0.7 0.3

0.3 0.7

)
, AB =

(
0.7 0.3

0.3 0.7

)
. (28)

Now we see the behavior of the presented algorithms, in connection both with errors and with

the graphical point of view.

We consider the ideal images in Figure 47.

(47.1) original recto (47.2) original verso

Figure 47: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 48.

(48.1) degraded recto (48.2) degraded verso

Figure 48: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 49-54. In

Table 9 we present the mean square errors with respect to the original documents obtained by

means of the above algorithms for the estimate of the recto and the verso of Figure 47.
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(49.1) recto estimated by

ZEODS

(49.2) verso estimated by

ZEODS

Figure 49: Estimates by ZEODS

(50.1) recto estimated by

MATODS

(50.2) verso estimated by

MATODS

Figure 50: Estimates by MATODS

(51.1) recto estimated by

FastIca

(51.2) verso estimated by

FastIca

Figure 51: Estimates by FastIca
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(52.1) recto estimated by

Symmetric Whitening

(52.2) verso estimated by

Symmetric Whitening

Figure 52: Estimates by Symmetric Whitening

(53.1) recto estimated by

Whitening

(53.2) verso estimated by

Whitening

Figure 53: Estimates by Whitening

(54.1) recto estimated by

PCA

(54.2) verso estimated by

PCA

Figure 54: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.8547 4.9596 5.8836 · 10−5

MATODS 17.6269 50.6982 0.0004

FASTICA 37.5413 86.2744 0.0783

Symmetric Whitening 519.4615 288.9082 0.0352

Whitening 2.4090 · 103 400.2690 0.0352

PCA 7.7310 · 103 3.7087 · 103 0.3674

Table 9: Errors of the algorithms by using the mixture matrix in (28).

(55.1) original recto (55.2) original verso

Figure 55: Ideal images
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We consider the ideal images in Figure 55. Using the above mixture matrices, we synthet-

ically obtain the degraded images in Figure 56.

(56.1) degraded recto (56.2) degraded verso

Figure 56: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 57-62.

(57.1) recto estimated by

ZEODS

(57.2) verso estimated by

ZEODS

Figure 57: Estimates by ZEODS

In Table 10 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 55.

We consider the ideal images in Figure 63.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 64.

By applying the algorithms we obtain, as estimates, the results in Figures 65-70.

In Table 11 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 63. We consider the ideal images in Figure 71.
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(58.1) recto estimated by

MATODS

(58.2) verso estimated by

MATODS

Figure 58: Estimates by MATODS

(59.1) recto estimated by

FastIca

(59.2) verso estimated by

FastIca

Figure 59: Estimates by FastIca

(60.1) recto estimated by

Symmetric Whitening

(60.2) verso estimated by

Symmetric Whitening

Figure 60: Estimates by Symmetric Whitening
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(61.1) recto estimated by

Whitening

(61.2) verso estimated by

Whitening

Figure 61: Estimates by Whitening

(62.1) recto estimated by

PCA

(62.2) verso estimated by

PCA

Figure 62: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.0648 2.9075 1.3883 · 10−5

MATODS 125.8860 213.165 0.0035

FASTICA 14.2089 1.7185 0.0215

Symmetric Whitening 71.8710 75.6985 0.224

Whitening 1.1589 · 104 6.9410 · 103 0.4281

PCA 1.5428 · 104 5.3671 · 103 0.4305

Table 10: Errors of the algorithms by using the mixture matrix in (28).
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(63.1) original recto (63.2) original verso

Figure 63: Ideal images

(64.1) degraded recto (64.2) degraded verso

Figure 64: Degraded images

(65.1) recto estimated by

ZEODS

(65.2) verso estimated by

ZEODS

Figure 65: Estimates by ZEODS

36



(66.1) recto estimated by

MATODS

(66.2) verso estimated by

MATODS

Figure 66: Estimates by MATODS

(67.1) recto estimated by

FastIca

(67.2) verso estimated by

FastIca

Figure 67: Estimates by FastIca

(68.1) recto estimated by

Symmetric Whitening

(68.2) verso estimated by

Symmetric Whitening

Figure 68: Estimates by Symmetric Whitening
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(69.1) recto estimated by

Whitening

(69.2) verso estimated by

Whitening

Figure 69: Estimates by Whitening

(70.1) recto estimated by

PCA

(70.2) verso estimated by

PCA

Figure 70: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.7132 1.8467 2.1718 · 10−5

MATODS 12.4361 48.8206 0.021

FASTICA 12.2312 42.1443 0.0407

Symmetric Whitening 190.6356 174.7290 0.0326

Whitening 3.9342 · 103 1.5761 · 103 0.4392

PCA 5.7594 · 103 1.5845 · 103 0.4368

Table 11: Errors of the algorithms by using the mixture matrix in (28).
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(71.1) original recto (71.2) original verso

Figure 71: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 72.

(72.1) degraded recto (72.2) degraded verso

Figure 72: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 73-78.

In Table 12 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 71.

We consider the ideal images in Figure 79.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 80.

By applying the algorithms we obtain, as estimates, the results in Figures 81-86.

In Table 13 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 79 and the corresponding distance between the ideal and the estimated sources.

As we can note in the results of the previous subsection, the ZEODS methods, in terms

of errors, always obtains better results than the FastIca, PCA, Whitening and Symmetric
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(73.1) recto estimated by

ZEODS

(73.2) verso estimated by

ZEODS

Figure 73: Estimates by ZEODS

(74.1) recto estimated by

MATODS

(74.2) verso estimated by

MATODS

Figure 74: Estimates by MATODS

(75.1) recto estimated by

FastIca

(75.2) verso estimated by

FastIca

Figure 75: Estimates by FastIca
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(76.1) recto estimated by

Symmetric Whitening

(76.2) verso estimated by

Symmetric Whitening

Figure 76: Estimates by Symmetric Whitening

(77.1) recto estimated by

Whitening

(77.2) verso estimated by

Whitening

Figure 77: Estimates by Whitening

(78.1) recto estimated by

PCA

(78.2) verso estimated by

PCA

Figure 78: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.2304 1.9043 5.5429 · 10−5

MATODS 1.4521 3.5621 0.0010

FASTICA 0.8686 0.4879 0.0120

Symmetric Whitening 5.1557 10.1508 0.0159

Whitening 2.8938 · 103 1.5686 · 103 0.5148

PCA 3.5387 · 103 1.0885 · 103 0.4658

Table 12: Errors of the algorithms by using the mixture matrix in (28).

(79.1) original recto (79.2) original verso

Figure 79: Ideal images

(80.1) degraded recto (80.2) degraded verso

Figure 80: Degraded images
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(81.1) recto estimated by

ZEODS

(81.2) verso estimated by

ZEODS

Figure 81: Estimates by ZEODS

(82.1) recto estimated by

MATODS

(82.2) verso estimated by

MATODS

Figure 82: Estimates by MATODS

(83.1) recto estimated by

FastIca

(83.2) verso estimated by

FastIca

Figure 83: Estimates by FastIca
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(84.1) recto estimated by

Symmetric Whitening

(84.2) verso estimated by

Symmetric Whitening

Figure 84: Estimates by Symmetric Whitening

(85.1) recto estimated by

Whitening

(85.2) verso estimated by

Whitening

Figure 85: Estimates by Whitening

(86.1) recto estimated by

PCA

(86.2) verso estimated by

PCA

Figure 86: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.6564 4.5617 9.4655 · 10−5

MATODS 110.2154 85.9412 0.0015

FASTICA 19.2557 7.4678 0.0266

Symmetric Whitening 31.9505 84.1863 0.0220

Whitening 1.8337 · 104 8.4063 · 103 0.5216

PCA 2.2485 · 104 5.9284 · 103 0.4693

Table 13: Errors of the algorithms by using the mixture matrix in (28).

Whitening algorithms. However the MATODS algorithm obtains results close to those of the

proposed algorithm only in the image in Figure 71. But the execution time of the ZEODS

algorithm is much shorter than those of the MATODS algorithm. To see this, we compare the

execution time of the two algorithms in the image in Figure 71.

Used Technique Time

ZEODS 0.3150s

MATODS 687.3250s

Table 14: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (28) on the image in Figure 71

To see a further demonstration of what we said before, we now make a further test on

another image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 87.

(87.1) original recto (87.2) original verso

Figure 87: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
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in Figure 88.

(88.1) degraded recto (88.2) degraded verso

Figure 88: Degraded images

In Table 15 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 87. The algorithms MATODS and ZEODS obtain very similar results. We obtain,

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 5.2751 4.1563 4.1236 · 10−5

MATODS 0.1501 0.1910 1.4301 · 10−5

FASTICA 42.7700 70.7900 0.0066

Symmetric Whitening 341.69 342.1863 0.0048

Whitening 245.8900 262.93 0.0086

PCA 9249 10330 0.038

Table 15: Errors of the algorithms by using the mixture matrix in (28).

as estimates, the results in Figures 89-90. However, if we analyze the excution time of the

algorithm, we see that the ZEODS method gives results in a much shorter time than the

MATODS method, as shown in Table 16.

Used Technique Time

ZEODS 0.3330s

MATODS 489.0880s

Table 16: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (28).
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(89.1) recto estimated by

ZEODS

(89.2) verso estimated by

ZEODS

Figure 89: Estimates by ZEODS

(90.1) recto estimated by

MATODS

(90.2) verso estimated by

MATODS

Figure 90: Estimates by MATODS

47



4.3 Case 3: First asymmetric matrix

The third case we deal with is an asymmetric mixture matrix. For every channel R, G and B,

the related matrices are

AR =

(
0.7 0.3

0.3 0.7

)
, AG =

(
0.7 0.3

0.2 0.8

)
, AB =

(
0.6 0.4

0.3 0.7

)
. (29)

Now we see the behavior of the presented algorithms, concerning both errors and the graphical

point of view.

We consider the ideal images in Figure 91.

(91.1) original recto (91.2) original verso

Figure 91: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 92.

(92.1) degraded recto (92.2) degraded verso

Figure 92: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 93-98.

In Table 17 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of
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(93.1) recto estimated by

ZEODS

(93.2) verso estimated by

ZEODS

Figure 93: Estimates by ZEODS

(94.1) recto estimated by

MATODS

(94.2) verso estimated by

MATODS

Figure 94: Estimates by MATODS

(95.1) recto estimated by

FastIca

(95.2) verso estimated by

FastIca

Figure 95: Estimates by FastIca
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(96.1) recto estimated by

Symmetric Whitening

(96.2) verso estimated by

Symmetric Whitening

Figure 96: Estimates by Symmetric Whitening

(97.1) recto estimated by

Whitening

(97.2) verso estimated by

Whitening

Figure 97: Estimates by Whitening

(98.1) recto estimated by

PCA

(98.2) verso estimated by

PCA

Figure 98: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.9539 3.8356 6.1210 · 10−5

MATODS 45.2314 49.0506 0.0011

FASTICA 29.2027 148.9813 0.0701

Symmetric Whitening 451.6652 419.6792 0.0373

Whitening 2.8741 · 103 352.5680 0.1792

PCA 8.0327 · 103 3.5478 · 103 0.3596

Table 17: Errors of the algorithms by using the mixture matrix in (29).

(99.1) original recto (99.2) original verso

Figure 99: Ideal images

(100.1) degraded recto (100.2) degraded verso

Figure 100: Degraded images
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Figure 91. We consider the ideal images in Figure 99. Using the above indicated mixture

matrices, we synthetically obtain the degraded images in Figure 100.

By applying the algorithms we obtain, as estimates, the results in Figures 101-106.

(101.1) recto estimated by

ZEODS

(101.2) verso estimated by

ZEODS

Figure 101: Estimates by ZEODS

(102.1) recto estimated by

MATODS

(102.2) verso estimated by

MATODS

Figure 102: Estimates by MATODS

In Table 18 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 99.

We consider the ideal images in Figure 107.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 108.

By applying the algorithms we obtain, as estimates, the results in Figures 109-114.

In Table 19 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 107. We consider the ideal images in Figure 115.
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(103.1) recto estimated by

FastIca

(103.2) verso estimated by

FastIca

Figure 103: Estimates by FastIca

(104.1) recto estimated by

Symmetric Whitening

(104.2) verso estimated by

Symmetric Whitening

Figure 104: Estimates by Symmetric Whitening

(105.1) recto estimated by

Whitening

(105.2) verso estimated by

Whitening

Figure 105: Estimates by Whitening
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(106.1) recto estimated by

PCA

(106.2) verso estimated by

PCA

Figure 106: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.2423 3.5365 2.044 · 10−5

MATODS 35.0330 51.3125 0.0002

FASTICA 4.4079 4.1418 0.0126

Symmetric Whitening 45.8355 117.4545 0.0305

Whitening 6.7961 · 103 3.7444 · 103 0.3297

PCA 1.1179 · 104 4.1416 · 103 0.3893

Table 18: Errors of the algorithms by using the mixture matrix in (29).

(107.1) original recto (107.2) original verso

Figure 107: Ideal images
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(108.1) degraded recto (108.2) degraded verso

Figure 108: Degraded images

(109.1) recto estimated by

ZEODS

(109.2) verso estimated by

ZEODS

Figure 109: Estimates by ZEODS

(110.1) recto estimated by

MATODS

(110.2) verso estimated by

MATODS

Figure 110: Estimates by MATODS
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(111.1) recto estimated by

FastIca

(111.2) verso estimated by

FastIca

Figure 111: Estimates by FastIca

(112.1) recto estimated by

Symmetric Whitening

(112.2) verso estimated by

Symmetric Whitening

Figure 112: Estimates by Symmetric Whitening

(113.1) recto estimated by

Whitening

(113.2) verso estimated by

Whitening

Figure 113: Estimates by Whitening
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(114.1) recto estimated by

PCA

(114.2) verso estimated by

PCA

Figure 114: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.4521 1.3566 1.9913 · 10−5

MATODS 67.4521 75.6765 0.0007

FASTICA 14.8255 47.8983 0.0429

Symmetric Whitening 221.8945 190.5466 0.0377

Whitening 1.6127 · 103 421.6936 0.0377

PCA 3.7456 · 103 1.3281 · 103 0.3954

Table 19: Errors of the algorithms by using the mixture matrix in (29).

(115.1) original recto (115.2) original verso

Figure 115: Ideal images
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Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 116.

(116.1) degraded recto (116.2) degraded verso

Figure 116: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 117-122.

(117.1) recto estimated by

ZEODS

(117.2) verso estimated by

ZEODS

Figure 117: Estimates by ZEODS

In Table 20 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 115.

We consider the ideal images in Figure 123.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 124.

By applying the algorithms we obtain, as estimates, the results in Figures 125-130.

In Table 21 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 123.
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(118.1) recto estimated by

MATODS

(118.2) verso estimated by

MATODS

Figure 118: Estimates by MATODS

(119.1) recto estimated by

FastIca

(119.2) verso estimated by

FastIca

Figure 119: Estimates by FastIca

(120.1) recto estimated by

Symmetric Whitening

(120.2) verso estimated by

Symmetric Whitening

Figure 120: Estimates by Symmetric Whitening
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(121.1) recto estimated by

Whitening

(121.2) verso estimated by

Whitening

Figure 121: Estimates by Whitening

(122.1) recto estimated by

PCA

(122.2) verso estimated by

PCA

Figure 122: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.1486 0.1950 6.2159 · 10−5

MATODS 1.9025 2.3132 2.1564 · 10−5

FASTICA 0.9037 0.5265 0.0117

Symmetric Whitening 3.8798 12.8583 0.0270

Whitening 1.7404 · 103 833.1407 0.3356

PCA 2.5707 · 103 795.5274 0.3916

Table 20: Errors of the algorithms by using the mixture matrix in (29).
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(123.1) original recto (123.2) original verso

Figure 123: Ideal images

(124.1) degraded recto (124.2) degraded verso

Figure 124: Degraded images

(125.1) recto estimated by

ZEODS

(125.2) verso estimated by

ZEODS

Figure 125: Estimates by ZEODS
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(126.1) recto estimated by

MATODS

(126.2) verso estimated by

MATODS

Figure 126: Estimates by MATODS

(127.1) recto estimated by

FastIca

(127.2) verso estimated by

FastIca

Figure 127: Estimates by FastIca

(128.1) recto estimated by

Symmetric Whitening

(128.2) verso estimated by

Symmetric Whitening

Figure 128: Estimates by Symmetric Whitening
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(129.1) recto estimated by

Whitening

(129.2) verso estimated by

Whitening

Figure 129: Estimates by Whitening

(130.1) recto estimated by

PCA

(130.2) verso estimated by

PCA

Figure 130: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.8024 5.2181 1.012 · 10−4

MATODS 20.7090 19.3665 0.0001

FASTICA 15.7847 3.3160 0.0223

Symmetric Whitening 7.2817 109.0196 0.0339

Whitening 1.7703 · 104 8.5767 · 103 0.0339

PCA 2.17489 · 104 5.9721 · 103 0.4655

Table 21: Errors of the algorithms by using the mixture matrix in (29).
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As we observe in the previous results, the ZEODS methods, in terms of errors, always

obtains better results than the FastIca, PCA, Whitening and Symmetric Whitening algorithms.

However, the MATODS algorithm gives results close to those of the proposed algorithm only

in the image in Figure 115. To see this, we compare the execution time of the two algorithms

in the image in Figure 115.

Used Technique Time

ZEODS 0.3510s

MATODS 956.3210s

Table 22: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (29) on the image in Figure 115

To see a further demonstration of what we said before, we now make a further test on

another image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 131.

(131.1) original recto (131.2) original verso

Figure 131: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 132.

In Table 23 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 131.

By applying the algorithms we obtain, as estimates, the results in Figures 133-134.

As we can note in the results of the previous subsection, the ZEODS method, in terms

of errors, always obtains better results than the other algorithms, and is even faster than the

MATODS method, as shown in Table 30.

These results given in terms of time are consistent with the previously obtained results.
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(132.1) degraded recto (132.2) degraded verso

Figure 132: Degraded images

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 11.1003 10.4289 3.7659 · 10−5

MATODS 4.0124 3.1247 2.2459 · 10−5

Table 23: Errors of the algorithms by using the mixture matrix in (29).

(133.1) recto estimated by

ZEODS

(133.2) verso estimated by

ZEODS

Figure 133: Estimates by ZEODS

(134.1) recto estimated by

MATODS

(134.2) verso estimated by

MATODS

Figure 134: Estimates by MATODS
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Used Technique Time

ZEODS 0.3440s

MATODS 910.1002s

Table 24: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (29) on the image in Figure 131

4.4 Case 4: Second asymmetric matrix

In the fourth and last case we consider another asymmetric mixture matrix. For every channel

R, G and B, the corresponding matrices are

AR =

(
0.7 0.3

0.2 0.8

)
, AG =

(
0.45 0.55

0.4 0.6

)
, AB =

(
0.7 0.3

0.51 0.49

)
. (30)

Now we see the behavior of the presented algorithms, regarding both errors and the graphical

point of view. We consider the ideal images in Figure 135.

(135.1) original recto (135.2) original verso

Figure 135: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 136.

By applying the algorithms we obtain, as estimates, the results in Figures 137-142.

In Table 25 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 135. We consider the ideal images in Figure 143. Using the above indicated mixture

matrices, we synthetically obtain the degraded images in Figure 144.

By applying the algorithms we obtain, as estimates, the results in Figures 145-150.

In Table 26 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 143.
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(136.1) degraded recto (136.2) degraded verso

Figure 136: Degraded images

(137.1) recto estimated by

ZEODS

(137.2) verso estimated by

ZEODS

Figure 137: Estimates by ZEODS

(138.1) recto estimated by

MATODS

(138.2) verso estimated by

MATODS

Figure 138: Estimates by MATODS
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(139.1) recto estimated by

FastIca

(139.2) verso estimated by

FastIca

Figure 139: Estimates by FastIca

(140.1) recto estimated by

Symmetric Whitening

(140.2) verso estimated by

Symmetric Whitening

Figure 140: Estimates by Symmetric Whitening

(141.1) recto estimated by

Whitening

(141.2) verso estimated by

Whitening

Figure 141: Estimates by Whitening
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(142.1) recto estimated by

PCA

(142.2) verso estimated by

PCA

Figure 142: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 3.9507 4.9612 7.6397 · 10−5

MATODS 50.1485 41.1745 0.0098

FASTICA 615.3561 346.1334 0.0719

Symmetric Whitening 707.1949 631.6572 0.0520

Whitening 2.3355 · 103 938.1797 0.2227

PCA 6.5589 · 103 4.1706 · 103 0.3401

Table 25: Errors of the algorithms by using the mixture matrix in (30).

(143.1) original recto (143.2) original verso

Figure 143: Ideal images
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(144.1) degraded recto (144.2) degraded verso

Figure 144: Degraded images

(145.1) recto estimated by

ZEODS

(145.2) verso estimated by

ZEODS

Figure 145: Estimates by ZEODS

(146.1) recto estimated by

MATODS

(146.2) verso estimated by

MATODS

Figure 146: Estimates by MATODS
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(147.1) recto estimated by

FastIca

(147.2) verso estimated by

FastIca

Figure 147: Estimates by FastIca

(148.1) recto estimated by

Symmetric Whitening

(148.2) verso estimated by

Symmetric Whitening

Figure 148: Estimates by Symmetric Whitening

(149.1) recto estimated by

Whitening

(149.2) verso estimated by

Whitening

Figure 149: Estimates by Whitening
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(150.1) recto estimated by

PCA

(150.2) verso estimated by

PCA

Figure 150: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.2642 2.6337 2.2806 · 10−5

MATODS 62.2418 85.4395 0.0026

FASTICA 353.226 182.7357 0.0303

Symmetric Whitening 409.8490 495.5137 0.1435

Whitening 7.7216 · 103 3.5975 · 103 0.4449

PCA 1.2810 · 104 2.5195 · 103 0.4473

Table 26: Errors of the algorithms by using the mixture matrix in (30).
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We consider the ideal images in Figure 151.

(151.1) original recto (151.2) original verso

Figure 151: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the images in Figure

152. By applying the algorithms we obtain, as estimates, the results in Figures 153-158.

(152.1) degraded recto (152.2) degraded verso

Figure 152: Degraded images

In Table 27 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 151. We consider the ideal images in Figure 159.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 160.

By applying the algorithms we obtain, as estimates, the results in Figures 161-166.

In Table 28 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 159.

We consider the following images in Figure 167.

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 168.
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(153.1) recto estimated by

ZEODS

(153.2) verso estimated by

ZEODS

Figure 153: Estimates by ZEODS

(154.1) recto estimated by

MATODS

(154.2) verso estimated by

MATODS

Figure 154: Estimates by MATODS

(155.1) recto estimated by

FastIca

(155.2) verso estimated by

FastIca

Figure 155: Estimates by FastIca
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(156.1) recto estimated by

Symmetric Whitening

(156.2) verso estimated by

Symmetric Whitening

Figure 156: Estimates by Symmetric Whitening

(157.1) recto estimated by

Whitening

(157.2) verso estimated by

Whitening

Figure 157: Estimates by Whitening

(158.1) recto estimated by

PCA

(158.2) verso estimated by

PCA

Figure 158: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.6289 1.3893 9.6560 · 10−6

MATODS 12.0247 30.8065 8.8984 · 10−4

FASTICA 166.6276 91.2465 0.0386

Symmetric Whitening 352.5150 410.2975 0.0579

Whitening 1.6118 · 103 830.0139 0.3584

PCA 3.0682 · 103 1.8473 · 103 0.3767

Table 27: Errors of the algorithms by using the mixture matrix in (30).

(159.1) original recto (159.2) original verso

Figure 159: Ideal images

(160.1) degraded recto (160.2) degraded verso

Figure 160: Degraded images
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(161.1) recto estimated by

ZEODS

(161.2) verso estimated by

ZEODS

Figure 161: Estimates by ZEODS

(162.1) recto estimated by

MATODS

(162.2) verso estimated by

MATODS

Figure 162: Estimates by MATODS

(163.1) recto estimated by

FastIca

(163.2) verso estimated by

FastIca

Figure 163: Estimates by FastIca
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(164.1) recto estimated by

Symmetric Whitening

(164.2) verso estimated by

Symmetric Whitening

Figure 164: Estimates by Symmetric Whitening

(165.1) recto estimated by

Whitening

(165.2) verso estimated by

Whitening

Figure 165: Estimates by Whitening

(166.1) recto estimated by

PCA

(166.2) verso estimated by

PCA

Figure 166: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.3876 1.7862 6.7032 · 10−5

MATODS 3.1985 5.1475 0.0002

FASTICA 34.7680 15.8122 0.0228

Symmetric Whitening 8.8713 17.2117 0.0458

Whitening 2.2407 · 103 1.2194 · 103 0.4580

PCA 2.8462 · 103 941.9039 0.4180

Table 28: Errors of the algorithms by using the mixture matrix in (30).

(167.1) original recto (167.2) original verso

Figure 167: Ideal images

(168.1) degraded recto (168.2) degraded verso

Figure 168: Degraded images
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By applying the algorithms we obtain, as estimates, the results in Figures 169-174.

(169.1) recto estimated by

ZEODS

(169.2) verso estimated by

ZEODS

Figure 169: Estimates by ZEODS

(170.1) recto estimated by

MATODS

(170.2) verso estimated by

MATODS

Figure 170: Estimates by MATODS

In Table 29 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 167.

As we observe in the results of the previous subsection, the ZEODS methods, in terms

of errors, always obtains better results than the FastIca, PCA, Whitening and Symmetric

Whitening algorithms. However the MATODS algorithm obtains results close to those of the

proposed algorithm only in the image in Figure 159. But the execution time of the ZEODS

algorithm is much shorter than those of the MATODS algorithm. To see this, we compare the

execution time of the two algorithms in the image in Figure 159.

To see a further demonstration of what we said before, we now make a further test on

another image, obtaining similar results by means of both algorithms ZEODS e MATODS. We

consider the ideal images in Figure 175.
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(171.1) recto estimated by

FastIca

(171.2) verso estimated by

FastIca

Figure 171: Estimates by FastIca

(172.1) recto estimated by

Symmetric Whitening

(172.2) verso estimated by

Symmetric Whitening

Figure 172: Estimates by Symmetric Whitening

(173.1) recto estimated by

Whitening

(173.2) verso estimated by

Whitening

Figure 173: Estimates by Whitening
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(174.1) recto estimated by

PCA

(174.2) verso estimated by

PCA

Figure 174: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 3.2977 3.6252 1.090 · 10−4

MATODS 35.0124 42.8569 1.5041 · 10−4

FASTICA 232.7229 147.4355 0.0304

Symmetric Whitening 235.6894 607.9245 0.1441

Whitening 1.4669 · 104 6.6340 · 103 0.5272

PCA 1.9414 · 104 3.9348 · 103 0.4795

Table 29: Errors of the algorithms by using the mixture matrix in (30).

Used Technique Time

ZEODS 0.3390s

MATODS 845.1618s

Table 30: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (30) on the image in Figure 159

(175.1) original recto (175.2) original verso

Figure 175: Ideal images
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Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 176.

(176.1) degraded recto (176.2) degraded verso

Figure 176: Degraded images

In Table 31 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 175.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 8.1003 7.4289 3.7659 · 10−5

MATODS 6.0247 5.1247 2.2459 · 10−5

Table 31: Errors of the algorithms by using the mixture matrix in (30).

The ZEODS algorithm obtains results very close to the MATODS algorithm. We get, as

estimates, the results in Figures 177-178. We analyze the execution time of algorithms. As in

(177.1) recto estimated by

ZEODS

(177.2) verso estimated by

ZEODS

Figure 177: Estimates by ZEODS
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(178.1) recto estimated by

MATODS

(178.2) verso estimated by

MATODS

Figure 178: Estimates by MATODS

the previous case, we get that the ZEODS method gives results in a much shorter time than

the MATODS method, as we can see in Table 30.

Used Technique Time

ZEODS 0.3510s

MATODS 812.1014s

Table 32: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (29) on the image in Figure 175

These results given in terms of time are consistent with the previously obtained results.
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